Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79117
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱浩傑(HAO-CHIEH CHIU)
dc.contributor.authorShih-Hsiu Chouen
dc.contributor.author周士修zh_TW
dc.date.accessioned2021-07-11T15:45:19Z-
dc.date.available2025-08-17
dc.date.copyright2020-09-10
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citation1. Leon-Sicairos, N., et al., Strategies of Intracellular Pathogens for Obtaining Iron from the Environment. Biomed Res Int, 2015. 2015: p. 476534.
2. Hybiske, K., et al., Exit strategies of intracellular pathogens. Nat Rev Microbiol, 2008. 6(2): p. 99-110.
3. Fredlund, J., et al., Cytoplasmic access by intracellular bacterial pathogens. Trends Microbiol, 2014. 22(3): p. 128-37.
4. Croxen, M.A., et al., Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol, 2010. 8(1): p. 26-38.
5. Chifiriuc, M.C., et al., Antibiotic Drug Delivery Systems for the Intracellular Targeting of Bacterial Pathogens. 2016.
6. Wickham, M.E., et al., Oral infection of mice with Salmonella enterica serovar Typhimurium causes meningitis and infection of the brain. BMC Infect Dis, 2007. 7: p. 65.
7. Haraga, A., et al., Salmonellae interplay with host cells. Nat Rev Microbiol, 2008. 6(1): p. 53-66.
8. Coburn, B., et al., Salmonella, the host and disease: a brief review. Immunol Cell Biol, 2007. 85(2): p. 112-8.
9. Garcia-del Portillo, F., et al., Role of acid tolerance response genes in Salmonella typhimurium virulence. Infect Immun, 1993. 61(10): p. 4489-92.
10. Selsted, M.E., et al., Enteric defensins: antibiotic peptide components of intestinal host defense. J Cell Biol, 1992. 118(4): p. 929-36.
11. Steele-Mortimer, O., et al., The Salmonella-containing vacuole: moving with the times. Curr Opin Microbiol, 2008. 11(1): p. 38-45.
12. Olarte, J., et al., Salmonella typhi resistant to chloramphenicol, ampicillin, and other antimicrobial agents: strains isolated during an extensive typhoid fever epidemic in Mexico. Antimicrob Agents Chemother, 1973. 4(6): p. 597-601.
13. Crump, J.A., et al., Global trends in typhoid and paratyphoid Fever. Clin Infect Dis, 2010. 50(2): p. 241-6.
14. Kieny, M.-P., et al., WHO publishes list of bacteria for which new antibiotics are urgently needed. 2017.
15. Lauderdale, T.L., et al., Multidrug resistance among different serotypes of clinical Salmonella isolates in Taiwan. Diagn Microbiol Infect Dis, 2006. 55(2): p. 149-55.
16. 衛生福利部疾病管制署, 2016年台灣沙門氏菌抗藥性監測報告. 2016.
17. Diacovich, L., et al., Bacterial manipulation of innate immunity to promote infection. Nat Rev Microbiol, 2010. 8(2): p. 117-28.
18. Deretic, V., et al., Autophagy in infection, inflammation and immunity. Nat Rev Immunol, 2013. 13(10): p. 722-37.
19. Hou, W., et al., Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis, 2013. 4: p. e966.
20. Galluzzi, L., et al., Molecular definitions of autophagy and related processes. EMBO J, 2017. 36(13): p. 1811-1836.
21. Sharma, V., et al., Selective Autophagy and Xenophagy in Infection and Disease. Front Cell Dev Biol, 2018. 6: p. 147.
22. Gutierrez, M.G., et al., Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell, 2004. 119(6): p. 753-66.
23. Birmingham, C.L., et al., Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J Biol Chem, 2006. 281(16): p. 11374-83.
24. Py, B.F., et al., Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection. Autophagy, 2007. 3(2): p. 117-25.
25. Kim, J., et al., AMPK activators: mechanisms of action and physiological activities. Exp Mol Med, 2016. 48: p. e224.
26. Olivier, S., et al., Promise and challenges for direct small molecule AMPK activators. Biochem Pharmacol, 2018. 153: p. 147-158.
27. Olivier, S., et al., Promise and challenges for direct small molecule AMPK activators. Biochem Pharmacol, 2018. 153: p. 147-158.
28. Kim, J., et al., AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol, 2011. 13(2): p. 132-41.
29. Hansen, M., et al., Autophagy as a promoter of longevity: insights from model organisms. Nat Rev Mol Cell Biol, 2018. 19(9): p. 579-593.
30. Losier, T.T., et al., AMPK Promotes Xenophagy through Priming of Autophagic Kinases upon Detection of Bacterial Outer Membrane Vesicles. Cell Reports, 2019. 26(8): p. 2150-+.
31. Cockerill, F.R., et al., Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Ninth Edition. 2012.
32. Ventola, C.L., et al., The antibiotic resistance crisis: part 1: causes and threats. P T, 2015. 40(4): p. 277-83.
33. Spellberg, B., et al., Trends in antimicrobial drug development: implications for the future. Clin Infect Dis, 2004. 38(9): p. 1279-86.
34. Tyers, M., et al., Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat Rev Microbiol, 2019. 17(3): p. 141-155.
35. Bah, A., et al., Macrophage Autophagy and Bacterial Infections. Front Immunol, 2017. 8: p. 1483.
36. Loos, B., et al., Defining and measuring autophagosome flux-concept and reality. Autophagy, 2014. 10(11): p. 2087-96.
37. Ogmundsdottir, M.H., et al., A short isoform of ATG7 fails to lipidate LC3/GABARAP. Sci Rep, 2018. 8(1): p. 14391.
38. Gordon, M.A., et al., Epidemics of invasive Salmonella enterica serovar enteritidis and S-enterica serovar typhimurium infection associated with multidrug resistance among adults and children in Malawi. Clinical Infectious Diseases, 2008. 46(7): p. 963-969.
39. Collaborators, G.B.D.N.-T.S.I.D., et al., The global burden of non-typhoidal salmonella invasive disease: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect Dis, 2019. 19(12): p. 1312-1324.
40. Kaufmann, S.H.E., et al., Host-directed therapies for bacterial and viral infections. Nat Rev Drug Discov, 2018. 17(1): p. 35-56.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79117-
dc.description.abstract細菌抗藥性已成為全球嚴重的公衛問題,抗生素治療下能有效控制宿主細胞外的細菌感染,但對於胞內細菌有限的治療效果會造成細菌反覆感染,且危及病患生命,因此找尋替代方法治療胞內細菌感染是非常迫切的。
自噬作用是一種細胞內循環系統且高度受控的降解過程,可被一系列細胞壓力所激活,包括營養缺乏、蛋白毒性聚集體和細胞內病原體感染。有研究指出,細胞一旦檢測到病原細菌,就會刺激自噬途徑的上游活化-單磷酸腺苷活化蛋白質激酶(AMPK),從而減少哺乳動物雷帕黴素靶蛋白(mTORC1)介導的自噬途徑的抑制。然而,此由AMPK激活的自噬作用並不伴隨著大量非專一自噬的誘導,而是能對於細胞內病原體具有選擇性的和特異性的自噬作用,又稱為異種吞噬。為了開發新型AMPK激活劑以誘導異種吞噬消除細胞內細菌,我們與藥物化學專家合作修改了AMPK激活劑尼洛替尼(nilotinib)的結構,並使用影像為基礎的高內涵篩選同時評估細胞毒性和尼洛替尼衍生物對抗胞內沙門氏菌的活性。到目前為止,我們發現了幾種比尼洛替尼活性更高的衍生物。我們還證實尼洛替尼衍生物對胞內具抗藥性的沙門氏菌也有效。另外,這些衍生物與臨床使用的抗生素合併使用下發揮更好的效果。目前以AMPK抑制劑不能逆轉衍生物對細胞內沙門氏菌的抑制作用。在經過衍生物處理的細胞中,我們的結果表明自噬通量被阻斷。 此外,衍生物的功效不受自噬相關蛋白減量的影響。這些結果表明,衍生物對抗細胞內細菌的機制可能不是透過自噬作用。
zh_TW
dc.description.abstractDiseases caused by pathogenic bacteria have always been a serious threat to public health worldwide. For control of bacterial infection, antibiotics have been used to eliminate bacteria for decades, but most of them are less effective on intracellular bacteria which are a major cause of reinfection. Therefore, finding an alternative approach to treat diseases caused by intracellular bacteria is urgently needed.
Autophagy, an intracellular recycling system, is a highly regulated degradative process which can be activated by a range of cellular stressors, including nutrient starvation, proteotoxic aggregates, and intracellular pathogen infection. Reports have showed that AMP-activated protein kinase (AMPK), an upstream activator of the autophagy pathway, is stimulated upon the detection of pathogenic bacteria, leading to remission of mTORC1-mediated repression of the autophagy pathway. This selective and specific autophagic degradation of intracellular pathogens is called xenophagy. To develop a new AMPK-activator for eradicating intracellular bacteria via induction of xenophagy, we worked with medicinal chemistry experts to modify the structure of an AMPK activator, nilotinib, and used an image-based high-content assay to simultaneously evaluate the cytotoxicity and anti-intracellular Salmonella activity of nilotinib derivatives. So far, we had discovered several derivatives with better activity than nilotinib. We also showed that the suppressive effect of nilotinib derivatives were effective against intracellular antibiotic-resistant Salmonella. Additionally, these derivatives had combined effects with antibiotics in clinic to exert better effect. Recently, the suppressive effects of derivatives on intracellular Salmonella cannot be reversed by AMPK inhibitors. In derivatives treated cells, our results show that the blockage of autophagy flux. Moreover, the efficacy of derivatives was not affected by autophagy-related protein knockdown. These findings show that the mechanism of derivatives against intracellular bacteria may not mediate by autophagy.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:45:19Z (GMT). No. of bitstreams: 1
U0001-1708202015463400.pdf: 3637498 bytes, checksum: 3e5cc648b58f90e20d34324f96ca9517 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iv
Contents vi
1. Introduction 1
1.1 The dilemma of intracellular pathogens clearance 2
1.2 Salmonella enterica serovar Typhimurium as the model of intracellular bacteria 2
1.3 The route of Salmonella infection 3
1.4 Prevalence of drug-resistant Salmonella 4
1.5 Host-directed strategy against intracellular bacteria 4
1.6 AMP-activated protein kinase (AMPK) signaling pathway is a favorable candidate for eliminating intracellular bacteria 5
1.7 Specific aims 6
2. Materials and Methods 8
2.1 Bacterial strains and culture conditions 9
2.2 Cell line and culture condition 9
2.3 Drugs and reagents 9
2.4 High content screening 10
2.5 Antimicrobial susceptibility assay 12
2.6 Western blot 13
2.7 Cell transfection 15
2.8 Statistical analysis 17
3. Results 18
3.1 Nilotinib displayed a suppressive effect on intracellular S. Typhimurium without apparent cytotoxicity to infected macrophage cells 19
3.2 The structure-activity relationship (SAR) of newly synthesized nilotinib derivatives 21
3.3 The anti-intracellular Salmonella activity of SCT-1101 and SCT-1104 is superior than that of nilotinib 22
3.4 The suppressive effect of SCT-1101 and SCT-1104 on S. Typhimurium in macrophage is dose-dependent 23
3.5 SCT-1101 and SCT-1104 are also active against intracellular antibiotic-resistant Salmonella 24
3.6 SCT-1101 and SCT-1104 had combined effect with the first-line antibiotics of salmonellosis 24
3.7 AMPK inhibitor could not reverse the suppression of SCT-1101 and SCT-1104 on intracellular Salmonella 26
3.8 SCT-1101 and SCT-1104 blockaded autophagy flux 26
3.9 Atg7 had no effect on the efficacy of SCT-1101 and SCT-1104 27
4. Discussion 29
5. Reference 33
6. Tables 39
Table 1. Cytotoxicity and antibacterial activities of nilotinib derivatives 40
Table 2. Structure-activity relationship (SAR) of tested derivatives 41
Table 3. Antibiotic susceptibility of Salmonella Typhimurium strains 45
7. Figures 46
Figure 1. Effects of metformin and AICAR on the intracellular Salmonella and infected RAW264.7 cells 48
Figure 2. Effects of nilotinib on infected cell and bacteria 49
Figure 3. Effects of SCT-1101 and SCT-1104 on intracellular Salmonella and infected RAW264.7 cells 51
Figure 4. The time-course effects of SCT-1101 and SCT-1104 on the intracellular Salmonella and infected cells 54
Figure 5. Antibacterial activity of SCT-1101 and SCT-1104 against antibiotic-resistant strains of S. Typhimurium 56
Figure 6. Antibacterial activity of SCT-1101 and SCT-1104 in combined with ciprofloxacin or cefixime 58
Figure 7. Assessment the anti-intracellular Salmonella activity and cytotoxicity of SCT-1101 and SCT-1104 in the presence of AMPK inhibitors 60
Figure 8. Evaluation of the autophagy flux in SCT-1101 or SCT-1104 treated RAW264.7 cell. 62
Figure 9. Anti-intracellular Salmonella activity and cytotoxicity of SCT-1101 and SCT-1104 on Atg7-knockdown cells 63
Figure 10. Proposed structure of new nilotinib derivatives 65
dc.language.isoen
dc.subject高內涵篩選zh_TW
dc.subject單磷酸腺苷活化蛋白質激酶zh_TW
dc.subject結構優化zh_TW
dc.subjectstructural optimizationen
dc.subjectAMPKen
dc.subjecthigh-content assayen
dc.title以酪氨酸激酶抑製劑為基礎去開發新穎可抗巨噬細胞中俱抗藥性的鼠傷寒沙門氏菌zh_TW
dc.titleRepurposing the Tyrosine Kinase Inhibitor to Develop Novel Antibacterial Agents against Drug-resistant Salmonella Typhimurium in Macrophagesen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.advisor-orcid邱浩傑(0000-0002-8800-8474)
dc.contributor.oralexamcommittee蘇伯琦(Po-Chi Soo),蕭崇瑋(Chung-Wai Shiau),張永祺(yung-chiy chang),陳振暐(Jenn-Wei Chen)
dc.subject.keyword單磷酸腺苷活化蛋白質激酶,高內涵篩選,結構優化,zh_TW
dc.subject.keywordAMPK,high-content assay,structural optimization,en
dc.relation.page65
dc.identifier.doi10.6342/NTU202003780
dc.rights.note有償授權
dc.date.accepted2020-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
dc.date.embargo-lift2025-08-17-
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
U0001-1708202015463400.pdf
  未授權公開取用
3.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved