請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79139完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱浩傑(Hao-Chieh Chiu) | |
| dc.contributor.author | Cheng-Yun Hsu | en |
| dc.contributor.author | 許誠允 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:47:09Z | - |
| dc.date.available | 2025-08-17 | |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-17 | |
| dc.identifier.citation | 1.Maurin, M. and D. Raoult, Use of aminoglycosides in treatment of infections due to intracellular bacteria. Antimicrob Agents Chemother, 2001. 45(11): p. 2977-2986. 2.Mohr, K.I., History of Antibiotics Research, in How to Overcome the Antibiotic Crisis : Facts, Challenges, Technologies and Future Perspectives, M. Stadler and P. Dersch, Editors. 2016, Springer International Publishing: Cham. p. 237-272. 3.Collier, M.A., et al., Delivery of host cell-directed therapeutics for intracellular pathogen clearance. Expert Rev Anti Infect Ther, 2013. 11(11): p. 1225-35. 4.Carryn, S., et al., Intracellular pharmacodynamics of antibiotics. Infect Dis Clin North Am, 2003. 17(3): p. 615-634. 5.Sundar, S., et al., Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic. Clin Infect Dis, 2000. 31(4): p. 1104-7. 6.Lawn, S.D. and A.I. Zumla, Tuberculosis. The Lancet, 2011. 378(9785): p. 57-72. 7.Diacovich, L. and J.P. Gorvel, Bacterial manipulation of innate immunity to promote infection. Nat Rev Microbiol, 2010. 8(2): p. 117-28. 8.López, M., Patents on antivirulence therapies. World J Pharmacol, 2014. 3(4): p. 97. 9.Reens, A.L., et al., A cell-based infection assay identifies efflux pump modulators that reduce bacterial intracellular load. Plos Pathogens, 2018. 14(6). 10.Barlow, M. and B.G. Hall, Origin and evolution of the AmpC beta-lactamases of Citrobacter freundii. Antimicrob Agents Chemother, 2002. 46(5): p. 1190-8. 11.Hansen-Wester, I., B. Stecher, and M. Hensel, Type III secretion of Salmonella enterica serovar Typhimurium translocated effectors and SseFG. Infect Immun, 2002. 70(3): p. 1403-9. 12.Silva, J., et al., Campylobacter spp. as a foodborne pathogen: a review. Front Microbiol, 2011. 2. 13.Allerberger, F., et al., Occurrence of Salmonella enterica serovar Dublin in Austria. Wien Med Wochenschr, 2003. 153(7-8): p. 148-52. 14.Hapfelmeier, S. and W.D. Hardt, A mouse model for S. typhimurium-induced enterocolitis. Trends Microbiol, 2005. 13(10): p. 497-503. 15.Gillespie, I.A., et al., Foodborne general outbreaks of Salmonella Enteritidis phage type 4 infection, England and Wales, 1992-2002: where are the risks? Epidemiol Infect, 2005. 133(5): p. 795-801. 16.Majowicz, S.E., et al., The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis, 2010. 50(6): p. 882-9. 17.Crump, J.A., S.P. Luby, and E.D. Mintz, The global burden of typhoid fever. Bull World Health Organ, 2004. 82: p. 346-353. 18.Colquhoun, J. and R.S. Weetch, Resistance to chloramphenicol developing during treatment of typhoid fever. Lancet, 1950. 2(6639): p. 621-3. 19.Olarte, J. and E. Galindo, Salmonella typhi resistant to chloramphenicol, ampicillin, and other antimicrobial agents: strains isolated during an extensive typhoid fever epidemic in Mexico. Antimicrob Agents Chemother, 1973. 4(6): p. 597-601. 20.Threlfall, E.J., Antimicrobial drug resistance in Salmonella: problems and perspectives in food- and water-borne infections. FEMS Microbiol Rev, 2002. 26(2): p. 141-8. 21.Threlfall, E.J., Epidemic salmonella typhimurium DT 104--a truly international multiresistant clone. J Antimicrob Chemother, 2000. 46(1): p. 7-10. 22.Rowe, B., L.R. Ward, and E.J. Threlfall, Multidrug-resistant Salmonella typhi: a worldwide epidemic. Clin Infect Dis, 1997. 24 Suppl 1: p. S106-9. 23.Hohmann, E.L., Nontyphoidal salmonellosis. Clin Infect Dis, 2001. 32(2): p. 263-9. 24.Yoo, S., et al., Epidemiology of Salmonella enterica serotype typhi infections in Korea for recent 9 years: trends of antimicrobial resistance. J Korean Med Sci, 2004. 19(1): p. 15-20. 25.CDC, U.S., National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): Human Isolates Surveillance Report for 2015. 2018. 26.Amaral, L., et al., Phenothiazines, bacterial efflux pumps and targeting the macrophage for enhanced killing of intracellular XDRTB. In Vivo, 2010. 24(4): p. 409-24. 27.Martins, M., et al., Clinical concentrations of thioridazine enhance the killing of intracellular methicillin-resistant Staphylococcus aureus: an in vivo, ex vivo and electron microscopy study. In Vivo, 2004. 18(6): p. 787-94. 28.Yang, C.Y., et al., Loxapine, an antipsychotic drug, suppresses intracellular multiple-antibiotic-resistant Salmonella enterica serovar Typhimurium in macrophages. J Microbiol Immunol Infect, 2019. 52(4): p. 638-647. 29.Popovic, D., P. Nuss, and E. Vieta, Revisiting loxapine: a systematic review. Ann Gen Psychiatry, 2015. 14: p. 15. 30.Cooper, T.B. and R.G. Kelly, Glc Analysis of Loxapine, Amoxapine, and Their Metabolites in Serum and Urine. J Pharm Sci, 1979. 68(2): p. 216-219. 31.Ellis, M.J., et al., A macrophage-based screen identifies antibacterial compounds selective for intracellular Salmonella Typhimurium. Nat Commun, 2019. 10(1): p. 197. 32.Makafe, G.G., et al., Quinoline Derivatives Kill Mycobacterium tuberculosis by Activating Glutamate Kinase. Cell Chem Biol, 2019. 26(8): p. 1187-1194 e5. 33.Bylund, J., et al., Measurement of respiratory burst products, released or retained, during activation of professional phagocytes. Methods Mol Biol, 2014. 1124: p. 321-38. 34.Crump, J.A., et al., Epidemiology, Clinical Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial Management of Invasive Salmonella Infections. Clin Microbiol Rev, 2015. 28(4): p. 901-37. 35.Rycroft, J.A., et al., Activity of acetyltransferase toxins involved in Salmonella persister formation during macrophage infection. Nat Commun, 2018. 9(1): p. 1993. 36.Schwegmann, A. and F. Brombacher, Host-directed drug targeting of factors hijacked by pathogens. Sci Signal, 2008. 1(29): p. re8. 37.Helaine, S., et al., Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science, 2014. 343(6167): p. 204-8. 38.Okoro, C.K., et al., High-resolution single nucleotide polymorphism analysis distinguishes recrudescence and reinfection in recurrent invasive nontyphoidal Salmonella typhimurium disease. Clin Infect Dis, 2012. 54(7): p. 955-63. 39.Claudi, B., et al., Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell, 2014. 158(4): p. 722-733. 40.Santos, R.L., et al., Animal models of Salmonella infections: enteritis versus typhoid fever. Microbes and Infection, 2001. 3(14-15): p. 1335-1344. 41.Li, Y., et al., A cell-based quantitative high-throughput image screening identified novel autophagy modulators. Pharmacol Res, 2016. 110: p. 35-49. 42.Chu, C.W., et al., Thioridazine Enhances P62-Mediated Autophagy and Apoptosis Through Wnt/beta-Catenin Signaling Pathway in Glioma Cells. Int J Mol Sci, 2019. 20(3). 43.Conway, K.L., et al., Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection. Gastroenterology, 2013. 145(6): p. 1347-57. 44.Nagy, T.A., et al., Autophagy Induction by a Small Molecule Inhibits Salmonella Survival in Macrophages and Mice. Antimicrob Agents Chemother, 2019. 45.Gutierrez, M.G., et al., Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell, 2004. 119(6): p. 753-766. 46.Kim, T.S., et al., Ohmyungsamycins promote antimicrobial responses through autophagy activation via AMP-activated protein kinase pathway. Sci Rep, 2017. 7(1): p. 3431. 47.Kemball, C.C., et al., Coxsackievirus infection induces autophagy-like vesicles and megaphagosomes in pancreatic acinar cells in vivo. J Virol, 2010. 84(23): p. 12110-24. 48.Arakawa, S., et al., Molecular mechanisms and physiological roles of Atg5/Atg7-independent alternative autophagy. Proc Jpn Acad Ser B Phys Biol Sci, 2017. 93(6): p. 378-385. 49.Turk, V., et al., Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta, 2012. 1824(1): p. 68-88. 50.Pillay, C.S., E. Elliott, and C. Dennison, Endolysosomal proteolysis and its regulation. Biochem J, 2002. 363(Pt 3): p. 417-29. 51.Amaral, L., M. Martins, and M. Viveiros, Enhanced killing of intracellular multidrug-resistant Mycobacterium tuberculosis by compounds that affect the activity of efflux pumps. J Antimicrob Chemother, 2007. 59(6): p. 1237-46. 52.Reeves, E.P., et al., Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature, 2002. 416(6878): p. 291-297. 53.Ray, K., et al., Life on the inside: the intracellular lifestyle of cytosolic bacteria. Nat Rev Microbiol, 2009. 7(5): p. 333-40. 54.Nishino, K., E. Nikaido, and A. Yamaguchi, Regulation and physiological function of multidrug efflux pumps in Escherichia coli and Salmonella. Biochim Biophys Acta, 2009. 1794(5): p. 834-43. 55.Levy, S.B., Active efflux mechanisms for antimicrobial resistance. Antimicrob Agents Chemother, 1992. 36(4): p. 695-703. 56.Nikaido, H., Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science, 1994. 264(5157): p. 382-8. 57.Bogomolnaya, L.M., et al., The ABC-type efflux pump MacAB protects Salmonella enterica serovar typhimurium from oxidative stress. MBio, 2013. 4(6): p. e00630-13. 58.Pasqua, M., et al., The MFS efflux pump EmrKY contributes to the survival of Shigella within macrophages. Sci Rep, 2019. 9(1): p. 2906. 59.Takacs, D., et al., Evaluation of forty new phenothiazine derivatives for activity against intrinsic efflux pump systems of reference Escherichia coli, Salmonella Enteritidis, Enterococcus faecalis and Staphylococcus aureus strains. In Vivo, 2011. 25(5): p. 719-24. 60.Rodrigues, L., et al., Inhibition of drug efflux in mycobacteria with phenothiazines and other putative efflux inhibitors. Recent Pat Antiinfect Drug Discov, 2011. 6(2): p. 118-27. 61.Ikonomidis, A., et al., Effect of the proton motive force inhibitor carbonyl cyanide-m-chlorophenylhydrazone (CCCP) on Pseudomonas aeruginosa biofilm development. Lett Appl Microbiol, 2008. 47(4): p. 298-302. 62.Haraga, A., M.B. Ohlson, and S.I. Miller, Salmonellae interplay with host cells. Nat Rev Microbiol, 2008. 6(1): p. 53-66. 63.Islam, D., et al., In situ characterization of inflammatory responses in the rectal mucosae of patients with shigellosis. Infect Immun, 1997. 65(2): p. 739-49. 64.Zychlinsky, A., M.C. Prevost, and P.J. Sansonetti, Shigella flexneri induces apoptosis in infected macrophages. Nature, 1992. 358(6382): p. 167-9. 65.Zychlinsky, A., et al., In vivo apoptosis in Shigella flexneri infections. Infect Immun, 1996. 64(12): p. 5357-65. 66.Yilmaz, C. and G. Ozcengiz, Antibiotics: Pharmacokinetics, toxicity, resistance and multidrug efflux pumps. Biochem Pharmacol, 2017. 133: p. 43-62. 67.Blanco, P., et al., Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants. Microorganisms, 2016. 4(1). 68.Li, X.-Z., C.A. Elkins, and H.I. Zgurskaya, Efflux-Mediated Antimicrobial Resistance in Bacteria. 2016. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79139 | - |
| dc.description.abstract | 可入侵宿主細胞內進行感染的病原菌是全球一個嚴重的威脅。在侵入宿主細胞後,胞內細菌會藉由表現致病因子躲避細胞的先天性免疫防衛而得以存活。因此,針對胞內菌致病因子為標的之透過新穎殺菌機制的抗菌藥物開發是不可或缺的。我們之前的研究發現抗精神病用藥―樂賜平,具有抗小鼠巨噬細胞內沙門氏菌存活的效果。為了保留樂賜平的抗菌活性並去除其作為抗精神病用藥的活性,我們設計合成一系列的樂賜平衍生物,再利用高內涵影像分析平台來評估衍生物的抗菌活性及細胞毒性。經過一系列的篩選,我們找到一個新的化合物―SW14具有比樂賜平更為良好的抗胞內沙門氏菌的活性。除此之外,SW14也對胞內的福氏志賀氏菌、單核球增多性李斯特菌、抗甲氧苯青黴素金黃色葡萄球菌、小腸結腸耶氏菌,還有多重抗藥性的沙門氏菌具有良好的抗菌活性,並且在小鼠的沙門氏菌感染模型中SW14也展現其活性。機制方面,我們發現抗氧化劑可以反轉SW14對胞內沙門氏菌的抑制,並證實SW14具有抑制細菌外排幫浦的活性,且會增加細菌對於氧化壓力的感受性,此些發現表明SW14可能是藉由抑制細菌透過外排幫浦的抗氧化能力來達到降低胞內感染的細菌量,後續可發展為新一類的抗菌藥物。 | zh_TW |
| dc.description.abstract | Pathogenic bacteria capable of invading and proliferating inside host cells have been a serious threat worldwide. After entering host cells, these intracellular pathogens can express a variety of virulence factors to evade the innate immunity of host cells. In light of this, the development of a novel virulence-targeted antibacterial drug has been a potential strategy to control the infections of intracellular bacteria. Previously, we showed that an antipsychotic drug, loxapine, exhibited potent antibacterial activity against intracellular Salmonella enterica in murine RAW264.7 macrophagic cells. To improve loxapine’s antibacterial activity, a series of loxapine derivatives were designed and synthesized. The antibacterial activity and cytotoxicity of these compounds were simultaneously evaluated using an image-based high-content assay. The screening identified a new compound SW14 which showed a multifold increase in antibacterial activity against intracellular multiple-antibiotic-resistant S. enterica, Shigella flexneri, Listeria monocytogenes, methicillin-resistant Staphylococcus aureus, and Yersinia enterocolitica. Moreover, SW14 is also efficacious in the murine salmonellosis model. Subsequent mechanism studies indicated that the ROS scavengers could reverse the antibacterial effect of SW14 against intracellular Salmonella. Also, SW14 exhibited suppressive activity on the bacterial efflux pump and increase the susceptibility of bacteria to oxidative stresses. Together, our data suggested that SW14 might suppress intracellular bacteria via impeding the efflux pump-mediated resistance to oxidative stresses. The structure of SW14 represents a promising scaffold for the development of a new virulence-targeted antibacterial agent against intracellular bacteria. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:47:09Z (GMT). No. of bitstreams: 1 U0001-1708202015292200.pdf: 3291301 bytes, checksum: 14cb999af16f0c1cd7a9ff110b763282 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 i 中文摘要 ii Abstract iii Contents v 1. Introduction 1 1.1 Difficulties in intracellular pathogenic bacterial therapy 2 1.2 Salmonella enterica serovar Typhimurium 3 1.3 Dibenzoxazepines 4 1.4 Specific aims 5 2. Materials and Methods 6 2.1 Cell culture 7 2.2 Bacteria strains 7 2.3 Drugs and reagents 8 2.4 High-content screening assay 9 2.5 ROS scavenger assay 11 2.6 Colony-forming assay 11 2.7 Cell viability assay 13 2.8 Hoechst 33342 accumulation assay 13 2.9 Determination of intracellular reactive oxygen species (ROS) 14 2.10 Sensitivity of S. Typhimurium to hydrogen peroxide (H2O2) 16 2.11 Murine salmonellosis model 16 2.12 Intracellular persister assay 17 2.13 Gene expression assay 19 2.14 Statistical analysis 20 3. Results 21 3.1 SW14 was the most potent derivative identified through high-content assay 22 3.2 The results of high-content assay were consistent with colony-forming assay and cell viability assay 23 3.3 SW14 could inhibit intra-macrophagic Salmonella together with either fluoroquinolone or cephalosporin 24 3.4 SW14 was also active against intracellular MDR or fluoroquinolone-resistant Salmonella 24 3.5 SW14 had a broad-spectrum effect on other intracellular bacteria 25 3.6 SW14 decreased intracellular persister population 26 3.7 SW14 could extend the survival time of Salmonella-infected mice 27 3.8 SW14 didn’t inhibit bacterial growth in the broth 28 3.9 SW14 didn’t induce autophagy flux and its antibacterial activity wasn’t affected by atg7 knockdown 28 3.10 SW14 was active against both vacuolic and cytosolic bacteria 29 3.11 SW14 inhibited efflux pump activity of Salmonella 30 3.12 ROS scavengers reduced the inhibitory effect of SW14 on intracellular Salmonella 32 3.13 SW14 didn’t increase the ROS level in RAW264.7 cells 33 3.14 SW14 enhanced the susceptibility of bacteria to H2O2 33 4. Discussion 34 4.1 The colony-forming units of Shigella flexneri were much lower than others in colony-forming assay 35 4.2 The similarity of LPM to the intracellular environment 35 4.3 The mechanism how SW14 inhibited the efflux pump activity 36 4.4 Cytotoxicity and dibenzoxazepines 37 4.5 Conclusion and future works 37 5. Reference 39 6. Tables 49 Table 1. Antibacterial activity and cytotoxicity of loxapine derivatives 50 Table 2. Susceptibility of antibiotic-resistant Salmonella Typhimurium strains to antibiotics 51 Table 3. The structure-relationship of compounds with different core structures 52 7. Figures 53 Figure 1. The results of high-content assay were consistent with that of colony-forming assay and cell viability assay. 54 Figure 2. SW14 exhibited suppressive activity against intracellular Salmonella in combined with cefixime or ciprofloxacin. 57 Figure 3. SW14 inhibited intracellular proliferation of not only MDR strains but also fluoroquinolone-resistant strains of S. Typhimurium. 58 Figure 4. SW14 had a broad-spectrum effect of inhibiting intracellular bacterial proliferation. 60 Figure 5. SW14 decreased the population of intracellular Salmonella persisters. 62 Figure 6. SW14 could extend the survival time of Salmonella-infected mice. 64 Figure 7. SW14 didn’t inhibit bacterial growth in the culture broth. 66 Figure 8. SW14 didn’t induce autophagy flux and its antibacterial activity wasn’t affected by atg7 knockdown. (Western blot data from Shih-Hsiu Chou) 68 Figure 9. SW14 inhibited the efflux pump activity. 70 Figure 10. ROS scavengers reversed the suppressive effect of SW14 on intracellular S. Typhimurium. 73 Figure 11. SW14 didn’t increase ROS production directly. 74 Figure 12. SW14 elevated the susceptibility of S. Typhimurium to H2O2. 76 Figure 13. The order of magnitude of Shigella flexneri intracellular growth curve was constant. 77 Figure 14. The expression profile of efflux pumps wasn’t similar at all between S. Typhimurium cultured in RAW264.7 cells and LPM. 78 | |
| dc.language.iso | en | |
| dc.subject | 外排幫浦 | zh_TW |
| dc.subject | 氧化壓力 | zh_TW |
| dc.subject | 高內涵 | zh_TW |
| dc.subject | 胞內細菌 | zh_TW |
| dc.subject | 樂賜平 | zh_TW |
| dc.subject | loxapine | en |
| dc.subject | high-content assay | en |
| dc.subject | oxidative stress | en |
| dc.subject | efflux pump | en |
| dc.subject | intracellular bacteria | en |
| dc.title | 以新穎二苯氧氮平類化合物去削弱巨噬細胞內沙門氏菌透過外排幫浦的抗氧化能力 | zh_TW |
| dc.title | Novel Dibenzoxazepines Attenuate the Efflux Pump-Mediated Resistance to Oxidative Stresses of Intra-macrophagic Salmonella | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張永祺(Yung-Chiy Chang),蕭崇瑋(Chung-Wai Shiau),蘇伯琦(Po-Chi Soo),陳振暐(Jenn-Wei Chen) | |
| dc.subject.keyword | 樂賜平,胞內細菌,高內涵,外排幫浦,氧化壓力, | zh_TW |
| dc.subject.keyword | loxapine,intracellular bacteria,high-content assay,efflux pump,oxidative stress, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU202003770 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-17 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-17 | - |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708202015292200.pdf 未授權公開取用 | 3.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
