請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79155
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳益群(Yi-Chun Wu) | |
dc.contributor.author | Kuan-Lun Hsu | en |
dc.contributor.author | 徐貫倫 | zh_TW |
dc.date.accessioned | 2021-07-11T15:48:35Z | - |
dc.date.available | 2023-08-03 | |
dc.date.copyright | 2018-08-03 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-01 | |
dc.identifier.citation | 1. Lettre, G. and M.O. Hengartner, Developmental cell biology: developmental apoptosis in C. elegans: a complex CEDnario. Nature Reviews Molecular Cell Biology, 2006. 7(2): p. 97.
2. Erwig, L. and P. Henson, Clearance of apoptotic cells by phagocytes. Cell death and differentiation, 2008. 15(2): p. 243. 3. López-Sáez, J.F., et al., Cell proliferation and cancer. Histology and histopathology, 1998. 13(4): p. 1197-1214. 4. Munoz, L.E., et al., Apoptosis in the pathogenesis of systemic lupus erythematosus. Lupus, 2008. 17(5): p. 371-375. 5. Hulme, S.E. and G.M. Whitesides, Chemistry and the worm: Caenorhabditis elegans as a platform for integrating chemical and biological research. Angewandte Chemie International Edition, 2011. 50(21): p. 4774-4807. 6. Sulston, J.E., et al., The embryonic cell lineage of the nematode Caenorhabditis elegans. Developmental biology, 1983. 100(1): p. 64-119. 7. Zhang, Y., H.W.X. Wang, and X. Wang, Quantification of Cell Corpses, Cell Death Occurrence, Cell Corpse Duration. Current Biology, 2012. 8. Mangahas, P.M. and Z. Zhou. Clearance of apoptotic cells in Caenorhabditis elegans. in Seminars in cell & developmental biology. 2005. Elsevier. 9. Zhou, Z., The genetics of hiding the corpse: engulfment and degradation of apoptotic cells in C. elegans and D. melanogaster. Curr. Top. Dev. Biol., 2004. 63: p. 91-143. 10. Qi, S., et al., Crystal Structure of the <em>Caenorhabditis elegans</em> Apoptosome Reveals an Octameric Assembly of CED-4. Cell, 2010. 141(3): p. 446-457. 11. Yan, N., et al., Structure of the CED-4–CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans. Nature, 2005. 437(7060): p. 831. 12. Huang, W., et al., Mechanistic insights into CED-4-mediated activation of CED-3. Genes & development, 2013. 27(18): p. 2039-2048. 13. Nakagawa, A., K.D. Sullivan, and D. Xue, Caspase-activated phosphoinositide binding by CNT-1 promotes apoptosis by inhibiting the AKT pathway. Nature structural & molecular biology, 2014. 21(12): p. 1082. 14. Chen, Y.-Z., et al., Caspase-mediated activation of Caenorhabditis elegans CED-8 promotes apoptosis and phosphatidylserine externalization. Nature communications, 2013. 4: p. 2726. 15. Nakagawa, A., et al., Caspase-dependent conversion of Dicer ribonuclease into a death-promoting deoxyribonuclease. Science, 2010: p. 1182374. 16. Wang, X., et al., Mechanisms of AIF-mediated apoptotic DNA degradation in Caenorhabditis elegans. Science, 2002. 298(5598): p. 1587-1592. 17. Lin, J.L., et al., Oxidative stress impairs cell death by repressing the nuclease activity of mitochondrial endonuclease G. Cell reports, 2016. 16(2): p. 279-287. 18. HERRERA, B., et al., Reactive oxygen species (ROS) mediates the mitochondrial-dependent apoptosis induced by transforming growth factor β in fetal hepatocytes. The FASEB Journal, 2001. 15(3): p. 741-751. 19. Simon, H.-U., A. Haj-Yehia, and F. Levi-Schaffer, Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis, 2000. 5(5): p. 415-418. 20. Yang, H.W., et al., Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Human reproduction (Oxford, England), 1998. 13(4): p. 998-1002. 21. Hatzold, J. and B. Conradt, Control of apoptosis by asymmetric cell division. PLoS biology, 2008. 6(4): p. e84. 22. Teuliere, J., et al., Asymmetric neuroblast divisions producing apoptotic cells require the cytohesin GRP-1 in Caenorhabditis elegans. Genetics, 2014: p. genetics. 114.167189. 23. Guenther, C. and G. Garriga, Asymmetric distribution of the C. elegans HAM-1 protein in neuroblasts enables daughter cells to adopt distinct fates. Development, 1996. 122(11): p. 3509-3518. 24. Singhvi, A., et al., The Arf GAP CNT-2 regulates the apoptotic fate in C. elegans asymmetric neuroblast divisions. Current biology, 2011. 21(11): p. 948-954. 25. Cordes, S., C.A. Frank, and G. Garriga, The C. elegans MELK ortholog PIG-1 regulates cell size asymmetry and daughter cell fate in asymmetric neuroblast divisions. Development, 2006. 133(14): p. 2747-2756. 26. Franks, D.M., et al., C. elegans pharyngeal morphogenesis requires both de novo synthesis of pyrimidines and synthesis of heparan sulfate proteoglycans. Developmental biology, 2006. 296(2): p. 409-420. 27. Chaparian, M.G. and D.R. Evans, Intracellular location of the multidomain protein CAD in mammalian cells. The FASEB journal, 1988. 2(14): p. 2982-2989. 28. Sigoillot, F.D., et al., Nuclear localization and MAP kinase phosphorylation of the multifunctional protein CAD1. Journal of Biological Chemistry, 2005. 29. Ben-Sahra, I., et al., Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science, 2013: p. 1228792. 30. Lindsey-Boltz, L.A., et al., The human Rad9 checkpoint protein stimulates the carbamoyl phosphate synthetase activity of the multifunctional protein CAD. Nucleic acids research, 2004. 32(15): p. 4524-4530. 31. Sato, T., et al., Rheb protein binds CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase) protein in a GTP-and effector domain-dependent manner and influences its cellular localization and carbamoyl-phosphate synthetase (CPSase) activity. Journal of Biological Chemistry, 2015. 290(2): p. 1096-1105. 32. Huang, M., et al., Caspase-dependent cleavage of carbamoyl phosphate synthetase II during apoptosis. Molecular pharmacology, 2002. 61(3): p. 569-577. 33. Mello, C.C., et al., Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. The EMBO journal, 1991. 10(12): p. 3959-3970. 34. Taylor, R.C., et al., Establishing a blueprint for CED-3-dependent killing through identification of multiple substrates for this protease. Journal of Biological Chemistry, 2007. 282(20): p. 15011-15021. 35. Ward, J.D., Rapid and precise engineering of the Caenorhabditis elegans genome with lethal mutation co-conversion and inactivation of NHEJ repair. Genetics, 2015: p. genetics. 114.172361. 36. Granato, M., H. Schnabel, and R. Schnabel, pha-1, a selectable marker for gene transfer in C. elegans. Nucleic acids research, 1994. 22(9): p. 1762. 37. Ellis, H.M., D. Yu, and T. DiTizio, High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proceedings of the National Academy of Sciences, 2001. 98(12): p. 6742-6746. 38. Kan, Y., et al., Mechanisms of precise genome editing using oligonucleotide donors. Genome research, 2017. 39. Fire, A., et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. nature, 1998. 391(6669): p. 806. 40. Westein, S.J., F.L. Scott, and C.J. Hawkins, Analysis of the minimal specificity of CED-3 using a yeast transcriptional reporter system. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2008. 1783(3): p. 448-454. 41. Stinchcomb, D., et al., Extrachromosomal DNA transformation of C. elegans. Banbury Report, 1985. 20: p. 251-263. 42. Praitis, V., et al., Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics, 2001. 157(3): p. 1217-1226. 43. Okkema, P.G., et al., Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. Genetics, 1993. 135(2): p. 385-404. 44. MacMorris, M., et al., Analysis of the VPE sequences in the Caenorhabditis elegans vit-2 promoter with extrachromosomal tandem array-containing transgenic strains. Molecular and cellular biology, 1994. 14(1): p. 484-491. 45. Hsieh, J., et al., The RING finger/B-box factor TAM-1 and a retinoblastoma-like protein LIN-35 modulate context-dependent gene silencing in Caenorhabditis elegans. Genes & Development, 1999. 13(22): p. 2958-2970. 46. Chisholm, A.D. and T.I. Hsiao, The Caenorhabditis elegans epidermis as a model skin. I: development, patterning, and growth. Wiley Interdisciplinary Reviews: Developmental Biology, 2012. 1(6): p. 861-878. 47. Ma, D., et al., Rheb GTPase controls apoptosis by regulating interaction of FKBP38 with Bcl-2 and Bcl-XL. Journal of Biological Chemistry, 2010. 285(12): p. 8621-8627. 48. Kamath, R.S., et al., Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 2003. 421(6920): p. 231. 49. Simmer, F., et al., Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS biology, 2003. 1(1): p. e12. 50. Lee, M.W., I. Hirai, and H.-G. Wang, Caspase-3-mediated cleavage of Rad9 during apoptosis. Oncogene, 2003. 22(41): p. 6340. 51. Hofmann, E.R., et al., Caenorhabditis elegans HUS-1 is a DNA damage checkpoint protein required for genome stability and EGL-1-mediated apoptosis. Current biology, 2002. 12(22): p. 1908-1918. 52. Grande-García, A., et al., Structure, functional characterization, and evolution of the dihydroorotase domain of human CAD. Structure, 2014. 22(2): p. 185-198. 53. Post, L., D. Post, and F. Raushel, Dissection of the functional domains of Escherichia coli carbamoyl phosphate synthetase by site-directed mutagenesis. Journal of Biological Chemistry, 1990. 265(14): p. 7742-7747. 54. Kim, S., et al., Functional analysis of pyrimidine biosynthesis enzymes using the anticancer drug 5‐fluorouracil in Caenorhabditis elegans. The FEBS journal, 2009. 276(17): p. 4715-4726. 55. Malmquist, N.A., et al., Analysis of flavin oxidation and electron-transfer inhibition in Plasmodium falciparum dihydroorotate dehydrogenase. Biochemistry, 2008. 47(8): p. 2466-2475. 56. Bader, B., et al., Expression, purification, and characterization of histidine-tagged rat and human flavoenzyme dihydroorotate dehydrogenase. Protein expression and purification, 1998. 13(3): p. 414-422. 57. Hey-Mogensen, M., et al., Production of superoxide/H2O2 by dihydroorotate dehydrogenase in rat skeletal muscle mitochondria. Free Radical Biology and Medicine, 2014. 72: p. 149-155. 58. Fang, J., et al., Dihydro-orotate dehydrogenase is physically associated with the respiratory complex and its loss leads to mitochondrial dysfunction. Bioscience reports, 2013. 33(2): p. e00021. 59. Baumann, P., et al., Dihydroorotate dehydrogenase inhibitor A771726 (leflunomide) induces apoptosis and diminishes proliferation of multiple myeloma cells. Molecular cancer therapeutics, 2009. 8(2): p. 366-375. 60. Hail Jr, N., et al., Dihydroorotate dehydrogenase is required for N-(4-hydroxyphenyl) retinamide-induced reactive oxygen species production and apoptosis. Free Radical Biology and Medicine, 2010. 49(1): p. 109-116. 61. Fox, R. and S.M. Helfgott, Pharmacology, dosing, and adverse effects of leflunomide in the treatment of rheumatoid arthritis. 62. Koundinya, M., et al., Dependence on the Pyrimidine Biosynthetic Enzyme DHODH Is a Synthetic Lethal Vulnerability in Mutant KRAS-Driven Cancers. Cell chemical biology, 2018. 63. McLean, J.E., et al., Multiple inhibitor analysis of the brequinar and leflunomide binding sites on human dihydroorotate dehydrogenase. Biochemistry, 2001. 40(7): p. 2194-2200. 64. Seshagiri, S. and L.K. Miller, Caenorhabditis elegans CED-4 stimulates CED-3 processing and CED-3-induced. Current Biology, 1997. 7(7): p. 455-460. 65. Chen, X., et al., Regulation of CED-3 caspase localization and activation by C. elegans nuclear-membrane protein NPP-14. Nature structural & molecular biology, 2016. 23(11): p. 958. 66. Borutaite, V. and G.C. Brown, Caspases are reversibly inactivated by hydrogen peroxide. FEBS letters, 2001. 500(3): p. 114-118. 67. Lettre, G. and M.O. Hengartner, Developmental apoptosis in C. elegans: a complex CEDnario. Nat Rev Mol Cell Biol, 2006. 7(2): p. 97-108. 68. Franks, D.M., et al., C. elegans pharyngeal morphogenesis requires both de novo synthesis of pyrimidines and synthesis of heparan sulfate proteoglycans. Dev Biol, 2006. 296(2): p. 409-20. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79155 | - |
dc.description.abstract | 計畫性細胞凋亡是一個受到高度調控且演化保留的機制,它在平衡細胞數量、維持細胞品質以及發育過程中扮演著重要的角色。在擁有固定細胞譜系的秀麗隱桿線蟲中,131顆細胞會在發育過程中以計畫性細胞凋亡的方式被移除,而這些細胞是藉由不對稱分裂所產生的,其中比較大的細胞會繼續進行分裂及分化,然而比較小的細胞會進行計畫性細胞凋亡。實驗室發現在計畫性細胞凋亡和不對稱分裂同時受損的線蟲中,尾巴會產生多餘的表皮細胞hyp8/9而形成球狀或桿狀突起的表現型,稱之為“tail defect”。利用此表現型,實驗室在線蟲具有不對稱分裂受損的情況下進行正向基因篩選 (forward genetic screen)以找尋調控計畫性凋亡的新基因,其中篩選出pyr-1突變株。pyr-1 基因與人類的cad (carbamoyl phosphate synthetase、aspartate transcarbamylase and dihydroorotase)是同源基因,其為一個嘧啶合成酶,負責催化嘧啶全程合成路徑(de novo synthesis pathway)中的前三個步驟。實驗室先前發現PYR-1具有促使細胞凋亡的功能,也證明了PYR-1作用於CED-3的下游或者是平行於CED-3去促進細胞凋亡。在此研究中,我證明了CED-3會截切PYR-1,並找到其切位為PYR-1的第1664個天門冬氨酸。然而,我也發現此截切對於PYR-1促進細胞凋亡的功能是不必要的。藉由補充PYR-1參與步驟的最終產物,L-二氫乳清酸(L-dihydroorotate),我發現它可以回復pyr-1及grp-1雙重突變株的tail defect表現型。我因此更進一步地利用RNA干擾的方式來抑制在嘧啶全程合成路徑中接續PYR-1的酵素dhod-1,並發現此抑制也可以在grp-1突變株造成tail defect表現型。綜上所述,我的研究指出PYR-1及DHOD-1的酵素活性對於促進細胞凋亡扮演著重要的角色,並提供了一個新的計畫性細胞凋亡調控機制。 | zh_TW |
dc.description.abstract | Programmed cell death (PCD) is a highly regulated and conserved process that balances the cell number, maintains cell quality and participates in morphogenesis during development in multicellular organisms. In Caenorhabditis elegans (C. elegans), a free-living roundworm with an invariant cell lineage, 131 cells are programmed to die by apoptosis during development and these cells are generated by asymmetric cell divisions (ACDs). Impairment of both PCD and ACD results in extra differentiated cells in specific cell lineages, such as hyp8/9 hypodermal cells. Extra hyp8/9 hypodermal cells cause a ball or rod-like tail morphology, which is called “tail defect”. A forward genetic screen was then conducted in the grp-1(gm350) mutant, which presents defective ACD, to identify new PCD genes. pyr-1, one of isolated mutations, is the C. elegans homolog of cad (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase) and is a pyrimidine synthetase which catalyzes the first three steps of the de novo pyrimidine synthesis pathway. Previous study shows that PYR-1 acts downstream of or in parallel to CED-3 to promote programmed cell death. In this study, I demonstrate that CED-3 cleaves PYR-1 at 1664th aspartate in vitro and in vivo. However, substitution of 1664th aspartate for alanine does not abolish the pro-apoptotic function of pyr-1, showing that the CED-3-mediated cleavage is not required for its cell death-promoting activity. By supplement of the final product of PYR-1, L-dihydroorotate, I find that L-dihydroorotate can rescue the tail defect of pyr-1 mutant in the grp-1 mutant. Moreover, knockdown of dhod-1, which catalyzes the next enzymatic step downstream of pyr-1, can phenocopy the PCD defect of pyr-1 to cause the tail defect in the grp-1(gm350) mutant. My study reveals that the enzymatic activity of PYR-1 and DHOD-1 in the pyrimidine de novo synthesis pathway is important for PCD and provides a novel mechanism for the regulation of PCD. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:48:35Z (GMT). No. of bitstreams: 1 ntu-107-R05b43019-1.pdf: 4201837 bytes, checksum: 16eaac9dd7b2f00f68e6f85f1592b7da (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii Table of content v Introduction 1 Materials and Methods 9 Construction of plasmid vectors 9 Transgenic worms 12 Prediction of CED-3 cleavage sites 12 CRISPR/Cas9-based genome editing 13 RNA interference 15 Supplement 16 DAPI staining 16 Statistical analysis and histograms 17 Results 18 PYR-1 is a substrate of CED-3 and the cleavage site is D1664th 18 The apoptotic function of PYR-1 requires both N-terminal and C-terminal cleaved products 20 The CED-3-mediated cleavage may not be necessary for the pro-apoptotic function of PYR-1 21 The CED-3-mediated cleavage is not important for the pro-apoptotic activity of PYR-1 22 pyr-1 does not decrease the rheb-1 activity to promote PCD 23 pyr-1 does not require hpr-9 to promote PCD 24 The enzymatic activity of PYR-1 may be involved in PCD 25 L-dihydroorotate supplement can rescue the tail defect of pyr-1(tp12); grp-1(gm350) 26 dhod-1 and pyr-1 act in the same pathway to cause a tail defect phenotype 26 Discussion 28 The Impairment of de novo pyrimidine synthesis pathway causes tail defect 29 DHOD-1 may have a pro-apoptotic function 31 The pyr-1 alleles reveal the different thresholds of embryonic lethal and programmed cell death 32 PYR-1 may affect the killing activity of CED-3 or in parallel with CED-3 to promote PCD 33 Reference 35 Figures 40 Figure 1. The PCD pathway in C.elegans. 40 Figure 2. The grp-1; ced-3 mutants have extra cells which cause the tail defect phenotype 41 Figure 3. PYR-1 is a multifunctional enzyme involved in the first three steps of pyrimidine de novo synthesis pathway. 43 Figure 4. pyr-1 is required for programmed cell death. 44 Figure 5. pyr-1 acts downstream or in parallel of ced-3 to promote PCD. 46 Figure 6. The hypothesis of how PYR-1 promotes PCD. 47 Figure 7. CED-3 cleaves PYR-1 at the 1664th aspartate both in vitro and in vivo. (Figure adapted from Hang-Shiang Jiang’s unpublished data) 48 Figure 8. Diagram of the products after CED-3 cleavage at PYR-1 1664th aspartate. 50 Figure 9. The apoptotic function of PYR-1 requires both N and C-terminus fragments. 51 Figure 10. The PYR-1(D1664A) can rescue the tail defect 52 Figure 11. CRISPR/Cas-9-Based genome editing with pha-1 co-conversion selection strategy. 53 Figure 12. The CED-3 cleavage at PYR-1 D1664 is not necessary for causing tail defect and extra cells in tail. 55 Figure 13. The CED-3 cleavage at PYR-1 D1664 is not necessary for causing tail defect and extra cells in tail. 57 Figure 14. The apoptotic function of pyr-1 does not required rheb-1 activity. 59 Figure 15. The hpr-9 knockdown in grp-1 background display a normal tail morphology. 61 Figure 16. All the pyr-1; grp-1 mutants have a tail defect and uracil supplement fails to rescue it. 62 Figure 17. The de novo and salvage pathways of pyrimidine biosynthesis 63 Figure 18. L-dihydroorotate supplement can rescue the tail defect of grp-1; pyr-1 double mutant 64 Figure 19. dhod-1 and pyr-1 act the same pathway causing tail defect 65 Figure 20. A Model for a link between pyrimidine de novo synthesis pathway and programmed cell death 66 Supplementary data 67 Figure S1. The PYR-1(D1664A) can rescue the tail defect 67 Figure S2. Both tp12 and cu8 mutations may affect the enzyme activity of PYR-1. 69 Figure S3. The percentage of tail defect of each strain with indicated genotype. (Figure adapted from Hung-Tsai Kan’s master thesis) 71 Figure S4. The pyr-1 alleles reveal the different thresholds of embryonic lethal and programmed cell death 72 | |
dc.language.iso | en | |
dc.title | 嘧啶合成酶促進線蟲的計畫性細胞死亡 | zh_TW |
dc.title | Pyrimidine synthetase promotes programmed cell death in Caenorhabditis elegans | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡欣祐(Hsin-Yue Tsai),廖秀娟 | |
dc.subject.keyword | 調控,計畫性細胞凋亡,嘧啶,酵素活性,不對稱分裂, | zh_TW |
dc.subject.keyword | regulation,programmed cell death,pyrimidine,enzyme activity,asymmetric cell division, | en |
dc.relation.page | 72 | |
dc.identifier.doi | 10.6342/NTU201802327 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-01 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
dc.date.embargo-lift | 2023-08-03 | - |
顯示於系所單位: | 分子與細胞生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-R05b43019-1.pdf 目前未授權公開取用 | 4.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。