請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79127完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林芳如 | zh_TW |
| dc.contributor.advisor | Fang-Ju Ling | en |
| dc.contributor.author | 張庭瑜 | zh_TW |
| dc.contributor.author | Ting-Yu Chang | en |
| dc.date.accessioned | 2021-07-11T15:46:10Z | - |
| dc.date.available | 2024-02-28 | - |
| dc.date.copyright | 2018-10-05 | - |
| dc.date.issued | 2018 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Reference
1. Calverley P, Anderson J, Celli B, et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med 2007;356:775-89. 2. Wedzicha JA, Calverley PM, Seemungal TA, et al. The prevention of chronic obstructive pulmonary disease exacerbations by salmeterol/fluticasone propionate or tiotropium bromide. Am J Respir Crit Care Med 2008;177:19-26. 3. Kew KM, Seniukovich A. Inhaled steroids and risk of pneumonia for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2014:CD010115. 4. Hollis S, Jorup C, Lythgoe D, Martensson G, Regnell P, Eckerwall G. Risk of pneumonia with budesonide-containing treatments in COPD: an individual patient-level pooled analysis of interventional studies. Int J Chron Obstruct Pulmon Dis 2017;12:1071-84. 5. Janson C, Larsson K, Lisspers KH, et al. Pneumonia and pneumonia related mortality in patients with COPD treated with fixed combinations of inhaled corticosteroid and long acting beta2 agonist: observational matched cohort study (PATHOS). BMJ 2013;346:f3306. 6. Suissa S, Patenaude V, Lapi F, Ernst P. Inhaled corticosteroids in COPD and the risk of serious pneumonia. Thorax 2013;68:1029-36. 7. Kern DM, Davis J, Williams SA, et al. Comparative effectiveness of budesonide/formoterol combination and fluticasone/salmeterol combination among chronic obstructive pulmonary disease patients new to controller treatment: a US administrative claims database study. Respir Res 2015;16:52. 8. Wang CY, Lai CC, Yang WC, et al. The association between inhaled corticosteroid and pneumonia in COPD patients: the improvement of patients' life quality with COPD in Taiwan (IMPACT) study. Int J Chron Obstruct Pulmon Dis 2016;11:2775-83. 9. Brode SK, Campitelli MA, Kwong JC, et al. The risk of mycobacterial infections associated with inhaled corticosteroid use. Eur Respir J 2017;50. 10. Yang HH, Lai CC, Wang YH, et al. Severe exacerbation and pneumonia in COPD patients treated with fixed combinations of inhaled corticosteroid and long-acting beta2 agonist. Int J Chron Obstruct Pulmon Dis 2017;12:2477-85. 11. 健保用藥品項網路查詢服務. (Accessed April 9, 2018, at https://www1.nhi.gov.tw/QueryN/Query1.aspx?n=FC660C5B07007373&sms=36A0BB334ECB4011&topn=3185A4DF68749BA9&upn=80567D1327F69CB9) 12. Global Initiative for Chronic Obstructive Lung Disease (GOLD): Global Strategy for the Diagnosis, Management, and Prevention of COPD 2017. www.goldcopd.org. 13. World Health Organization (2008) Part 2: Causes of death. The global burdenof disease: 2004 update. Geneva: World Health Organization. 14. Murray CJL, Lopez AD. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. The Lancet 1997;349:1498-504. 15. Rycroft CE, Heyes A, Lanza L, Becker K. Epidemiology of chronic obstructive pulmonary disease: a literature review. Int J Chron Obstruct Pulmon Dis 2012;7:457-94. 16. Wang YC, Lin JM, Li CY, Lee LT, Guo YL, Sung FC. Prevalence and risks of chronic airway obstruction: a population cohort study in taiwan. Chest 2007;131:705-10. 17. Cheng SL, Chan MC, Wang CC, et al. COPD in Taiwan: a National Epidemiology Survey. Int J Chron Obstruct Pulmon Dis 2015;10:2459-67. 18. Kessler R, Partridge MR, Miravitlles M, et al. Symptom variability in patients with severe COPD: a pan-European cross-sectional study. Eur Respir J 2011;37:264-72. 19. Jones PW. Health status and the spiral of decline. COPD 2009;6:59-63. 20. Johannessen A, Nilsen RM, Storebo M, Gulsvik A, Eagan T, Bakke P. Comparison of 2011 and 2007 Global Initiative for Chronic Obstructive Lung Disease guidelines for predicting mortality and hospitalization. Am J Respir Crit Care Med 2013;188:51-9. 21. Donaldson GC, Seemungal TAR, Bhowmik A, Wedzicha JA. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax 2002;57:847-52. 22. Davies L, Angus RM, Calverley PMA. Oral corticosteroids in patients admitted to hospital with exacerbations of chronic obstructive pulmonary disease: a prospective randomised controlled trial. The Lancet 1999;354:456-60. 23. Vollenweider DJ, Jarrett H, Steurer-Stey CA, et al. Antibiotics for exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2012;12:CD010257. 24. Chong J, Leung B, Poole P. Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2013:CD002309. 25. Albert RK, Connett J, Bailey WC, et al. Azithromycin for prevention of exacerbations of COPD. N Engl J Med 2011;365:689–98. 26. Vestbo J, Hurd SS, Agusti AG, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 2013;187:347-65. 27. Gruffydd-Jones K. GOLD guidelines 2011: what are the implications for primary care? Prim Care Respir J 2012;21:437-41. 28. Vogelmeier C, Hederer B, Glaab T, et al. Tiotropium versus Salmeterol for the Prevention of Exacerbations of COPD. N Engl J Med 2011;364:1093-103. 29. Decramer ML, Chapman KR, Dahl R, et al. Once-daily indacaterol versus tiotropium for patients with severe chronic obstructive pulmonary disease (INVIGORATE): a randomised, blinded, parallel-group study. The Lancet Respiratory Medicine 2013;1:524-33. 30. Yang IA, Shaw JG, Goddard JR, Clarke MS, Reid DW. Use of inhaled corticosteroids in COPD: improving efficacy. Expert Rev Respir Med 2016;10:339-50. 31. Pelaia G, Muzzio CC, Vatrella A, Maselli R, Magnoni MS, Rizzi A. Pharmacological basis and scientific rationale underlying the targeted use of inhaled corticosteroid/long-acting beta2-adrenergic agonist combinations in chronic obstructive pulmonary disease treatment. Expert Opin Pharmacother 2015;16:2009-21. 32. Daley-Yates PT. Inhaled corticosteroids: potency, dose equivalence and therapeutic index. Br J Clin Pharmacol 2015;80:372-80. 33. Edsbacker S, Wollmer P, Selroos O, Borgstrom L, Olsson B, Ingelf J. Do airway clearance mechanisms influence the local and systemic effects of inhaled corticosteroids? Pulm Pharmacol Ther 2008;21:247-58. 34. Barnes PJ. Inhaled Corticosteroids. Pharmaceuticals (Basel) 2010;3:514-40. 35. Yang IA, Clarke MS, Sim EH, Fong KM. Inhaled corticosteroids for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2012:CD002991. 36. Nannini LJ, Lasserson TJ, Poole P. Combined corticosteroid and long-acting beta(2)-agonist in one inhaler versus long-acting beta(2)-agonists for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2012:CD006829. 37. Gershon AS, Campitelli MA, Croxford R, et al. Combination long-acting beta-agonists and inhaled corticosteroids compared with long-acting beta-agonists alone in older adults with chronic obstructive pulmonary disease. JAMA 2014;312:1114-21. 38. Horita N, Miyazawa N, Tomaru K, Inoue M, Kaneko T. Long-acting muscarinic antagonist + long-acting beta agonist versus long-acting beta agonist + inhaled corticosteroid for COPD: A systematic review and meta-analysis. Respirology 2015;20:1153-9. 39. Prillo J.E., Fauci A.S. Mechanisms of glucocorticoid action on immune processes. Ann Rev Pharmacol Toxicol 1979; 19: 179–201. 40. Georas SN. Inhaled glucocorticoids, lymphocytes, and dendritic cells in asthma and obstructive lung diseases. Proc Am Thorac Soc 2004;1:215-21. 41. Crim C, Calverley PM, Anderson JA, et al. Pneumonia risk in COPD patients receiving inhaled corticosteroids alone or in combination: TORCH study results. Eur Respir J 2009;34:641-7. 42. Calverley PMA, Stockley RA, Seemungal TAR, et al. Reported pneumonia in patients with COPD: findings from the INSPIRE study. Chest 2011;139:505-12. 43. 衛生福利部統計處. (Assessed April 9, 2018, at https://dep.mohw.gov.tw/DOS/np-2497-113.html. ). 44. Iannella H, Luna C, Waterer G. Inhaled corticosteroids and the increased risk of pneumonia: what's new? A 2015 updated review. Ther Adv Respir Dis 2016;10:235-55. 45. Horwitz RI, Feinstein AR. The problem of “protopathic bias” in case–control studies.Am J Med. 1980; 68:255-8. 46. Arfe A, Corrao G. The lag-time approach improved drug-outcome association estimates in presence of protopathic bias. J Clin Epidemiol 2016;78:101-7. 47. Sharma KC, Stevens D, Casey L, Kesten S. Effects of High-Dose Inhaled Fluticasone Propionate via Spacer on Cell-Mediated Immunity in Healthy Volunteers. Chest 2000;118:1042-8. 48. Newman SP. Deposition and effects of inhaled costicosteroids. Clin Pharmacokinet 2003;42:529-44. 49. Bourbeau J, Bartlett SJ. Patient adherence in COPD. Thorax 2008;63:831-8. 50. Global Strategy for Asthma Management and Prevention, Global Initiative for Asthma (GINA). www.ginasthma.org (Accessed on Feburary 24, 2018). 51. Suissa S, Coulombe J, Ernst P. Discontinuation of Inhaled Corticosteroids in COPD and the Risk Reduction of Pneumonia. Chest 2015;148:1177-83. 52. Kern DM, Davis J, Williams SA, et al. Validation of an administrative claims-based diagnostic code for pneumonia in a US-based commercially insured COPD population. Int J Chron Obstruct Pulmon Dis 2015;10:1417-25. 53. Su VY, Liu CJ, Wang HK, et al. Sleep apnea and risk of pneumonia: A nationwide population-based study. CMAJ 2014;186:415-21. 54. Stein BD, Bautista A, Schumock GT, et al. The validity of International Classification of Diseases, Ninth Revision, Clinical Modification diagnosis codes for identifying patients hospitalized for COPD exacerbations. Chest 2012;141:87-93. 55. Walters JA, Tan DJ, White CJ, Wood-Baker R. Different durations of corticosteroid therapy for exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2014:CD006897. 56. Mantero M, Rogliani P, Di Pasquale M, et al. Acute exacerbations of COPD: risk factors for failure and relapse. Int J Chron Obstruct Pulmon Dis 2017;12:2687-93. 57. Huang HH, Chen SJ, Chao TF, et al. Influenza vaccination and risk of respiratory failure in patients with chronic obstructive pulmonary disease: A nationwide population-based case-cohort study. J Microbiol Immunol Infect 2017. 58. Hurst JR, Vestbo J, Anzueto A, et al. Susceptibility to Exacerbation in Chronic Obstructive Pulmonary Disease. N engl J Med 2010;363:1128-38. 59. Chang HY, Weiner JP, Richards TM, et al. Validating the adapted Diabetes Complications Severity Index in claims data. Am J Manag Care 2012;18:721-6. 60. Young BA, Lin E, Korff MV, et al. Diabetes complications severity index and risk of mortality, hospitalization, and healthcare utilization. Am J Manag Care 2008;14:15-23. 61. Ishifuji T, Sando E, Kaneko N, et al. Recurrent pneumonia among Japanese adults: disease burden and risk factors. BMC Pulm Med 2017;17:12. 62. Torres A, Peetermans WE, Viegi G, Blasi F. Risk factors for community-acquired pneumonia in adults in Europe: a literature review. Thorax 2013;68:1057-65. 63. Martha G. Blackford, Mark L. Glover, Michael D. Reed. Lower Respiratory Tract Infections. In: Dipiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM, editors. Pharmacotherapy: A Pathophysiologic Approach 9 th ed. McGraw-Hill Companies; 2014. 64. Leung JM, Sin DD. Asthma-COPD overlap syndrome: pathogenesis, clinical features, and therapeutic targets. BMJ 2017;358:j3772. 65. Alvar A, Calverley PM, Celli B, et al. Characterisation of COPD heterogeneity in the ECLIPSE cohort. Respir Res 2010; 11: 122. 66. Soriano JB, Visick GT, Muellerova H, Payvandi N, Hansell AL. Patterns of comorbidities in newly diagnosed COPD and asthma in the primary care. Chest 2005;128:2099–107. 67. Deb S, Austin PC, Tu JV, et al. A Review of Propensity-Score Methods and Their Use in Cardiovascular Research. Can J Cardiol 2016;32:259-65. 68. Chen TB, Yiao SY, Sun Y, et al. Comorbidity and dementia: A nationwide survey in Taiwan. PLoS One 2017;12:e0175475. 69. Shantakumar S, Pwu RF, D'Silva L, et al. Burden of asthma and COPD overlap (ACO) in Taiwan: a nationwide population-based study. BMC Pulm Med 2018;18:16. 70. 衛生福利部國民健康署, 臺北醫學大學考科藍臺灣研究中心, 台灣胸腔暨重症加護醫學會, 臺灣實證醫學會. 台灣肺阻塞臨床照護指引. 衛生福利部國民健康署 2017. 71. Annane D. Corticosteroids and pneumonia: time to change practice. The Lancet 2015;385:1484-5. 72. Singanayagam A, Glanville N, Girkin JL, et al. Corticosteroid suppression of antiviral immunity increases bacterial loads and mucus production in COPD exacerbations. Nat Commun 2018;9:2229. 73. Janson C, Stratelis G, Miller-Larsson A, Harrison TW, Larsson K. Scientific rationale for the possible inhaled corticosteroid intraclass difference in the risk of pneumonia in COPD. Int J Chron Obstruct Pulmon Dis 2017;12:3055-64. 74. Mallia P, Footitt J, Sotero R, et al. Rhinovirus infection induces degradation of antimicrobial peptides and secondary bacterial infection in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2012;186:1117-24. 75. Dalby C, Polanowski T, Larsson T, Borgstrom L, Edsbacker S, Harrison TW. The bioavailability and airway clearance of the steroid component of budesonide/formoterol and salmeterol/fluticasone after inhaled administration in patients with COPD and healthy subjects: a randomized controlled trial. Respir Res 2009;10:104. 76. Provost KA, Smith M, Miller-Larsson A, et al. Bacterial regulation of pathogen recognition receptors in macrophages in COPD are differentially modifed by budesonide and fluticasone propionate ex vivo. Am J Respir Crit Care Med. 2016;193:A6335. 77. Heijink I, Jonker M, Postma D, et al. Differential effects of budesonide and fluticasone propionate on immune defense genes in human bronchial epithelium. Eur Respir J. 2015;46 (Suppl 59): PA2558. 78. Micromedex® 2.0, (electronic version). Truven Health Analytics, Greenwood Village, Colorado, USA. Available at: http://www.micromedexsolutions.com/micromedex2/librarian/ (cited: June 18, 2018). 79. Cazzola, M., Paggiaro, P., Palange, P. et al. Clin Drug Investig (2012) 32: 147. https://doi.org/10.2165/11630880-000000000-00000. 80. Pleasants RA, Hess DR. Aerosol Delivery Devices for Obstructive Lung Diseases. Respir Care 2018;63:708-33. 81. Ramadan WH, Sarkis AT. Patterns of use of dry powder inhalers versus pressurized metered-dose inhalers devices in adult patients with chronic obstructive pulmonary disease or asthma: An observational comparative study. Chron Respir Dis 2017;14:309-20. 82. Khassawneh BY, Al-Ali MK, Alzoubi KH, et al. Handling of inhaler devices in actual pulmonary practice: metered-dose inhaler versus dry powder inhalers. Respir Care 2008;53:324-8. 83. Aggarwal B, Gogtay J. Use of pressurized metered dose inhalers in patients with chronic obstructive pulmonary disease: review of evidence. Expert Rev Respir Med 2014;8:349-56. 84. Kozma CM, Dickson M, Phillips AL, Meletiche DM. Medication possession ratio: implications of using fixed and variable observation periods in assessing adherence with disease-modifying drugs in patients with multiple sclerosis. Patient Prefer Adherence 2013;7:509-16. 85. Jones R, Martin J, Thomas V, et al. The comparative effectiveness of initiating fluticasone/salmeterol combination therapy via pMDI versus DPI in reducing exacerbations and treatment escalation in COPD: a UK database study. Int J Chron Obstruct Pulmon Dis 2017;12:2445-54. 86. Kim MA, Noh CS, Chang YJ, et al. Asthma and COPD overlap syndrome is associated with increased risk of hospitalisation. Int J Tuberc Lung Dis 2015;19:864-9. 87. Bai JW, Mao B, Yang WL, Liang S, Lu HW, Xu JF. Asthma-COPD overlap syndrome showed more exacerbations however lower mortality than COPD. QJM 2017;pii:hcx005. doi:10.1093/qjmed/hcx005 pmid:28100824. 88. Rodrigo GJ, Neffen H. A systematic review with meta-analysis of fluticasone furoate/vilanterol combination for the treatment of stable COPD. Pulm Pharmacol Ther 2017;42:1-6. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79127 | - |
| dc.description.abstract | 吸入性類固醇(inhaled corticosteroids,ICS),常用於氣喘及慢性阻塞性肺病(chronic obstructive pulmonary disease,COPD)的症狀控制,然而在過去的臨床試驗及觀察性研究中卻發現COPD病人使用ICS可能會增加肺炎事件的發生風險,在不同的ICS藥品間也存在著此風險的差異,過往的文獻大多針對成份為budesonide、fluticasone propionate之ICS藥品進行探討,目前仍缺少有關於beclomethasone的使用與肺炎事件相關性的研究。本研究欲分析不同的ICS和長效β2致效劑(long-acting β2 agonist,縮寫為LABA)複方吸入劑在肺炎事件的發生風險差異,以及探討此風險是否存在劑量相關性,次要目的為分析不同的ICS/LABA在急性惡化的預防效果,以提供此類藥物完整的相對安全性及療效性資訊。本研究為回溯性世代研究,使用台灣全民健康保險資料庫2009-2015年之全人口檔,分析在2011/1/1-2015/06/30間新使用且連續開方至少兩次ICS/LABA藥品的COPD病人,依據不同成份、吸入器劑型之藥品使用分為四組,分別為budesonide乾粉吸入劑(dry-powder inhaler,DPI)、beclomethasone定量噴霧劑(metered-dose inhaler,MDI)、fluticasone propionate乾粉吸入劑及fluticasone propionate定量噴霧劑),在不同ICS成分但屬同一吸入器劑型之藥物間,以傾向分數1:1做配對,使用根據治療的分析方式(as-treated analysis)與Cox 迴歸模式分別分析嚴重肺炎事件、嚴重急性惡化事件之相對風險,。此外,更進一步計算ICS平均每日使用劑量,將其視為時間相依變項,分析追蹤期間內藥品使用的低、中、高劑量是否與肺炎事件存在劑量相關性。在次群組分析中則探討不同基礎特性之病人在風險上的是否有差異。最後,在敏感度分析中使用不同的研究世代、研究終點及追蹤時間的定義來檢驗結果的穩健性。本研究共納入42,393位ICS/LABA藥品新使用者,經過1:1傾向分數配對後,各組的基礎特性皆達到平衡。budesonide/formoterol DPI和fluticasone propionate/salmeterol DPI的組別中各有7,060位病人,分析結果發現budesonide/formoterol DPI相較於fluticasone propionate/salmeterol DPI有較低的嚴重肺炎事件與嚴重急性惡化事件發生風險,風險比([hazard ratio,HR])分別為0.82 (95% CI 0.70-0.98)及0.87 (95% CI 0.78-0.97)。另外,在beclomethasone/formoterol MDI和fluticasone propionate/salmeterol MDI的比較中各有5,282位病人,分析結果發現beclomethasone MDI相較於fluticasone propionate MDI有較低的嚴重肺炎事件與嚴重急性惡化事件發生風險,風險比分別為0.67 (95% CI 0.57-0.78)及0.76 (95% CI 0.68-0.85),而在校正ICS相等劑量(equivalent dose)後,嚴重肺炎事件之風險比提高至0.81 (95% CI 0.67-0.99),嚴重急性惡化事件之風險比提高至0.88 (95% CI 0.77-1.00)。在劑量相關性的分析中,僅發現fluticasone propionate MDI在高劑量(每日大於500 微克)的使用下會增加肺炎事件的發生,校正所有共變項後風險比為1.77 (95% CI 1.23-2.78)。次群組分析則發現在年齡較低或過去一年不曾有COPD急性惡化病史的病人中,beclomethasone/formoterol MDI與fluticasone propionate/salmeterol MDI的肺炎事件風險存在有更大的差異。敏感度分析皆呈現和主要分析一致的結果。COPD病人使用budesonide/formoterol DPI或beclomethasone/formoterol MDI,分別相較於fluticasone propionate/salmeterol DPI及MDI得到比較低之肺炎發生風險及急性惡化頻率。我們建議臨床上在為COPD病人選擇ICS/LABA藥品時,需要考慮不同ICS藥品的特性、病人特性及使用最低有效劑量,未來仍需要進一步的研究以確立ICS的使用造成肺炎事件之詳細機轉。 | zh_TW |
| dc.description.abstract | Inhaled corticosteroids (ICS) are commonly used in patients with asthma or chronic obstructive pulmonary disease (COPD) for symptom control. However, a number of randomized controlled trials and observational studies have shown that the use of ICS was associated with an increased risk of pneumonia in patients with COPD. The risk of pneumonia has been reported to be different across ICS, and most of the evidence was for comparison between budesonide and fluticasone propionate. There is a lack of evidence to reveal the risk-benefit profile of beclomethasone. This study aimed to compare the risk of pneumonia and effectiveness in preventing acute exacerbations (AE) among different ICS/long-acting β2 agonist (LABA) formulations in patients with COPD. In addition, we aimed to examine if a dose-response relationship exists between the daily dose of ICS and risk of pneumonia. We conducted a retrospective cohort study using claims data of the year 2009-2015 from the National Health Insurance program in Taiwan. We included COPD patients with new ICS/LABA use and having at least two continuous index ICS/LABA prescriptions between 2011/1/1-2015/6/30. Patients were classified into four treatment groups based on types of ICS and inhaler device, including budesonide dry-powder inhaler (DPI), beclomethasone metered-dose inhaler (MDI), fluticasone propionate DPI, and fluticasone propionate MDI. Treatment groups with the same inhaler device were compared. We used 1:1 propensity score matching to balance the patient characteristics, and the risk of severe pneumonia and severe acute exacerbation event was respectively compared by Cox regression models with an as-treated approach. We calculated time-dependent ICS average daily dose to examine if a dose-response relationship exists and to control for potential dose effect as needed. A series of subgroup analyses were conducted to investigate the differential risks in special sub-populations. Sensitivity analyses with different definitions of COPD cohort, outcome and follow-up period were performed to test the robustness of the results. A total of 42,393 COPD patients initiating ICS/LABA were identified. After matching, 7,368 patients were included in each of the budesonide/formoterol DPI and fluticasone propionate/salmeterol DPI comparison groups. A lower risk of severe pneumonia (hazard ratio [HR], 0.82, 95% CI 0.70-0.98) and severe AE (HR 0.87, 95% CI 0.78-0.97) was found in the budesonide/formoterol DPI users. Moreover, 5,282 pairs of patients were included in the beclomethasone/formoterol MDI and fluticasone propionate/salmeterol MDI comparison groups. Beclomethasone/formoterol users, compared to fluticasone/salmeterol MDI users, were less likely to experience severe pneumonia event (HR 0.67, 95% CI 0.57-0.78) and severe AE (HR 0.76, 95% CI 0.68-0.85). When adjusting for ICS equivalent daily dose, the effect difference between beclomethasone/formoterol and fluticasone/salmeterol MDI decreased but remained significant for severe pneumonia (HR 0.81, 95% CI 0.67-0.99]). Only fluticasone propionate/salmeterol MDI revealed a dose-response relationship—patients with higher average dose (>500 mcg/day) of fluticasone propionate in MDI, compared to low-dose users, were associated with a 77% increased risk of severe pneumonia (adjusted HR 1.77, 95% CI 1.23-2.78). In subgroups who were younger or those without severe AE in the past year, the lower risk of pneumonia with beclomethasone/formoterol MDI, compared to fluticasone propionate/salmeterol MDI, was even more compelling. All the sensitivity analyses showed consistent results. Both budesonide/formoterol DPI and beclomethasone/formoterol MDI, compared to fluticasone propionate/salmeterol in the same device, were associated with better effectiveness and safety outcomes in patients with COPD. It is suggested that physicians should consider the properties of different ICS and patient characteristics, and use the lowest effective dose when prescribing them for COPD treatment. Further research is needed to unravel the mechanism underlying the elevated risk of pneumonia with ICS use. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:46:10Z (GMT). No. of bitstreams: 1 ntu-107-R05451001-1.pdf: 1896522 bytes, checksum: 1126945d07769a1b58b76bd9bc21f94f (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 中文摘要 iii 英文摘要 v 目錄 vii 圖目錄 x 表目錄 xi 第一章 緒論 1 第二章 文獻回顧 2 第一節 慢性阻塞性肺病介紹 2 第二節 慢性阻塞性肺病急性惡化期的治療 6 第三節 慢性阻塞性肺病穩定期的治療 6 第四節 吸入性類固醇藥物 8 2.4.1 藥理作用及藥動特性 8 2.4.2 用於慢性阻塞性肺病之療效及治療地位 9 2.4.3 與肺炎發生風險之相關性 11 第三章 研究目的 17 第四章 研究材料與方法 18 第一節 研究材料 18 第二節 研究設計 19 4.2.1 研究架構 19 4.2.2 研究對象 21 4.2.3 藥品暴露之定義 24 4.2.4 追蹤時間 25 4.2.5 研究終點定義 27 4.2.6 共變項(covariates) 29 4.2.7 主要分析(main analysis) 34 4.2.8 次要分析(sub-analysis) 34 4.2.9 次分組分析(subgroup analysis) 34 4.2.10 敏感度分析(sensitivity analysis) 35 第三節 統計分析 36 4.3.1 描述性分析 36 4.3.2 組間基礎特性之校正 36 4.3.3 統計模型設計 37 4.3.4 統計軟體 37 第五章 研究結果 38 第一節 納入之研究對象 38 5.1.1篩選流程 38 5.1.2研究對象基礎特性 38 第二節 吸入性類固醇藥品的使用與肺炎事件之相關性 39 5.2.1 吸入性類固醇藥品使用劑量 39 5.2.2 肺炎事件之發生描述 39 5.2.3 Budesonide DPI與fluticasone propionate DPI之比較 40 5.2.4 Beclomethasone MDI與fluticasone propionate MDI之比較 40 5.2.5 吸入性類固醇使用劑量與肺炎之相關性 40 5.2.6 次群組分析 41 第三節 吸入性類固醇藥品的使用與急性惡化事件之相關性 41 5.3.1 Budesonide DPI與fluticasone propionate DPI之比較 41 5.3.2 Beclomethasone MDI與fluticasone propionate MDI之比較 41 5.3.3 次群組分析 42 第四節 敏感度分析 43 第五節 吸入器劑型與研究終點之相關性 44 第六章 討論 66 第一節 研究對象特性 66 6.1.1 研究對象基礎特性 66 6.1.2 慢性阻塞性肺病疾病嚴重度 66 6.1.3 嚴重肺炎事件發生率 67 第二節 吸入性類固醇之安全性與療效探討 67 6.2.1 吸入性類固醇每日平均使用劑量之分佈與校正 67 6.2.2吸入性類固醇藥品造成肺炎事件之相關機轉 68 6.2.3 吸入性類固醇複方吸入劑於急性惡化預防效果之差異 70 6.2.4 次群組分析結果討論 71 6.2.5 不同吸入器劑型於研究終點的影響 72 第三節 研究優勢與限制 73 6.3.1 研究優勢 73 6.3.2 研究限制 74 第七章 結論與未來展望 76 參考文獻 77 附錄 83 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 急性惡化 | zh_TW |
| dc.subject | 健保資料庫 | zh_TW |
| dc.subject | 慢性阻塞性肺病 | zh_TW |
| dc.subject | 吸入性類固醇 | zh_TW |
| dc.subject | 肺炎 | zh_TW |
| dc.subject | pneumonia | en |
| dc.subject | acute exacerbation | en |
| dc.subject | National Health Insurance Research Database | en |
| dc.subject | inhaled corticosteroids | en |
| dc.subject | chronic obstructive pulmonary disease | en |
| dc.title | 慢性阻塞性肺病病人使用吸入性類固醇之相對安全性及效果研究 | zh_TW |
| dc.title | Comparative Safety and Effectiveness of Inhaled Corticosteroids in Patients with Chronic Obstructive Pulmonary Disease | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 106-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 東雅惠;簡榮彥;吳宗軒 | zh_TW |
| dc.contributor.oralexamcommittee | Yaa-Hui Dong;Jung-Yien Chien;Chung-Hsuen Wu | en |
| dc.subject.keyword | 慢性阻塞性肺病,吸入性類固醇,肺炎,急性惡化,健保資料庫, | zh_TW |
| dc.subject.keyword | chronic obstructive pulmonary disease,inhaled corticosteroids,pneumonia,acute exacerbation,National Health Insurance Research Database, | en |
| dc.relation.page | 84 | - |
| dc.identifier.doi | 10.6342/NTU201802452 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2018-08-07 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床藥學研究所 | - |
| dc.date.embargo-lift | 2023-10-05 | - |
| 顯示於系所單位: | 臨床藥學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-2.pdf 未授權公開取用 | 1.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
