Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 基因體暨蛋白體醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79136
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘思樺zh_TW
dc.contributor.author藍堤zh_TW
dc.contributor.authorAlbert Lanen
dc.date.accessioned2021-07-11T15:46:53Z-
dc.date.available2024-02-28-
dc.date.copyright2018-10-11-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer Statistics, 2017. CA Cancer J Clin, 2017. 67(1): p. 7-30.
2. Zappa, C. and S.A. Mousa, Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res, 2016. 5(3): p. 288-300.
3. Campbell, J.D., A. Alexandrov, J. Kim, J. Wala, A.H. Berger, C.S. Pedamallu, S.A. Shukla, G. Guo, A.N. Brooks, B.A. Murray, M. Imielinski, X. Hu, S. Ling, R. Akbani, M. Rosenberg, C. Cibulskis, A. Ramachandran, E.A. Collisson, D.J. Kwiatkowski, M.S. Lawrence, J.N. Weinstein, R.G. Verhaak, C.J. Wu, P.S. Hammerman, A.D. Cherniack, G. Getz, N. Cancer Genome Atlas Research, M.N. Artyomov, R. Schreiber, R. Govindan, and M. Meyerson, Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet, 2016. 48(6): p. 607-16.
4. Cancer Genome Atlas Research, N., Comprehensive genomic characterization of squamous cell lung cancers. Nature, 2012. 489(7417): p. 519-25.
5. Sun, S., J.H. Schiller, and A.F. Gazdar, Lung cancer in never smokers--a different disease. Nat Rev Cancer, 2007. 7(10): p. 778-90.
6. Calvayrac, O., A. Pradines, E. Pons, J. Mazieres, and N. Guibert, Molecular biomarkers for lung adenocarcinoma. Eur Respir J, 2017. 49(4).
7. Sholl, L.M., Large-cell carcinoma of the lung: a diagnostic category redefined by immunohistochemistry and genomics. Curr Opin Pulm Med, 2014. 20(4): p. 324-31.
8. Dogan, S., R. Shen, D.C. Ang, M.L. Johnson, S.P. D'Angelo, P.K. Paik, E.B. Brzostowski, G.J. Riely, M.G. Kris, M.F. Zakowski, and M. Ladanyi, Molecular epidemiology of EGFR and KRAS mutations in 3,026 lung adenocarcinomas: higher susceptibility of women to smoking-related KRAS-mutant cancers. Clin Cancer Res, 2012. 18(22): p. 6169-77.
9. Govindan, R., L. Ding, M. Griffith, J. Subramanian, N.D. Dees, K.L. Kanchi, C.A. Maher, R. Fulton, L. Fulton, J. Wallis, K. Chen, J. Walker, S. McDonald, R. Bose, D. Ornitz, D. Xiong, M. You, D.J. Dooling, M. Watson, E.R. Mardis, and R.K. Wilson, Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell, 2012. 150(6): p. 1121-34.
10. Takeuchi, K., M. Soda, Y. Togashi, R. Suzuki, S. Sakata, S. Hatano, R. Asaka, W. Hamanaka, H. Ninomiya, H. Uehara, Y. Lim Choi, Y. Satoh, S. Okumura, K. Nakagawa, H. Mano, and Y. Ishikawa, RET, ROS1 and ALK fusions in lung cancer. Nat Med, 2012. 18(3): p. 378-81.
11. Kohno, T., T. Nakaoku, K. Tsuta, K. Tsuchihara, S. Matsumoto, K. Yoh, and K. Goto, Beyond ALK-RET, ROS1 and other oncogene fusions in lung cancer. Transl Lung Cancer Res, 2015. 4(2): p. 156-64.
12. Mitsudomi, T., S. Morita, Y. Yatabe, S. Negoro, I. Okamoto, J. Tsurutani, T. Seto, M. Satouchi, H. Tada, T. Hirashima, K. Asami, N. Katakami, M. Takada, H. Yoshioka, K. Shibata, S. Kudoh, E. Shimizu, H. Saito, S. Toyooka, K. Nakagawa, M. Fukuoka, and G. West Japan Oncology, Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol, 2010. 11(2): p. 121-8.
13. Sequist, L.V., J.C. Yang, N. Yamamoto, K. O'Byrne, V. Hirsh, T. Mok, S.L. Geater, S. Orlov, C.M. Tsai, M. Boyer, W.C. Su, J. Bennouna, T. Kato, V. Gorbunova, K.H. Lee, R. Shah, D. Massey, V. Zazulina, M. Shahidi, and M. Schuler, Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol, 2013. 31(27): p. 3327-34.
14. Kwak, E.L., Y.J. Bang, D.R. Camidge, A.T. Shaw, B. Solomon, R.G. Maki, S.H. Ou, B.J. Dezube, P.A. Janne, D.B. Costa, M. Varella-Garcia, W.H. Kim, T.J. Lynch, P. Fidias, H. Stubbs, J.A. Engelman, L.V. Sequist, W. Tan, L. Gandhi, M. Mino-Kenudson, G.C. Wei, S.M. Shreeve, M.J. Ratain, J. Settleman, J.G. Christensen, D.A. Haber, K. Wilner, R. Salgia, G.I. Shapiro, J.W. Clark, and A.J. Iafrate, Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med, 2010. 363(18): p. 1693-703.
15. Ferguson, K.M., M.B. Berger, J.M. Mendrola, H.S. Cho, D.J. Leahy, and M.A. Lemmon, EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol Cell, 2003. 11(2): p. 507-17.
16. Olayioye, M.A., R.M. Neve, H.A. Lane, and N.E. Hynes, The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J, 2000. 19(13): p. 3159-67.
17. Avraham, R. and Y. Yarden, Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat Rev Mol Cell Biol, 2011. 12(2): p. 104-17.
18. Lewis, T.S., P.S. Shapiro, and N.G. Ahn, Signal Transduction through MAP Kinase Cascades. 1998. p. 49-139.
19. Aaronson, S.A., Growth factors and cancer. Science, 1991. 254(5035): p. 1146-53.
20. Klijn, J.G., P.M. Berns, P.I. Schmitz, and J.A. Foekens, The clinical significance of epidermal growth factor receptor (EGF-R) in human breast cancer: a review on 5232 patients. Endocr Rev, 1992. 13(1): p. 3-17.
21. Brabender, J., K.D. Danenberg, R. Metzger, P.M. Schneider, J. Park, D. Salonga, A.H. Holscher, and P.V. Danenberg, Epidermal growth factor receptor and HER2-neu mRNA expression in non-small cell lung cancer Is correlated with survival. Clin Cancer Res, 2001. 7(7): p. 1850-5.
22. Lee, J.C., S.T. Wang, N.H. Chow, and H.B. Yang, Investigation of the prognostic value of coexpressed erbB family members for the survival of colorectal cancer patients after curative surgery. Eur J Cancer, 2002. 38(8): p. 1065-71.
23. Chow, N.H., S.H. Chan, T.S. Tzai, C.L. Ho, and H.S. Liu, Expression profiles of ErbB family receptors and prognosis in primary transitional cell carcinoma of the urinary bladder. Clin Cancer Res, 2001. 7(7): p. 1957-62.
24. Xia, W., Y.K. Lau, H.Z. Zhang, F.Y. Xiao, D.A. Johnston, A.R. Liu, L. Li, R.L. Katz, and M.C. Hung, Combination of EGFR, HER-2/neu, and HER-3 is a stronger predictor for the outcome of oral squamous cell carcinoma than any individual family members. Clin Cancer Res, 1999. 5(12): p. 4164-74.
25. Qian, X., S. Wang, Y. Shen, D. Wu, Z. Zhang, Y. Feng, X. Han, and Y. Shi, [Methodology comparison and influence factors analysis of epidermal growth factor receptor mutation detection]. Zhonghua Yi Xue Za Zhi, 2015. 95(2): p. 106-11.
26. Cho, J., L. Chen, N. Sangji, T. Okabe, K. Yonesaka, J.M. Francis, R.J. Flavin, W. Johnson, J. Kwon, S. Yu, H. Greulich, B.E. Johnson, M.J. Eck, P.A. Janne, K.K. Wong, and M. Meyerson, Cetuximab response of lung cancer-derived EGF receptor mutants is associated with asymmetric dimerization. Cancer Res, 2013. 73(22): p. 6770-9.
27. Wu, S.G., C.H. Gow, C.J. Yu, Y.L. Chang, C.H. Yang, Y.C. Hsu, J.Y. Shih, Y.C. Lee, and P.C. Yang, Frequent epidermal growth factor receptor gene mutations in malignant pleural effusion of lung adenocarcinoma. Eur Respir J, 2008. 32(4): p. 924-30.
28. Wu, S.G., C.J. Yu, M.F. Tsai, W.Y. Liao, C.H. Yang, I.S. Jan, P.C. Yang, and J.Y. Shih, Survival of lung adenocarcinoma patients with malignant pleural effusion. Eur Respir J, 2013. 41(6): p. 1409-18.
29. Zou, J., A.E. Bella, Z. Chen, X. Han, C. Su, Y. Lei, and H. Luo, Frequency of EGFR mutations in lung adenocarcinoma with malignant pleural effusion: Implication of cancer biological behaviour regulated by EGFR mutation. J Int Med Res, 2014. 42(5): p. 1110-7.
30. Smits, A.J., J.A. Kummer, J.W. Hinrichs, G.J. Herder, K.C. Scheidel-Jacobse, N.M. Jiwa, T.E. Ruijter, P.T. Nooijen, M.G. Looijen-Salamon, M.J. Ligtenberg, F.B. Thunnissen, D.A. Heideman, R.A. de Weger, and A. Vink, EGFR and KRAS mutations in lung carcinomas in the Dutch population: increased EGFR mutation frequency in malignant pleural effusion of lung adenocarcinoma. Cell Oncol (Dordr), 2012. 35(3): p. 189-96.
31. Tsai, M.F., T.H. Chang, S.G. Wu, H.Y. Yang, Y.C. Hsu, P.C. Yang, and J.Y. Shih, EGFR-L858R mutant enhances lung adenocarcinoma cell invasive ability and promotes malignant pleural effusion formation through activation of the CXCL12-CXCR4 pathway. Sci Rep, 2015. 5: p. 13574.
32. Selim, A.A., Osteoactivin bioinformatic analysis: prediction of novel functions, structural features, and modes of action. Med Sci Monit, 2009. 15(2): p. MT19-33.
33. Takada, Y., X. Ye, and S. Simon, The integrins. Genome Biol, 2007. 8(5): p. 215.
34. Weston, B.S., A.N. Malhas, and R.G. Price, Structure-function relationships of the extracellular domain of the autosomal dominant polycystic kidney disease-associated protein, polycystin-1. FEBS Lett, 2003. 538(1-3): p. 8-13.
35. Ibraghimov-Beskrovnaya, O., N.O. Bukanov, L.C. Donohue, W.R. Dackowski, K.W. Klinger, and G.M. Landes, Strong homophilic interactions of the Ig-like domains of polycystin-1, the protein product of an autosomal dominant polycystic kidney disease gene, PKD1. Hum Mol Genet, 2000. 9(11): p. 1641-9.
36. Kerrigan, A.M. and G.D. Brown, Syk-coupled C-type lectin receptors that mediate cellular activation via single tyrosine based activation motifs. Immunol Rev, 2010. 234(1): p. 335-52.
37. Mocsai, A., J. Ruland, and V.L. Tybulewicz, The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol, 2010. 10(6): p. 387-402.
38. Bradshaw, J.M., The Src, Syk, and Tec family kinases: distinct types of molecular switches. Cell Signal, 2010. 22(8): p. 1175-84.
39. Bonifacino, J.S. and L.M. Traub, Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem, 2003. 72: p. 395-447.
40. Kuan, C.T., K. Wakiya, J.M. Dowell, J.E. Herndon, 2nd, D.A. Reardon, M.W. Graner, G.J. Riggins, C.J. Wikstrand, and D.D. Bigner, Glycoprotein nonmetastatic melanoma protein B, a potential molecular therapeutic target in patients with glioblastoma multiforme. Clin Cancer Res, 2006. 12(7 Pt 1): p. 1970-82.
41. Mertins, P., D.R. Mani, K.V. Ruggles, M.A. Gillette, K.R. Clauser, P. Wang, X. Wang, J.W. Qiao, S. Cao, F. Petralia, E. Kawaler, F. Mundt, K. Krug, Z. Tu, J.T. Lei, M.L. Gatza, M. Wilkerson, C.M. Perou, V. Yellapantula, K.L. Huang, C. Lin, M.D. McLellan, P. Yan, S.R. Davies, R.R. Townsend, S.J. Skates, J. Wang, B. Zhang, C.R. Kinsinger, M. Mesri, H. Rodriguez, L. Ding, A.G. Paulovich, D. Fenyo, M.J. Ellis, S.A. Carr, and C. Nci, Proteogenomics connects somatic mutations to signalling in breast cancer. Nature, 2016. 534(7605): p. 55-62.
42. Lin, A., C. Li, Z. Xing, Q. Hu, K. Liang, L. Han, C. Wang, D.H. Hawke, S. Wang, Y. Zhang, Y. Wei, G. Ma, P.K. Park, J. Zhou, Y. Zhou, Z. Hu, Y. Zhou, J.R. Marks, H. Liang, M.C. Hung, C. Lin, and L. Yang, The LINK-A lncRNA activates normoxic HIF1alpha signalling in triple-negative breast cancer. Nat Cell Biol, 2016. 18(2): p. 213-24.
43. Weterman, M.A., N. Ajubi, I.M. van Dinter, W.G. Degen, G.N. van Muijen, D.J. Ruitter, and H.P. Bloemers, nmb, a novel gene, is expressed in low-metastatic human melanoma cell lines and xenografts. Int J Cancer, 1995. 60(1): p. 73-81.
44. Rose, A.A., F. Pepin, C. Russo, J.E. Abou Khalil, M. Hallett, and P.M. Siegel, Osteoactivin promotes breast cancer metastasis to bone. Mol Cancer Res, 2007. 5(10): p. 1001-14.
45. Rich, J.N., Q. Shi, M. Hjelmeland, T.J. Cummings, C.T. Kuan, D.D. Bigner, C.M. Counter, and X.F. Wang, Bone-related genes expressed in advanced malignancies induce invasion and metastasis in a genetically defined human cancer model. J Biol Chem, 2003. 278(18): p. 15951-7.
46. Furochi, H., S. Tamura, M. Mameoka, C. Yamada, T. Ogawa, K. Hirasaka, Y. Okumura, T. Imagawa, S. Oguri, K. Ishidoh, K. Kishi, S. Higashiyama, and T. Nikawa, Osteoactivin fragments produced by ectodomain shedding induce MMP-3 expression via ERK pathway in mouse NIH-3T3 fibroblasts. FEBS Lett, 2007. 581(30): p. 5743-50.
47. Hoashi, T., S. Sato, Y. Yamaguchi, T. Passeron, K. Tamaki, and V.J. Hearing, Glycoprotein nonmetastatic melanoma protein b, a melanocytic cell marker, is a melanosome-specific and proteolytically released protein. FASEB J, 2010. 24(5): p. 1616-29.
48. Rose, A.A., M.G. Annis, Z. Dong, F. Pepin, M. Hallett, M. Park, and P.M. Siegel, ADAM10 releases a soluble form of the GPNMB/Osteoactivin extracellular domain with angiogenic properties. PLoS One, 2010. 5(8): p. e12093.
49. Waldmann, T.A., Monoclonal antibodies in diagnosis and therapy. Science, 1991. 252(5013): p. 1657-62.
50. Wikstrand, C.J., I. Cokgor, J.H. Sampson, and D.D. Bigner, Monoclonal antibody therapy of human gliomas: current status and future approaches. Cancer Metastasis Rev, 1999. 18(4): p. 451-64.
51. Halim, A., R.G. Bagley, and T. Keler, Glycoprotein NMB (gpNMB) overexpression is prevalent in human cancers: pancreatic cancer, non-small cell lung cancer, head and neck cancer, and osteosarcoma. Cancer Research, 2016. 76.
52. Lange, T., S. Ullrich, I. Muller, M.F. Nentwich, K. Stubke, S. Feldhaus, C. Knies, O.J.C. Hellwinkel, R.L. Vessella, C. Abramjuk, M. Anders, J. Schroder-Schwarz, T. Schlomm, H. Huland, G. Sauter, and U. Schumacher, Human Prostate Cancer in a Clinically Relevant Xenograft Mouse Model: Identification of beta(1,6)-Branched Oligosaccharides as a Marker of Tumor Progression. Clinical Cancer Research, 2012. 18(5): p. 1364-1373.
53. Sato, K.-i., Cellular Functions Regulated by Phosphorylation of EGFR on Tyr845. International Journal of Molecular Sciences, 2013. 14(6): p. 10761-10790.
54. Dawson, J.P., M.B. Berger, C.C. Lin, J. Schlessinger, M.A. Lemmon, and K.M. Ferguson, Epidermal Growth Factor Receptor Dimerization and Activation Require Ligand-Induced Conformational Changes in the Dimer Interface. Molecular and Cellular Biology, 2005. 25(17): p. 7734-7742.
55. Sarabipour, S. and K. Hristova, Mechanism of FGF receptor dimerization and activation. Nature Communications, 2016. 7.
56. Patthy L , T.M., Váli Z , Bányai L , Váradi A Kringles: modules specialized for protein binding. Homology of the gelatin-binding region of fibronectin with the kringle structures of proteases. FEBS Letters, 1984. [01 Jun 1984, 171(1):131-136].
57. Red Brewer, M., C.H. Yun, D. Lai, M.A. Lemmon, M.J. Eck, and W. Pao, Mechanism for activation of mutated epidermal growth factor receptors in lung cancer. Proc Natl Acad Sci U S A, 2013. 110(38): p. E3595-604.
58. Shostak, K. and A. Chariot, EGFR and NF-κB: partners in cancer. Trends in Molecular Medicine, 2015. 21(6): p. 385-393.
59. Siegel, P., Rose, Annis, and Maric, Glycoprotein non-metastatic b (GPNMB): A metastatic mediator and emerging therapeutic target in cancer. OncoTargets and Therapy, 2013.
60. Sasaki, F., K. Kumagai, H. Uto, Y. Takami, T. Kure, K. Tabu, Y. Nasu, S. Hashimoto, S. Kanmura, M. Numata, A. Moriuchi, T. Sakiyama, H. Tsubouchi, and A. Ido, Expression of glycoprotein nonmetastatic melanoma protein B in macrophages infiltrating injured mucosa is associated with the severity of experimental colitis in mice. Mol Med Rep, 2015. 12(5): p. 7503-11.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79136-
dc.description.abstract在亞洲,非小型細胞肺癌的基因型態與西方國家有極大的差別,其中又以表皮生長因子受器 (Epidermal Growth Factor Receptor, EGFR) 的突變型態最為顯著。許多研究指出,突變型的表皮生長因子受器,無須經由表皮生長因子 (Epidermal Growth Factor, EGF) 的刺激就能形成雙聚合體 (dimerization) ,進而造成下游訊號的持續活化。目前,對於在這些非小型細胞肺癌中,是否具有一些特殊的膜蛋白可協助參與調控這些突變型表皮生長因子受器,進而使其不斷地活化下游相關的訊息傳遞仍不十分清楚;因此,我們實驗室先前便利用膜蛋白質體的分析技術,配合許多蛋白質交互作用之資料庫訊息分析 (STRING database),發現有多種膜蛋白的表現會與突變型表皮生長因子受器有所關聯, Glycoprotein non-metastatic b (GPNMB) 便為其中的一個顯著蛋白。本研究中,我們透過多種體外研究的模式,探討GPNMB蛋白質的表現與突變型表皮生長因子受器之間的關聯性。實驗結果顯示,在帶有突變型表皮生長因子的細胞中,GPNMB 蛋白質的表現會大量增加。同時,當在帶有突變型表皮生長因子受器的肺癌細胞表現GPNMB蛋白質時,GPNMB蛋白質會透過酵素的切割,進而使其被釋放到細胞的培養基 (conditioned medium) 中,且其表現量與細胞的遷移能力 (cell migration ability) 呈現高度的正相關性。 本研究希望能釐清未來我們是否能利用釋放型GPNMB蛋白質的偵測,作為評估帶有突變型表皮生長因子受器的病人病情的指標。 此項研究的建立,將能更有效的提升帶有突變型表皮生長因子受器之非小型肺癌病患的病程管理。zh_TW
dc.description.abstractIn Asia, EGFR is the most common type of oncogenic driver mutation among non-small cell lung cancer patients. Lung cancer cells carrying EGFR mutations are mostly ligand-independent, and some do not require homodimerization to activate downstream signaling pathways. However, it is unclear whether there are any EGFR associated membrane proteins that facilitate the activation of EGFR mutants. Our lab employed membrane proteomic analysis and STRING databases evaluation, and discovered the expression of GPNMB, a type I transmembrane glycoprotein, is correlated with EGFR mutation status. Herein, we inspected the relationship between GPNMB and EGFR mutation in non-small cell lung cancer (NSCLCs). We verified that GPNMB protein was preferentially expressed in cells harboring EGFR mutation. Interestingly, we found that GPNMB may be shed into conditioned medium especially in EGFR mutation, and was highly correlated with cell migration ability. This study enlightened our understanding of the relationship between GPNMB and EGFR mutation and provides a potential biomarker for management of the disease progression of lung cancer patients with EGFR mutation.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:46:53Z (GMT). No. of bitstreams: 1
ntu-107-R05455001-1.pdf: 17010513 bytes, checksum: 9572aec10508175ded8874a4c555cd99 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsTable of Contents

中文摘要 1
ABSTRACT 3
LIST OF FIGURES 4
LIST OF TABLES 5
ABBREVIATIONS 6
Chapter I 9
INTRODUCTION 9
About NSCLC 9
The Human EGFR 12
EGFR Deregulation in NSCLC 12
Glycoprotein Non-Metastatic B (GPNMB) 15
The relationship between GPNMB and EGFR 18
RESEARCH BACKGROUND AND MOTIVES 19
Chapter II 21
MATERIALS AND METHODS 21
Cell lines and culture conditions 21
Reverse transcription polymerase chain reaction (RT-PCR) 21
Quantitative real-time polymerase chain reaction (qPCR) 22
Plasmid constructs 22
Transfection and stable cells selection 23
Immunoprecipitation and immunoblotting 23
Cell migration assay 24
Statistical analysis 25
Chapter III 26
RESULTS 26
Validation of proteomic analysis 26
The association between EGFR status and GPNMB expression 27
GPNMB preferentially interacts with mutation EGFR 29
GPNMB plays a role in EGFR mutant cell migration ability 31
EGFR mutation induced the secretion of GPNMB 32
SUMMARY 33
DISCUSSION 33
REFERENCES 60
APPENDIX 74
-
dc.language.isoen-
dc.titleGPNMB作為表皮生長因子受體突變之肺癌診斷標的zh_TW
dc.titleGlycoprotein non-metastatic b: A diagnostic marker for EGFR mutation lung cancer patientsen
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee洪澤民;張以承;徐翠玲;邱繼輝zh_TW
dc.contributor.oralexamcommittee;;;en
dc.subject.keyword非小型細胞肺癌,表皮生長因子,診斷標的,醣蛋白,膜蛋白體學,zh_TW
dc.subject.keywordNSCLC,EGFR,Diagnosis marker,glycoprotein,membrane proteome,en
dc.relation.page81-
dc.identifier.doi10.6342/NTU201802449-
dc.rights.note未授權-
dc.date.accepted2018-08-06-
dc.contributor.author-college醫學院-
dc.contributor.author-dept基因體暨蛋白體醫學研究所-
dc.date.embargo-lift2024-08-05-
顯示於系所單位:基因體暨蛋白體醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-2.pdf
  目前未授權公開取用
16.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved