請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79134完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周崇熙 | |
| dc.contributor.author | Shengnan Zhao | en |
| dc.contributor.author | 趙勝男 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:46:44Z | - |
| dc.date.available | 2023-08-24 | |
| dc.date.copyright | 2018-08-24 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-06 | |
| dc.identifier.citation | 1. Akond, M. A., S. Alam, S. M. R. Hassan, and M. Shirin. Antibiotic resistance of Escherichia coli isolated from poultry and poultry environment of Bangladesh. Am. J. Environ. Sci. 11:19-23. 2009.
2. Barrett, T. J., P. Gerner-Smidt, and B. Swaminathan. Interpretation of pulsed-field gel electrophoresis patterns in foodborne disease investigations and surveillance. Foodborne Pathog. Dis. 3:20-31. 2006. 3. Bej, A. K., J. L. Dicesare, L. Haff, and R. M. Atlas. Detection of Escherichia coli and Shigella spp. in water by using the polymerase chain reaction and gene probes for uid. Appl. Environ. Microbiol. 57:1013-1017. 1991. 4. Cavard, D. and C. Lazdunski. Colicin cleavage by ompT protease during both entry into and release from Escherichia coli cells. J. Bacteriol. 172: 648-652. 1990. 5. CDC. Standard operating procedure for PulseNet PFGE of Escherichia coli O157: H7, Escherichia coli non-O157 (STEC), Salmonella serotypes, Shigella sonnei and Shigella flexneri. [Internet]. [modified 2017 Dec; cited 2018 Jul 8]. Available from:https://www.cdc.gov/pulsenet/pdf/ecoli-shigella-salmonella-pfge-protocol-508c.pdf. 6. Chander, Y., S. Oliveira, and S. M. Goyal. Characterisation of ceftiofur resistance in swine bacterial pathogens. Vet. J. 187:139-141. 2011. 7. Chansiripornchai, N., S. Mooljuntee, P. and Boonkhum. Antimicrobial sensitivity of avian pathogenic Escherichia coli (APEC) isolated from chickens during 2007-2010. Thai. J. Vet. Med. 41:519–522. 2011. 8. Chapman, T. A., X. Y. Wu, I. Barchia, K. A. Bettelheim, S. Driesen, D. Trott, M. Wilson, and J. J. Chin. Comparison of virulence gene profiles of Escherichia coli strains isolated from healthy and diarrheic swine. Appl. Environ. Microbiol. 72:4782-4795. 2006. 9. Cho, S. H., Y. S. Lim, and Y. H. Kang. Comparison of antimicrobial resistance in Escherichia coli strains isolated from healthy poultry and swine farm workers using antibiotics in Korea. Osong Public Health Res. Perspect. 3:151-155. 2012. 10. CLSI methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Clinical and Laboratory Standards Institute, Wayne, PA, 2012. 11. CLSI performance standards for antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute, Wayne, PA, 2017. 12. Dziva, F., and M. P. Stevens. Colibacillosis in poultry: unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts. Avian Pathol. 37:355–366. 2008. 13. ECAUST. European committee on antimicrobial susceptibility testing. Breakpoint tables for interpretation of MICs and zone diameters. [Internet] [modified 2018 Jan 1; cited 2018 Jul 8]. Available from: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_8.0_Breakpoint_Tables.pdf. 14. ECAUST. European committee on antimicrobial susceptibility testing. Antimicrobial wild type distributions of microorganisms. [Internet] [modified 2007 May; cited 2018 Jul 8]. Available from: https://mic.eucast.org/Eucast2/SearchController/search.jsp?action=init. 15. Ewers, C., T. Janssen, S. Kiessling, H. C. Philipp, and L. H. Wieler. Molecular epidemiology of avian pathogenic Escherichia coli (APEC) isolated from colisepticemia in poultry. Vet. Microbiol. 104:91-101. 2004. 16. Furuta, K., and S. Maruyama. Bacterial contamination on eggs during incubation and hatching, and of fluffs of newly-hatched chicks. Br. Poult. Sci. 22:247-254. 1981. 17. Gérard, F., N. Pradel, and L. F. Wu. Bactericidal activity of colicin V is mediated by an inner membrane protein, SdaC, of Escherichia coli. J. Bacteriol. 187: 1945-1950. 2005. 18. Guerra, B., E. Junker, A. Schroeter, B. Malorny, S. Lehmann, and R. Helmuth. Phenotypic and genotypic characterization of antimicrobial resistance in German Escherichia coli isolates from cattle, swine and poultry. J. Antimicrob. Chemother. 52:489-492. 2003. 19. Harry, E. G. The effect on embryonic and chick mortality of yolk contamination with bacteria from the hen. Vet. Rec. 69:1433-1439. 1957. 20. Johnson, T. J., Y. Wannemuehler, C. Doetkott, S. J. Johnson, S. C. Rosenberger, and L. K. Nolan. Identification of minimal predictors of avian pathogenic Escherichia coli virulence for use as a rapid diagnostic tool. J. Clin. Microbiol. 46:3987-3996. 2008. 21. Kozak, G. K., P. Boerlin, N. Janecko, R. J. Reid-Smith, and C. Jardine. Antimicrobial resistance in Escherichia coli isolates from swine and wild small mammals in the proximity of swine farms and in natural environments in Ontario, Canada. Appl. Environ. Microbiol. 75:559-566. 2009. 22. Li, Y., L. Chen, X. Wu, and S. Huo. Molecular characterization of multidrug-resistant avian pathogenic Escherichia coli isolated from septicemic broilers. Poult. Sci. 94:601-611. 2015. 23. Lounis, M., G. Zhao, Y. H. Li, Y. B. Gao, R. Kaidi, M. Oumouna, J. W. Wang, and K. Oumouna. Virulence traits of avian pathogenic (APEC) and fecal (AFEC) E. coli isolated from broiler chickens in Algeria. Trop. Anim. Health. Prod. 50:547-553. 2018. 24. McGaw, J. E., R. V. Byrnes, and G. C. Simmons. The use of fluff counts in a study of hygiene in Queensland hatcheries. Aust. Vet. J. 51:389-391. 1975. 25. Murakami, K., H. Fuse, O. Takimura, H. Inoue, and Y. Yamaoka. Cloning and characterization of the iutA gene which encodes ferric aerobactin receptor from marine Vibrio species. Microbios. 101:137-146. 2000. 26. Murase, K., P. Martin, G. Porcheron, S. Houle, E. Helloin, M. Pénary, J. P. Nougayrède, C. M. Dozois, T. Hayashi, and E. Oswald. HlyF produced by extraintestinal pathogenic Escherichia coli is a virulence factor that regulates outer membrane vesicle biogenesis. J. Infect. Dis. 213:856-865. 2016. 27. Osman, K. M., A. D. Kappell, M. Elhadidy, F. ElMougy, W. A. A. El-Ghany, A. Orabi, A. S. Mubarak, T. M. Dawoud, H. A. Hemeg, I. M. I. Moussa, A. M. Hessain, and H. M. Y. Yousef. Poultry hatcheries as potential reservoirs for antimicrobial-resistant Escherichia coli: A risk to public health and food safety. Sci. Rep. 8:5859. 2018. 28. Ozawa, M., K. Harada, A. Kojima, T. Asai, and T. Sameshima. Antimicrobial susceptibilities, serogroups, and molecular characterization of avian pathogenic Escherichia coli isolates in Japan. Avian Dis. 52:392-397. 2008. 29. Sáenz, Y., L. Briñas, E. Domínguez, J. Ruiz, M. Zarazaga, J. Vila, and C. Torres. Mechanisms of resistance in multiple-antibiotic-resistant Escherichia coli strains of human, animal, and food origins. Antimicrob. Agents. Chemother. 48:3996-4001. 2004. 30. Schierack, P., K. Kadlec, S. Guenther, M. Filter, S. Schwarz, C. Ewers, and L. H. Wieler. Antimicrobial resistances do not affect colonization parameters of intestinal E. coli in a small piglet group. Gut Pathog. 1:18. 2009. 31. Silveira, F., R. P. Maluta, M. R. Tiba, J. B. de Paiva, E. A. Guastalli, and W. D. da Silveira. Comparison between avian pathogenic (APEC) and avian faecal (AFEC) Escherichia coli isolated from different regions in Brazil. Vet. J. 217:65-67. 2016. 32. Sivaramalingam, T., D. L. Pearl, S. A. McEwen, D. Ojkic, and M. T. Guerin. A temporal study of Salmonella serovars from fluff samples from poultry breeder hatcheries in Ontario between 1998 and 2008. Can. J. Vet. Res. 77: 12-23. 2013. 33. Solà-Ginés, M., K. Cameron-Veas, I. Badiola, R. Dolz, N. Majó, G. Dahbi, S. Viso, A. Mora, J. Blanco, N. Piedra-Carrasco, J. J. González-López, and L. Migura-Garcia. Diversity of multi-drug resistant avian pathogenic Escherichia coli (APEC) causing outbreaks of colibacillosis in broilers during 2012 in Spain. PloS one.10: e0143191. 2015. 34. Tsai, H. J., and P. H. Hsiang. The prevalence and antimicrobial susceptibilities of Salmonella and Campylobacter in ducks in Taiwan. J. Vet. Med. Sci. 67:7-12. 2005. 35. Williams, J. E. Effect of high-level formaldehyde fumigation on bacterial populations on the surface of chicken hatching eggs. Avian Dis. 14:386-392. 1970. 36. Williams, P. H. and E. Griffiths. Bacterial transferrin receptors-structure, function and contribution to virulence. Med. Microbiol. Immunol. 181:301-322. 1992. 37. Wooley, R. E., P. S. Gibbs, T. P. Brown, J. R. Glisson, W. L. Steffens, and J. J. Maurer. Colonization of the chicken trachea by an avirulent avian Escherichia coli transformed with plasmid pHK11. Avian Dis. 42:194-198. 1998. 38. Yatsuyanagi, J., S. Saito, Y. Miyajima, K. I. Amano, and K. Enomoto. Characterization of atypical enteropathogenic Escherichia coli strains harboring the astA gene that were associated with a waterborne outbreak of diarrhea in Japan. J. Clin. Microbiol. 41:2033-2039. 2003. 39. Yeh, J. C., C. L. Chen, C. S. Chiou, D. Y. Lo, J. C. Cheng, and H. C. Kuo. Comparison of prevalence, phenotype, and antimicrobial resistance of Salmonella serovars isolated from turkeys in Taiwan. Poult. Sci. 97:279-288. 2018. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79134 | - |
| dc.description.abstract | 家禽大腸桿菌病是由家禽致病性大腸桿菌(APEC)引起的一種常見全身性傳染病,此病對家禽產業造成了嚴重的經濟損失。孵化場是商業雞場雞隻的主要來源,因此本研究試圖了解孵化場中是否存在大腸桿菌,以及了解其致病的可能性。為此,本研究在2016年10月到2017年11月之間,共收集2344份雛雞孵化器中的絨毛樣本進行實驗。在這些樣本中,大腸桿菌的總體發生率為2.0%,而每個孵化場大腸桿菌的發生率有所不同,最低為0%,最高達到16.9%,部分孵化場有如此之高的發生率,可以反映其在衛生管理方面的不足。除此之外,為了比較絨毛大腸桿菌和APEC在毒力因子、抗藥基因和抗藥性(最小抑菌濃度)方面的差異,本研究還收集了20株臨床病例分離到的APEC。從毒力因子的研究結果本研究發現,APEC更容易具有大部分的毒力因子(papC, astA, cvaC, hlyF, fyuA, iroN, iutA, iss, and ompT),這說明與APEC相比,絨毛大腸桿菌的致病可能性較低。但另一方面,絨毛大腸桿菌更容易具有與粘附相關的毒力因子fimC, 這說明絨毛大腸桿菌可能更容易粘附於家禽上呼吸道細胞。在抗藥性方面,全部的APEC和絨毛大腸桿菌都是多重抗藥性菌株,他們都對ampcilillin, amoxicillin, trimethoprim-sulfamethoxazole, cephalexin和florfenicol有抗藥性。就最小抑菌濃度的中位數而言,絨毛大腸桿菌對抗生素具有更高的感受性;但是這兩組菌株的抗藥基因檢測結果並沒有顯著性差異,這說明絨毛大腸桿菌仍然可能通過傳遞抗藥基因而造成公共衛生的危害。分子分型方面, XbaI脈衝場凝膠電泳(PFGE)結果顯示只有小部分的菌株擁有相同的圖譜,這說明孵化場污染來源的廣泛;一些具有相同PFGE圖譜的菌株是從同一孵化場分離到的,這意味著可能存在來自母雞群體的垂直傳播。總結以上,本研究結果顯示絨毛大腸桿菌相較於APEC而言,具有較低的致病性可能性。於此同時,本研究建議孵化場應注重消毒與清潔,從而減少絨毛中的大腸桿菌的存在。 | zh_TW |
| dc.description.abstract | Avian colibacillosis resulting from avian pathogenic Escherichia coli (APEC) seriously disrupts poultry production. Hatcheries are the main sources of chicken for commercial farms. To characterize the potential pathogenicity of E. coli strains isolated from hatcheries, 2,344 fluff samples from day-old chickens were collected from hatching incubators between October 2016 and November 2017. Among the hatcheries, the incidence of E. coli varied from 0 to 16.9%, with an overall incidence of 2.0%. High incidences reflected inadequate sanitation in some hatcheries. We also compared 20 clinically isolated APEC strains with fluff-originated E. coli in terms of expression of 10 virulence-associated genes (VAGs) and antimicrobial-resistance genes, and antimicrobial resistance using minimum inhibitory concentration (MIC) values. Our results showed that APEC more frequently expressed most of the assessed VAGs (papC, astA, cvaC, hlyF, fyuA, iroN, iutA, iss, and ompT), suggesting that fluff-originated E. coli is less likely to cause avian colibacillosis. However, fluff-originated E. coli more frequently expressed the adhesion gene fimC, which could confer higher upper respiratory tract adhesion. Both APEC and fluff-originated E. coli demonstrated multi-drug resistance, including 100% resistance to ampicillin, amoxicillin, trimethoprim-sulfamethoxazole, cephalexin, and florfenicol. Based on median MIC values, fluff-originated E. coli was more susceptible to antibiotics. However, resistance-gene expression did not significantly differ between groups, suggesting that fluff-originated E. coli should still be a public health concern. Molecular subtyping with XbaI-digested pulsed-field gel electrophoresis revealed that only a few strains showed identical patterns, indicating that a variety of contamination sources were present within individual hatcheries. Identical strains within the same hatchery may indicate vertical transmission from parent flocks. Overall, this is the first study to characterize fluff-originated E. coli. Our results suggest that it has lower pathogenicity than APEC and that thorough sanitation should be performed to reduce the occurrence of fluff-originated E. coli in hatcheries. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:46:44Z (GMT). No. of bitstreams: 1 ntu-107-R04629026-1.pdf: 2670356 bytes, checksum: e54625ebf87d13457a84dab86cb74c1b (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | Acknowledgment in Chinese 致謝 ............................................................... I
Abstract in Chinese摘要 ............................................................................ III Abstract ........................................................................................................ V List of Tables ............................................................................................ VIII List of Figures ............................................................................................. IX List of Abbreviations ................................................................................... X Chapter 1 Introduction .................................................................................. 1 Chapter 2 Materials and methods ................................................................. 3 2.1 Isolation and identification of E. coli .................................................. 3 2.2 VAGs detection .................................................................................... 5 2.3 Antimicrobial-susceptibility testing and resistance-gene detection.... 6 2.4 Pulsed-field gel electrophoresis (PFGE) ............................................. 8 2.5 Statistics ............................................................................................... 9 Chapter 3 Results ........................................................................................ 10 3.1 Incidence of E. coli in fluff samples .................................................. 10 3.2 VAGs in fluff-originated E. coli and APEC ...................................... 11 3.3 Antimicrobial susceptibility and resistance-gene expression ........... 13 3.4 Genetic similarity analysis using PFGE ............................................ 15 Chapter 4 Discussion .................................................................................. 16 Chapter 5 Conclusion .................................................................................. 22 References ................................................................................................... 23 | |
| dc.language.iso | en | |
| dc.subject | 絨毛 | zh_TW |
| dc.subject | 分子分型 | zh_TW |
| dc.subject | 抗藥性 | zh_TW |
| dc.subject | 毒力基因 | zh_TW |
| dc.subject | 大腸桿菌 | zh_TW |
| dc.subject | 孵化場 | zh_TW |
| dc.subject | Escherichia coli | en |
| dc.subject | molecular subtyping | en |
| dc.subject | antimicrobial resistance | en |
| dc.subject | virulence-associated genes | en |
| dc.subject | fluff | en |
| dc.subject | hatcheries | en |
| dc.title | 臺灣孵化場雛雞絨毛分離之大腸桿菌特性研究 | zh_TW |
| dc.title | Characterization of Escherichia coli Isolated from Day-old Chicken Fluff in Taiwan Hatcheries | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡向榮,張紹光,李滋泰,蔡宜倫 | |
| dc.subject.keyword | 絨毛,孵化場,大腸桿菌,毒力基因,抗藥性,分子分型, | zh_TW |
| dc.subject.keyword | fluff,hatcheries,Escherichia coli,virulence-associated genes,antimicrobial resistance,molecular subtyping, | en |
| dc.relation.page | 38 | |
| dc.identifier.doi | 10.6342/NTU201800778 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-06 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-08-24 | - |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-R04629026-1.pdf 未授權公開取用 | 2.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
