Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 臨床藥學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79113
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林慧玲zh_TW
dc.contributor.advisorFe-Lin Lin Wuen
dc.contributor.author廖凱宇zh_TW
dc.contributor.authorKai-Yu Liaoen
dc.date.accessioned2021-07-11T15:44:58Z-
dc.date.available2024-02-28-
dc.date.copyright2018-10-11-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citation參考文獻
1. Martin P, DiMartini A, Feng S, Brown R, Jr., Fallon M. Evaluation for liver transplantation in adults: 2013 practice guideline by the American Association for the Study of Liver Diseases and the American Society of Transplantation. Hepatology. 2014;59(3):1144-1165.
2. Huang YY, Hsu CC, Chou CL, Loong CC, Wu MS, Chou YC. Trends in the use of maintenance immunosuppressive drugs among liver transplant recipients in Taiwan: a nationwide population-based study. Pharmacoepidemiol Drug Saf. 2016;25(6):661-667.
3. Malvezzi P, Rostaing L. The safety of calcineurin inhibitors for kidney-transplant patients. Expert Opin Drug Saf. 2015;14(10):1531-1546.
4. Vicari-Christensen M, Repper S, Basile S, Young D. Tacrolimus: review of pharmacokinetics, pharmacodynamics, and pharmacogenetics to facilitate practitioners' understanding and offer strategies for educating patients and promoting adherence. Prog Transplant. 2009;19(3):277-284.
5. Herzer K, Strassburg CP, Braun F, et al. Selection and use of immunosuppressive therapies after liver transplantation: current German practice. Clin Transplant. 2016;30(5):487-501.
6. Koch I, Weil R, Wolbold R, et al. Interindividual variability and tissue-specificity in the expression of cytochrome P450 3A mRNA. Drug Metab Dispos. 2002;30(10):1108-1114.
7. Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part I. Clin Pharmacokinet. 2010;49(3):141-175.
8. Elens L, Nieuweboer AJ, Clarke SJ, et al. Impact of POR*28 on the clinical pharmacokinetics of CYP3A phenotyping probes midazolam and erythromycin. Pharmacogenet Genomics. 2013;23(3):148-155.
9. Andrews LM, Riva N, de Winter BC, et al. Dosing algorithms for initiation of immunosuppressive drugs in solid organ transplant recipients. Expert Opin Drug Metab Toxicol. 2015;11(6):921-936.
10. Barbarino JM, Staatz CE, Venkataramanan R, Klein TE, Altman RB. PharmGKB summary: cyclosporine and tacrolimus pathways. Pharmacogenet Genomics. 2013;23(10):563-585.
11. Jin J, Wu LH, Wang WL, Yu SF, Yan S, Zheng SS. Impact of multidrug resistance 1 gene polymorphism on tacrolimus dose and concentration-to-dose ratio in Chinese liver transplantation recipients. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2005;22(6):616-620.
12. Yu S, Wu L, Jin J, et al. Influence of CYP3A5 Gene Polymorphisms of Donor Rather than Recipient to Tacrolimus Individual Dose Requirement in Liver Transplantation. Transplantation. 2006;81(1):46-51.
13. Bonhomme-Faivre L, Picard V, Saliba F, et al. Effect of the ABCB1 3435C>T polymorphism on tacrolimus concentrations and dosage requirements in liver transplant recipients. Am J Health Syst Pharm. 2009;66(18):1645-1651.
14. Hawwa AF, McKiernan PJ, Shields M, Millership JS, Collier PS, McElnay JC. Influence of ABCB1 polymorphisms and haplotypes on tacrolimus nephrotoxicity and dosage requirements in children with liver transplant. Br J Clin Pharmacol. 2009;68(3):413-421.
15. Muraki Y, Usui M, Isaji S, et al. Impact of CYP3A5 genotype of recipients as well as donors on the tacrolimus pharmacokinetics and infectious complications after living-donor liver transplantation for Japanese adult recipients. Ann Transplant. 2011;16(4):55-62.
16. Ji E, Choi L, Suh KS, Cho JY, Han N, Oh JM. Combinational effect of intestinal and hepatic CYP3A5 genotypes on tacrolimus pharmacokinetics in recipients of living donor liver transplantation. Transplantation. 2012;94(8):866-872.
17. Uesugi M, Kikuchi M, Shinke H, et al. Impact of cytochrome P450 3A5 polymorphism in graft livers on the frequency of acute cellular rejection in living-donor liver transplantation. Pharmacogenet Genomics. 2014;24(7):356-366.
18. Argudo A, Gonzalez de Aledo JM, Alia P, et al. Liver Transplant Patient Carriers of Polymorphism Cyp3a5*1 Donors May Need More Doses of Tacrolimus From the First Month After Transplantation. Transplantation proceedings. 2015;47(8):2388-2392.
19. Wang L, Liu LH, Tong WH, Wang MX, Lu SC. Effect of CYP3A5 gene polymorphisms on tacrolimus concentration/dosage ratio in adult liver transplant patients. Genet Mol Res. 2015;14(4):15148-15157.
20. Kato H, Usui M, Muraki Y, et al. Long-Term Influence of CYP3A5 Gene Polymorphism on Pharmacokinetics of Tacrolimus and Patient Outcome After Living Donor Liver Transplantation. Transplant Proc. 2016;48(4):1087-1094.
21. Yu X, Xie H, Wei B, et al. Association of MDR1 gene SNPs and haplotypes with the tacrolimus dose requirements in Han Chinese liver transplant recipients. PLoS One. 2011;6(11):e25933.
22. Durand P, Debray D, Kolaci M, et al. Tacrolimus dose requirement in pediatric liver transplantation: influence of CYP3A5 gene polymorphism. Pharmacogenomics. 2013;14(9):1017-1025.
23. Wei-lin W, Jing J, Shu-sen Z, et al. Tacrolimus dose requirement in relation to donor and recipient ABCB1 and CYP3A5 gene polymorphisms in Chinese liver transplant patients. Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society. 2006;12(5):775-780.
24. Provenzani A, Notarbartolo M, Labbozzetta M, et al. Influence of CYP3A5 and ABCB1 gene polymorphisms and other factors on tacrolimus dosing in Caucasian liver and kidney transplant patients. Int J Mol Med. 2011;28(6):1093-1102.
25. Gomez-Bravo MA, Salcedo M, Fondevila C, et al. Impact of donor and recipient CYP3A5 and ABCB1 genetic polymorphisms on tacrolimus dosage requirements and rejection in Caucasian Spanish liver transplant patients. J Clin Pharmacol. 2013;53(11):1146-1154.
26. Uesugi M, Hosokawa M, Shinke H, et al. Influence of cytochrome P450 (CYP) 3A4*1G polymorphism on the pharmacokinetics of tacrolimus, probability of acute cellular rejection, and mRNA expression level of CYP3A5 rather than CYP3A4 in living-donor liver transplant patients. Biol Pharm Bull. 2013;36(11):1814-1821.
27. Chen YK, Han LZ, Xue F, et al. Personalized tacrolimus dose requirement by CYP3A5 but not ABCB1 or ACE genotyping in both recipient and donor after pediatric liver transplantation. PLoS One. 2014;9(10):e109464.
28. Debette-Gratien M, Woillard JB, Picard N, et al. Influence of Donor and Recipient CYP3A4, CYP3A5, and ABCB1 Genotypes on Clinical Outcomes and Nephrotoxicity in Liver Transplant Recipients. Transplantation. 2016;100(10):2129-2137.
29. Miyata Y, Akamatsu N, Sugawara Y, et al. Pharmacokinetics of a Once-Daily Dose of Tacrolimus Early After Liver Transplantation: With Special Reference to CYP3A5 and ABCB1 Single Nucleotide Polymorphisms. Ann Transplant. 2016;21:491-499.
30. Goto M, Masuda S, Kiuchi T, et al. CYP3A5*1-carrying graft liver reduces the concentration/oral dose ratio of tacrolimus in recipients of living-donor liver transplantation. Pharmacogenetics. 2004;14(7):471-478.
31. Rahsaz M, Azarpira N, Nikeghbalian S, et al. Association Between Tacrolimus Concentration and Genetic Polymorphisms of CYP3A5 and ABCB1 During the Early Stage After Liver Transplant in an Iranian Population. Experimental and Clinical Transplantation. 2012;10(1):24-29.
32. Monostory K, Toth K, Kiss A, et al. Personalizing initial calcineurin inhibitor dosing by adjusting to donor CYP3A-status in liver transplant patients. Br J Clin Pharmacol. 2015;80(6):1429-1437.
33. Fathy M, Kamal M, Mohy A, Nabil A. Impact of CYP3A5 and MDR-1 gene polymorphisms on the dose and level of tacrolimus among living-donor liver transplanted patients: single center experience. Biomarkers. 2016;21(4):335-341.
34. Liu J, Ouyang Y, Chen D, et al. Donor and recipient P450 gene polymorphisms influence individual pharmacological effects of tacrolimus in Chinese liver transplantation patients. Int Immunopharmacol. 2018;57:18-24.
35. de Wildt SN, van Schaik RH, Soldin OP, et al. The interactions of age, genetics, and disease severity on tacrolimus dosing requirements after pediatric kidney and liver transplantation. Eur J Clin Pharmacol. 2011;67(12):1231-1241.
36. Shi Y, Li Y, Tang J, et al. Influence of CYP3A4, CYP3A5 and MDR-1 polymorphisms on tacrolimus pharmacokinetics and early renal dysfunction in liver transplant recipients. Gene. 2013;512(2):226-231.
37. Elens L, Capron A, Kerckhove VV, et al. 1199G>A and 2677G>T/A polymorphisms of ABCB1 independently affect tacrolimus concentration in hepatic tissue after liver transplantation. Pharmacogenet Genomics. 2007;17(10):873-883.
38. Sun JY, Wang XG, Zou YG, et al. [Association of CYP3A5 and MDR1 genetic polymorphisms with the blood concentration of tacrolimus in Chinese liver and renal transplant recipients]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2013;44(4):573-577.
39. Wen PH, Lu CL, Strong C, et al. Demographic and Urbanization Disparities of Liver Transplantation in Taiwan. Int J Environ Res Public Health. 2018;15(2).
40. Moini M, Schilsky ML, Tichy EM. Review on immunosuppression in liver transplantation. World J Hepatol. 2015;7(10):1355-1368.
41. Ban YH, Park SR, Yoon YJ. The biosynthetic pathway of FK506 and its engineering: from past achievements to future prospects. J Ind Microbiol Biotechnol. 2016;43(2-3):389-400.
42. Provenzani A, Santeusanio A, Mathis E, et al. Pharmacogenetic considerations for optimizing tacrolimus dosing in liver and kidney transplant patients. World J Gastroenterol. 2013;19(48):9156-9173.
43. Kapturczak MH, Meier-Kriesche HU, Kaplan B. Pharmacology of calcineurin antagonists. Transplant Proc. 2004;36(2 Suppl):25S-32S.
44. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2004;43(10):623-653.
45. Ericzon BG, Varo E, Trunecka P, et al. Pharmacokinetics of prolonged-release tacrolimus versus immediate-release tacrolimus in de novo liver transplantation: A randomized phase III substudy. Clin Transplant. 2017;31(6).
46. Posadas Salas MA, Srinivas TR. Update on the clinical utility of once-daily tacrolimus in the management of transplantation. Drug Des Devel Ther. 2014;8:1183-1194.
47. Shuker N, van Gelder T, Hesselink DA. Intra-patient variability in tacrolimus exposure: causes, consequences for clinical management. Transplant Rev (Orlando). 2015;29(2):78-84.
48. Liu JO. Calmodulin-dependent phosphatase, kinases, and transcriptional corepressors involved in T-cell activation. Immunol Rev. 2009;228(1):184-198.
49. Hesselink DA, Bouamar R, Elens L, van Schaik RH, van Gelder T. The role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2014;53(2):123-139.
50. Naesens M, Kuypers DR, Sarwal M. Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol. 2009;4(2):481-508.
51. Pimentel AL, Bauer AC, Camargo JL. Renal posttransplantation diabetes mellitus: An overview. Clin Chim Acta. 2015;450:327-332.
52. Yates CJ, Fourlanos S, Hjelmesaeth J, Colman PG, Cohney SJ. New-onset diabetes after kidney transplantation-changes and challenges. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2012;12(4):820-828.
53. Choudhary NS, Saigal S, Shukla R, Kotecha H, Saraf N, Soin AS. Current status of immunosuppression in liver transplantation. J Clin Exp Hepatol. 2013;3(2):150-158.
54. van Gelder T. Drug interactions with tacrolimus. Drug Saf. 2002;25(10):707-712.
55. Patel N, Cook A, Greenhalgh E, Rech MA, Rusinak J, Heinrich L. Overview of extended release tacrolimus in solid organ transplantation. World journal of transplantation. 2016;6(1):144-154.
56. Venkataramanan R, Swaminathan A, Prasad T, et al. Clinical pharmacokinetics of tacrolimus. Clin Pharmacokinet. 1995;29(6):404-430.
57. Iwasaki K. Metabolism of tacrolimus (FK506) and recent topics in clinical pharmacokinetics. Drug Metab Pharmacokinet. 2007;22(5):328-335.
58. Knops N, Levtchenko E, van den Heuvel B, Kuypers D. From gut to kidney: transporting and metabolizing calcineurin-inhibitors in solid organ transplantation. Int J Pharm. 2013;452(1-2):14-35.
59. Hesselink DA, van Schaik RH, van der Heiden IP, et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther. 2003;74(3):245-254.
60. Hesselink DA, van Gelder T, van Schaik RH, et al. Population pharmacokinetics of cyclosporine in kidney and heart transplant recipients and the influence of ethnicity and genetic polymorphisms in the MDR-1, CYP3A4, and CYP3A5 genes. Clin Pharmacol Ther. 2004;76(6):545-556.
61. Kuypers DR, de Jonge H, Naesens M, Lerut E, Verbeke K, Vanrenterghem Y. CYP3A5 and CYP3A4 but not MDR1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients. Clin Pharmacol Ther. 2007;82(6):711-725.
62. Li CJ, Li L, Lin L, et al. Impact of the CYP3A5, CYP3A4, COMT, IL-10 and POR genetic polymorphisms on tacrolimus metabolism in Chinese renal transplant recipients. PLoS One. 2014;9(1):e86206.
63. Zuo XC, Ng CM, Barrett JS, et al. Effects of CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in Chinese adult renal transplant recipients: a population pharmacokinetic analysis. Pharmacogenet Genomics. 2013;23(5):251-261.
64. Tamashiro EY, Felipe CR, Genvigir FDV, et al. Influence of CYP3A4 and CYP3A5 polymorphisms on tacrolimus and sirolimus exposure in stable kidney transplant recipients. Drug Metab Pers Ther. 2017;32(2):89-95.
65. Fukushima-Uesaka H, Saito Y, Watanabe H, et al. Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population. Hum Mutat. 2004;23(1):100.
66. Shi XJ, Geng F, Jiao Z, Cui XY, Qiu XY, Zhong MK. Association of ABCB1, CYP3A4*18B and CYP3A5*3 genotypes with the pharmacokinetics of tacrolimus in healthy Chinese subjects: a population pharmacokinetic analysis. J Clin Pharm Ther. 2011;36(5):614-624.
67. Li DY, Teng RC, Zhu HJ, Fang Y. CYP3A4/5 polymorphisms affect the blood level of cyclosporine and tacrolimus in Chinese renal transplant recipients. Int J Clin Pharmacol Ther. 2013;51(6):466-474.
68. Lin JH, Yamazaki M. Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet. 2003;42(1):59-98.
69. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A. 1987;84(21):7735-7738.
70. Yang TH, Chen YK, Xue F, et al. Influence of CYP3A5 genotypes on tacrolimus dose requirement: age and its pharmacological interaction with ABCB1 genetics in the Chinese paediatric liver transplantation. Int J Clin Pract Suppl. 2015(183):53-62.
71. Elens L, Sombogaard F, Hesselink DA, van Schaik RH, van Gelder T. Single-nucleotide polymorphisms in P450 oxidoreductase and peroxisome proliferator-activated receptor-alpha are associated with the development of new-onset diabetes after transplantation in kidney transplant recipients treated with tacrolimus. Pharmacogenet Genomics. 2013;23(12):649-657.
72. de Jonge H, Metalidis C, Naesens M, Lambrechts D, Kuypers DR. The P450 oxidoreductase *28 SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipients. Pharmacogenomics. 2011;12(9):1281-1291.
73. Zhang JJ, Liu SB, Xue L, Ding XL, Zhang H, Miao LY. The genetic polymorphisms of POR*28 and CYP3A5*3 significantly influence the pharmacokinetics of tacrolimus in Chinese renal transplant recipients. Int J Clin Pharmacol Ther. 2015;53(9):728-736.
74. Jannot AS, Vuillemin X, Etienne I, et al. A Lack of Significant Effect of POR*28 Allelic Variant on Tacrolimus Exposure in Kidney Transplant Recipients. Ther Drug Monit. 2016;38(2):223-229.
75. Madsen MJ, Bergmann TK, Brosen K, Thiesson HC. The Pharmacogenetics of Tacrolimus in Corticosteroid-Sparse Pediatric and Adult Kidney Transplant Recipients. Drugs R D. 2017;17(2):279-286.
76. Kiuchi T, Kasahara M, Uryuhara K, et al. Impact of graft size mismatching on graft prognosis in liver transplantation from living donors. Transplantation. 1999;67(2):321-327.
77. Haga J, Shimazu M, Wakabayashi G, et al. Liver regeneration in donors and adult recipients after living donor liver transplantation. Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society. 2008;14(12):1718-1724.
78. Chen D, Guo F, Shi J, et al. Association of hemoglobin levels, CYP3A5, and NR1I3 gene polymorphisms with tacrolimus pharmacokinetics in liver transplant patients. Drug Metab Pharmacokinet. 2014;29(3):249-253.
79. Gerard C, Stocco J, Hulin A, et al. Determination of the most influential sources of variability in tacrolimus trough blood concentrations in adult liver transplant recipients: a bottom-up approach. AAPS J. 2014;16(3):379-391.
80. Rojas LE, Herrero MJ, Boso V, et al. Meta-analysis and systematic review of the effect of the donor and recipient CYP3A5 6986A>G genotype on tacrolimus dose requirements in liver transplantation. Pharmacogenet Genomics. 2013;23(10):509-517.
81. Tang HL, Xie HG, Yao Y, Hu YF. Lower tacrolimus daily dose requirements and acute rejection rates in the CYP3A5 nonexpressers than expressers. Pharmacogenet Genomics. 2011;21(11):713-720.
82. Buendia JA, Bramuglia G, Staatz CE. Effects of combinational CYP3A5 6986A>G polymorphism in graft liver and native intestine on the pharmacokinetics of tacrolimus in liver transplant patients: a meta-analysis. Ther Drug Monit. 2014;36(4):442-447.
83. Li D, Zhu JY, Gao J, Wang X, Lou YQ, Zhang GL. Polymorphisms of tumor necrosis factor-alpha, interleukin-10, cytochrome P450 3A5 and ABCB1 in Chinese liver transplant patients treated with immunosuppressant tacrolimus. Clin Chim Acta. 2007;383(1-2):133-139.
84. Zhu L, Yang J, Zhang Y, Jing Y, Zhang Y, Li G. Effects of CYP3A5 genotypes, ABCB1 C3435T and G2677T/A polymorphism on pharmacokinetics of Tacrolimus in Chinese adult liver transplant patients. Xenobiotica. 2015;45(9):840-846.
85. Liu YY, Li C, Cui Z, et al. The effect of ABCB1 C3435T polymorphism on pharmacokinetics of tacrolimus in liver transplantation: a meta-analysis. Gene. 2013;531(2):476-488.
86. Coilly A, Calmus Y, Chermak F, et al. Once-daily prolonged release tacrolimus in liver transplantation: Experts' literature review and recommendations. Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society. 2015;21(10):1312-1321.
87. Fischer L, Trunecka P, Gridelli B, et al. Pharmacokinetics for once-daily versus twice-daily tacrolimus formulations in de novo liver transplantation: a randomized, open-label trial. Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society. 2011;17(2):167-177.
88. Staatz CE, Tett SE. Clinical Pharmacokinetics of Once-Daily Tacrolimus in Solid-Organ Transplant Patients. Clin Pharmacokinet. 2015;54(10):993-1025.
89. Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev. 1997;29(1-2):413-580.
90. Anglicheau D, Flamant M, Schlageter MH, et al. Pharmacokinetic interaction between corticosteroids and tacrolimus after renal transplantation. Nephrol Dial Transplant. 2003;18(11):2409-2414.
91. Kim JS, Aviles DH, Silverstein DM, Leblanc PL, Matti Vehaskari V. Effect of age, ethnicity, and glucocorticoid use on tacrolimus pharmacokinetics in pediatric renal transplant patients. Pediatr Transplant. 2005;9(2):162-169.
92. Ferraris JR, Argibay PF, Costa L, et al. Influence of CYP3A5 polymorphism on tacrolimus maintenance doses and serum levels after renal transplantation: age dependency and pharmacological interaction with steroids. Pediatr Transplant. 2011;15(5):525-532.
93. Pichard L, Fabre I, Fabre G, et al. Cyclosporin A drug interactions. Screening for inducers and inhibitors of cytochrome P-450 (cyclosporin A oxidase) in primary cultures of human hepatocytes and in liver microsomes. Drug Metab Dispos. 1990;18(5):595-606.
94. Pichard L, Fabre I, Daujat M, Domergue J, Joyeux H, Maurel P. Effect of corticosteroids on the expression of cytochromes P450 and on cyclosporin A oxidase activity in primary cultures of human hepatocytes. Mol Pharmacol. 1992;41(6):1047-1055.
95. Picard N, Cresteil T, Premaud A, Marquet P. Characterization of a phase 1 metabolite of mycophenolic acid produced by CYP3A4/5. Ther Drug Monit. 2004;26(6):600-608.
96. Kim JH, Han N, Kim MG, et al. Increased Exposure of Tacrolimus by Co-administered Mycophenolate Mofetil: Population Pharmacokinetic Analysis in Healthy Volunteers. Sci Rep. 2018;8(1):1687.
97. Kagaya H, Miura M, Satoh S, et al. No pharmacokinetic interactions between mycophenolic acid and tacrolimus in renal transplant recipients. J Clin Pharm Ther. 2008;33(2):193-201.
98. Peloso LJ, Faria PN, Bossolani MV, de Oliveira HB, Ferreira Filho SR. The serum concentration of tacrolimus after ingesting omeprazole: a pilot study. Transplantation. 2014;98(6):e63-64.
99. Hosohata K, Masuda S, Ogura Y, et al. Interaction between tacrolimus and lansoprazole, but not rabeprazole in living-donor liver transplant patients with defects of CYP2C19 and CYP3A5. Drug Metab Pharmacokinet. 2008;23(2):134-138.
100. Hosohata K, Masuda S, Yonezawa A, et al. Absence of influence of concomitant administration of rabeprazole on the pharmacokinetics of tacrolimus in adult living-donor liver transplant patients: a case-control study. Drug Metab Pharmacokinet. 2009;24(5):458-463.
101. Moreau C, Debray D, Loriot MA, Taburet AM, Furlan V. Interaction between tacrolimus and omeprazole in a pediatric liver transplant recipient. Transplantation. 2006;81(3):487-488.
102. Lorf T, Ramadori G, Ringe B, Schworer H. The effect of pantoprazole on tacrolimus and cyclosporin A blood concentration in transplant recipients. Eur J Clin Pharmacol. 2000;56(5):439-440.
103. Oteo I, Lukas JC, Leal N, et al. Tacrolimus pharmacokinetics in the early post-liver transplantation period and clinical applicability via Bayesian prediction. Eur J Clin Pharmacol. 2013;69(1):65-74.
104. Antignac M, Hulot JS, Boleslawski E, et al. Population pharmacokinetics of tacrolimus in full liver transplant patients: modelling of the post-operative clearance. Eur J Clin Pharmacol. 2005;61(5-6):409-416.
105. Hendijani F, Azarpira N, Kaviani M. Effect of CYP3A5*1 expression on Tacrolimus required dose after liver transplantation: A systematic review and meta-analysis. Clin Transplant. 2018:e13306.
106. Birdwell KA, Decker B, Barbarino JM, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 Genotype and Tacrolimus Dosing. Clin Pharmacol Ther. 2015;98(1):19-24.
107. Fukudo M, Yano I, Yoshimura A, et al. Impact of MDR1 and CYP3A5 on the oral clearance of tacrolimus and tacrolimus-related renal dysfunction in adult living-donor liver transplant patients. Pharmacogenet Genomics. 2008;18(5):413-423.
108. Sherry ST, Ward MH, Kholodov M, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308-311.
109. Calvo PL, Serpe L, Brunati A, et al. Donor CYP3A5 genotype influences tacrolimus disposition on the first day after paediatric liver transplantation. Br J Clin Pharmacol. 2017;83(6):1252-1262.
110. Lampen A, Christians U, Guengerich FP, et al. Metabolism of the immunosuppressant tacrolimus in the small intestine: cytochrome P450, drug interactions, and interindividual variability. Drug Metab Dispos. 1995;23(12):1315-1324.
111. Christians U, Schmidt G, Bader A, et al. Identification of drugs inhibiting the in vitro metabolism of tacrolimus by human liver microsomes. Br J Clin Pharmacol. 1996;41(3):187-190.
112. Ibrahim RB, Abella EM, Chandrasekar PH. Tacrolimus-clarithromycin interaction in a patient receiving bone marrow transplantation. Ann Pharmacother. 2002;36(12):1971-1972.
113. Wolter K, Wagner K, Philipp T, Fritschka E. Interaction between FK 506 and clarithromycin in a renal transplant patient. Eur J Clin Pharmacol. 1994;47(2):207-208.
114. Furlan V, Perello L, Jacquemin E, Debray D, Taburet AM. Interactions between FK506 and rifampicin or erythromycin in pediatric liver recipients. Transplantation. 1995;59(8):1217-1218.
115. Shaeffer MS, Collier D, Sorrell MF. Interaction between FK506 and erythromycin. Ann Pharmacother. 1994;28(2):280-281.
116. Iwasaki K, Matsuda H, Nagase K, Shiraga T, Tokuma Y, Uchida K. Effects of twenty-three drugs on the metabolism of FK506 by human liver microsomes. Res Commun Chem Pathol Pharmacol. 1993;82(2):209-216.
117. Matsuda H, Iwasaki K, Shiraga T, Tozuka Z, Hata T, Guengerich FP. Interactions of FK506 (tacrolimus) with clinically important drugs. Res Commun Mol Pathol Pharmacol. 1996;91(1):57-64.
118. Prasad TN, Stiff DD, Subbotina N, et al. FK 506 (Tacrolimus) metabolism by rat liver microsomes and its inhibition by other drugs. Res Commun Chem Pathol Pharmacol. 1994;84(1):35-46.
119. Herzig K, Johnson DW. Marked elevation of blood cyclosporin and tacrolimus levels due to concurrent metronidazole therapy. Nephrol Dial Transplant. 1999;14(2):521-523.
120. Page RL, 2nd, Klem PM, Rogers C. Potential elevation of tacrolimus trough concentrations with concomitant metronidazole therapy. Ann Pharmacother. 2005;39(6):1109-1113.
121. Roedler R, Neuhauser MM, Penzak SR. Does metronidazole interact with CYP3A substrates by inhibiting their metabolism through this metabolic pathway? Or should other mechanisms be considered? Ann Pharmacother. 2007;41(4):653-658.
122. Mieles L, Venkataramanan R, Yokoyama I, Warty VJ, Starzl TE. Interaction between FK506 and clotrimazole in a liver transplant recipient. Transplantation. 1991;52(6):1086-1087.
123. Assan R, Fredj G, Larger E, Feutren G, Bismuth H. FK 506/fluconazole interaction enhances FK 506 nephrotoxicity. Diabete Metab. 1994;20(1):49-52.
124. Osowski CL, Dix SP, Lin LS, Mullins RE, Geller RB, Wingard JR. Evaluation of the drug interaction between intravenous high-dose fluconazole and cyclosporine or tacrolimus in bone marrow transplant patients. Transplantation. 1996;61(8):1268-1272.
125. Toda F, Tanabe K, Ito S, et al. Tacrolimus trough level adjustment after administration of fluconazole to kidney recipients. Transplant Proc. 2002;34(5):1733-1735.
126. Capone D, Gentile A, Imperatore P, Palmiero G, Basile V. Effects of itraconazole on tacrolimus blood concentrations in a renal transplant recipient. Ann Pharmacother. 1999;33(10):1124-1125.
127. Furlan V, Parquin F, Penaud JF, et al. Interaction between tacrolimus and itraconazole in a heart-lung transplant recipient. Transplant Proc. 1998;30(1):187-188.
128. Floren LC, Bekersky I, Benet LZ, et al. Tacrolimus oral bioavailability doubles with coadministration of ketoconazole. Clin Pharmacol Ther. 1997;62(1):41-49.
129. Tuteja S, Alloway RR, Johnson JA, Gaber AO. The effect of gut metabolism on tacrolimus bioavailability in renal transplant recipients. Transplantation. 2001;71(9):1303-1307.
130. Pai MP, Allen S. Voriconazole inhibition of tacrolimus metabolism. Clin Infect Dis. 2003;36(8):1089-1091.
131. Venkataramanan R, Zang S, Gayowski T, Singh N. Voriconazole inhibition of the metabolism of tacrolimus in a liver transplant recipient and in human liver microsomes. Antimicrob Agents Chemother. 2002;46(9):3091-3093.
132. Berge M, Chevalier P, Benammar M, et al. Safe management of tacrolimus together with posaconazole in lung transplant patients with cystic fibrosis. Ther Drug Monit. 2009;31(3):396-399.
133. De Lima JJ, Xue H, Coburn L, et al. Effects of FK506 in rat and human resistance arteries. Kidney international. 1999;55(4):1518-1527.
134. Homma M, Itagaki F, Yuzawa K, Fukao K, Kohda Y. Effects of lansoprazole and rabeprazole on tacrolimus blood concentration: case of a renal transplant recipient with CYP2C19 gene mutation. Transplantation. 2002;73(2):303-304.
135. Itagaki F, Homma M, Yuzawa K, Fukao K, Kohda Y. Drug interaction of tacrolimus and proton pump inhibitors in renal transplant recipients with CYP2C19 gene mutation. Transplant Proc. 2002;34(7):2777-2778.
136. Furuta S, Kamada E, Suzuki T, et al. Inhibition of drug metabolism in human liver microsomes by nizatidine, cimetidine and omeprazole. Xenobiotica. 2001;31(1):1-10.
137. Regazzi MB, Iacona I, Alessiani M, et al. Interaction between FK 506 and diltiazem in an animal model. Transplant Proc. 1996;28(2):1017-1018.
138. Tada H, Yanagiwara S, Ito K, Suzuki T. Role of diltiazem on tacrolimus pharmacokinetics in tacrolimus-induced nephrotoxic rats. Pharmacol Toxicol. 1999;84(6):241-246.
139. Hebert MF, Lam AY. Diltiazem increases tacrolimus concentrations. Ann Pharmacother. 1999;33(6):680-682.
140. Hooper DK, Fukuda T, Gardiner R, et al. Risk of tacrolimus toxicity in CYP3A5 nonexpressors treated with intravenous nicardipine after kidney transplantation. Transplantation. 2012;93(8):806-812.
141. Hurst AL, Clark N, Carpenter TC, Sundaram SS, Reiter PD. Supra-therapeutic tacrolimus concentrations associated with concomitant nicardipine in pediatric liver transplant recipients. Pediatr Transplant. 2015;19(4):E83-87.
142. Olyaei AJ, deMattos AM, Norman DJ, Bennett WM. Interaction between tacrolimus and nefazodone in a stable renal transplant recipient. Pharmacotherapy. 1998;18(6):1356-1359.
143. Boubenider S, Vincent I, Lambotte O, et al. Interaction between theophylline and tacrolimus in a renal transplant patient. Nephrol Dial Transplant. 2000;15(7):1066-1068.
144. Sheikh AM, Wolf DC, Lebovics E, Goldberg R, Horowitz HW. Concomitant human immunodeficiency virus protease inhibitor therapy markedly reduces tacrolimus metabolism and increases blood levels. Transplantation. 1999;68(2):307-309.
145. Schvarcz R, Rudbeck G, Soderdahl G, Stahle L. Interaction between nelfinavir and tacrolimus after orthoptic liver transplantation in a patient coinfected with HIV and hepatitis C virus (HCV). Transplantation. 2000;69(10):2194-2195.
146. Jain AK, Venkataramanan R, Shapiro R, et al. Interaction between tacrolimus and antiretroviral agents in human immunodeficiency virus-positive liver and kidney transplantation patients. Transplant Proc. 2002;34(5):1540-1541.
147. van de Plas A, Dackus J, Christiaans MH, Stolk LM, van Hooff JP, Neef C. A pilot study on sublingual administration of tacrolimus. Transpl Int. 2009;22(3):358-359.
148. Seifeldin RA, Marcos-Alvarez A, Gordon FD, Lewis WD, Jenkins RL. Nifedipine interaction with tacrolimus in liver transplant recipients. Ann Pharmacother. 1997;31(5):571-575.
149. Zuo XC, Zhou YN, Zhang BK, et al. Effect of CYP3A5*3 polymorphism on pharmacokinetic drug interaction between tacrolimus and amlodipine. Drug metabolism and pharmacokinetics. 2013;28(5):398-405.
150. Zhao W, Baudouin V, Fakhoury M, Storme T, Deschenes G, Jacqz-Aigrain E. Pharmacokinetic interaction between tacrolimus and amlodipine in a renal transplant child. Transplantation. 2012;93(7):e29-30.
151. Mathis AS, Shah N, Knipp GT, Friedman GS. Interaction of chloramphenicol and the calcineurin inhibitors in renal transplant recipients. Transpl Infect Dis. 2002;4(3):169-174.
152. Schulman SL, Shaw LM, Jabs K, Leonard MB, Brayman KL. Interaction between tacrolimus and chloramphenicol in a renal transplant recipient. Transplantation. 1998;65(10):1397-1398.
153. Mignat C. Clinically significant drug interactions with new immunosuppressive agents. Drug Saf. 1997;16(4):267-278.
154. Zhou SF, Xue CC, Yu XQ, Li C, Wang G. Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring. Ther Drug Monit. 2007;29(6):687-710.
155. Finch CK, Chrisman CR, Baciewicz AM, Self TH. Rifampin and rifabutin drug interactions: an update. Arch Intern Med. 2002;162(9):985-992.
156. Hebert MF, Fisher RM, Marsh CL, Dressler D, Bekersky I. Effects of rifampin on tacrolimus pharmacokinetics in healthy volunteers. J Clin Pharmacol. 1999;39(1):91-96.
157. Kiuchi T, Tanaka K, Inomata Y, et al. Experience of tacrolimus-based immunosuppression in living-related liver transplantation complicated with graft tuberculosis: interaction with rifampicin and side effects. Transplant Proc. 1996;28(6):3171-3172.
158. Chenhsu RY, Loong CC, Chou MH, Lin MF, Yang WC. Renal allograft dysfunction associated with rifampin-tacrolimus interaction. Ann Pharmacother. 2000;34(1):27-31.
159. Bhaloo S, Prasad GV. Severe reduction in tacrolimus levels with rifampin despite multiple cytochrome P450 inhibitors: a case report. Transplant Proc. 2003;35(7):2449-2451.
160. Buendia JA, Otamendi E, Kravetz MC, et al. Combinational Effect of CYP3A5 and MDR-1 Polymorphisms on Tacrolimus Pharmacokinetics in Liver Transplant Patients. Exp Clin Transplant. 2015;13(5):441-448.
161. Liu Y, Zhang T, Zhang X, et al. A new donors' CYP3A5 and recipients' CYP3A4 cluster predicting tacrolimus disposition, and new-onset hypertension in Chinese liver transplant patients. Oncotarget. 2017;8(41):70250-70261.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79113-
dc.description.abstract研究背景與目的:
Tacrolimus(TAC)的藥動學在肝臟移植病人有非常大的個體內以及個體間的差異,研究顯示許多因素會影響TAC的藥動學。然而在過去的研究中並沒有同時考量臨床因素以及受贈者、捐贈者的基因型因素,更沒有任何臺灣人相關的研究,本研究是目前為止第一個探討臺灣肝臟移植病人在移植後3個不同時間所有可能會影響TAC劑量校正谷濃度(dose normalized trough concentrations,dnC0;與dosing weight and dose normalized trough concentrations,dnC0/DW)的臨床及基因因素。
方法:
本研究由2008年1月1日至2015年7月31日進行肝臟移植的307位臺灣病人中,選取活體移植,年齡介於20到65歲,在移植後持續使用TAC至少6個月作為免疫抑制劑,於研究期間持續追蹤。排除條件包含再移植或多重器官移植、以及人類免疫缺乏病毒反應呈陽性的病人。選取之病人及其捐贈者,簽署受試者知情同意書(informed consent)自願提供檢體做基因檢測者則納入本研究,收集到96個病人及其捐贈者的檢體,最後有70個病人及其捐贈者的基因定序結果可納入分析。本研究以dnC0及dnC0/DW代表TAC藥動學的變化,在迴歸分析時,dnC0及dnC0/DW經由對數轉換來確保資料符合常態分布。在三個評估點:移植手術出院前、移植後3個月以及移植後6個月,病人如有使用已知會和TAC產生交互作用的藥品則會在該時間點被排除。統計方法使用單變項分析篩選臨床因素及基因,當其p值<0.2則放入多元迴歸分析,並用逐步選取法找出顯著影響(p<0.05)TAC log-transformed dnC0(LN dnC0)及log-transformed dnC0/DW(LN dnC0/DW)的因素。Kolmogorov-Smirnov檢定用於確認常態分布;連續性資料使用獨立樣本t檢定或曼恩-惠尼U檢定;同一病人在不同時間點的TAC濃度資料與檢驗數值使用單因子重複量測變異數分析;類別資料如性別及基因多型性等則使用Chi-squared test以及Fisher’s exact test。
結果:
本研究共納入70個移植病人及其捐贈者,在移植後的三個評估點一致顯示影響TAC的LN dnC0或LN dnC0/DW最重要因素是捐贈者的CYP3A5*3,解釋力由移植手術出院前的18 %隨時間增加至移植後六個月的25 %。受贈者的CYP3A5*3及CYP3A4*18B在移植手術出院前以及移植後6個月會影響TAC的LN dnC0(R2 = 4-5 % for CYP3A5*3,R2 = 6-7 % for CYP3A4*18B)。我們也發現不論肝臟移植受贈者或捐贈者CYP3A5*3的變異與CYP3A4*1G有高度關聯性:當CYP3A5是表現型時(帶有CYP3A5*1),有約80 %會同時有至少一個CYP3A4*1G變異,兩種基因型都會使TAC的LN dnC0下降;反之,當CYP3A5是非表現型時(CYP3A5*3*3),則CYP3A4*1G變異較少(約15 %)。
移植後不同時間點影響TAC的LN dnC0或LN dnC0/DW的重要臨床因素均不相同,且整體解釋能力僅約10 %。移植手術出院之重要臨床因素有mycophenolate mofetil或mycophenolate sodium(MMF/MPS)以及proton pump inhibitor(PPI)的使用;移植後3個月有TAC的劑型(Prograf ® 或Advagraf ®);移植後6個月有ALP、AST以及steroid的每日劑量。MMF或MPS的使用有較低的TAC LN dnC0可能源自於TAC的劑型使用分布不均,在有使用MMF或MPS的病人中有約75 %使用Advagraf ®;沒有使用MMF或MPS的病人則有約35 %使用Advagraf ®,經次族群分析後發現TAC的劑型可能才是影響TAC LN dnC0的因素。
隨著納入分析的因素增加,整體的解釋能力也有增加的趨勢;在只納入受贈者臨床因素時,整體解釋能力約10 %;納入受贈者基因因素後,整體解釋能力最多可以增加到27 %,而原先的臨床因素的解釋比例持平;再進一步納入捐贈者基因因素後整體解釋能力最多可達53 %,但受贈者基因的解釋能力會因捐贈者基因的納入而下降。
結論:
肝臟移植病人移植後6個月內,在三個時間點影響TAC的LN dnC0或LN dnC0/DW最重要且持續影響的因素為捐贈者的CYP3A5*3(R2 = 18-25 %)。重要的臨床因素整體解釋能力只有10 %左右,且會隨著時間而不同,包含TAC的劑型、MMF/MPS的使用、PPI的使用、steroid的每日劑量、ALP以及AST。MMF或MPS的使用對TAC LN dnC0影響可能來自於TAC的劑型使用分布不均所致。CYP3A5*3的變異與CYP3A4*1G之變異有高度關聯性,此關聯性對於TAC LN dnC0的影響是同方向的。建議將捐贈者以及受贈者的CYP3A5基因型納入肝臟移植術前評估,在已完成肝臟移植的病人,當移植後病人使用TAC時發現很難達到目標濃度時,可考慮檢測捐贈者CYP3A5基因。
zh_TW
dc.description.abstractBackground:
Large interindividual and intraindividual variations of tacrolimus (TAC) pharmacokinetics (PK) existed in liver transplant recipients. Many factors were reported to influence TAC PK. However, there was no study on the influence of both the clinical and different genetic factors of liver transplant recipients and the genetic factors of donors, not to mention study in Taiwanese. Up to our knowledge, this is the very first study investigated clinical and genetic factors of recipients and the genetic factors of donors that significantly influenced the TAC dnC0 (dose normalized trough concentrations) and the dnC0/DW (dosing weight and dose normalized trough concentrations) in Taiwanese liver transplant recipients at three different time points.
Methods:
From January 2008 to July 2015, 307 Taiwanese patients received liver transplantation in our medical center. Patients were included when they met the following criteria: received living related transplantation at the age of 20 to 65 years, on TAC-based regimen for at least 6 months, coupled with their donors, who agreed be genotyped for specific polymorphisms. All patients enrolled were followed up during study period and their blood samples were taken for genetic study after signing informed consent. Exclusion criteria were retransplantation, multiorgan transplantation, and immunodeficiency virus (HIV) positive patients. Blood or oral swab samples were collected from 96 patients and their matched donors to determine genotypes. Seventy recipients and their matched donors’ genotypes could be determined. TAC dnC0 and dnC0/DW were used as the PK marker, and were log-transformed to ensure a normal distribution. This study was performed at three time point: the last steady state C0 before discharge after transplantation, 3 months and 6 months post-transplant. Patients received drugs that interacted with TAC were exclude at the specific time point. Clinical factors and genetic factors with a p value of < 0.20 in a univariate regression analysis were included in the stepwise multivariate regression analysis to explore important determinents of TAC log-transformed dnC0 (LN dnC0) or log-transformed dnC0/DW (LN dnC0/DW). Kolmogorov-Smirnov test was used to test normal distribution. Independent samples t-test or Mann-Whitney U test were used for continuous data. One-way Repeated Measurement ANOVA (analysis of variance) was used to compare the dnC0 and dnC0/DW of TAC and lab data at 3 time points. Chi-squared test and Fisher’s exact test were used in categorical data.
Result:
A total of 70 liver transplant recipients, coupled with their donors, were enrolled in the study. Donors’ CYP3A5*3 was the most significant factors that consistently influenced TAC LN dnC0 or LN dnC0/DW at all three time points. The coefficient of determination (R2) increased from 18 % on discharge to 25 % at 6 months after transplantation. Recipients’ CYP3A5*3 and CYP3A4*18B was significantly associated with TAC LN dnC0 on discharge and six months after transplant (R2 = 4-5 % for CYP3A5*3, R2 = 6-7 % for CYP3A4*18B). There was linkage between CYP3A5*3 and CYP3A4*1G in both recipients and donors. About 80 % CYP3A5 expressers (CYP3A5*1 carrier) had CYP3A4*1G mutation. Both genotypes resulted in decreased TAC LN dnC0. On the other hand, CYP3A4*1G mutation was observed in only 15 % CYP3A5 nonexpressers (CYP3A5*3*3).
Significant clinical factors that influenced TAC LN dnC0 or LN dnC0/DW, with a total R2 of 10 %, varied among three time points. These factors included mycophenolate mofetil or mycophenolate sodium (MMF/MPS) use and proton pump inhibitor (PPI) use on discharge after transplant; dosage form of TAC (Prograf ® or Advagraf ®) 3 months after transplant; and ALP, AST and steroid daily dose 6 months after transplant. MMF/MPS users had lower LN dnC0. About 75 % MMF/MPS users used Advagraf ®, and so did only 35 % MMF/MPS non-users. Subgroup analysis indicated that dosage form of TAC rather than MMF/MPS use could be the factor that influenced TAC LN dnC0.
When using multiple regression to explore important determinations of LN dnC0 and LN dnC0/DW of TAC, R2 increased as number of factors increased. R2 was around 10 % when only recipients’ clinical factors were included. After including recipients’ genetic factors, the overall R2 increased up to 27 %. While R2 of the orginal clinical factors remained as 10 %. Overall R2 increased to 53 % when we included clinical and genetic factors of recipients and the genetic factors of donors. However, R2 of the genetic factors of recipients decreased.
Conclusion:
CYP3A5*3 of liver transplant donors was the most important factor that consistently influenced TAC LN dnC0 and LN dnC0/DW for all three time points within 6 months after transplant (R2 = 18-25 %). Clinical factors of recipients that influenced TAC LN dnC0 or LN dnC0/DW only accounted for a total 10 %, and varied at three time points. The finding that MMF/MPS use was associated with a decrease in TAC LN dnC0 could be due to variation in the use of dosage form of TAC. There was linkage between CYP3A5*3 and CYP3A4*1G in both recipients and donors. We suggested that recipient and donor CYP3A5*3 genotype be routine checked in pre-transplant assessment. For patients with difficulty in achieving target TAC C0, a genetic test for donor CYP3A5*3 could be considered.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:44:58Z (GMT). No. of bitstreams: 1
ntu-107-R06451001-1.pdf: 3839888 bytes, checksum: eda7cb2e279bf9ba9ea3646b526d88bf (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents目錄
論文口試委員會審定書 i
致謝 ii
縮寫表 iii
中英文對照表 v
中文摘要 viii
英文摘要 xi
目錄 xiv
圖目錄 xviii
表目錄 xix
第一章 前言 1
第二章 文獻探討 3
2.1 肝臟移植的免疫抑制劑使用情形 3
2.2 Tacrolimus的介紹 3
2.2.1 Tacrolimus的作用機制 4
2.2.2 Tacrolimus的毒性 5
2.3 Tacrolimus的藥動學特性 5
2.3.1 吸收 5
2.3.2 分布 6
2.3.3 代謝 6
2.3.4 排除 7
2.4 藥品交互作用 7
2.5 基因多型性對tacrolimus藥動學的影響 7
2.5.1 CYP3A5 7
2.5.2 CYP3A4 8
2.5.3 ABCB1 9
2.5.4 POR*28 10
2.6 捐贈者對tacrolimus藥動學的影響 11
2.6.1 CYP3A5 11
2.6.2 CYP3A4 12
2.6.3 ABCB1 13
2.6.4 POR*28 13
第三章 研究目的及方法 14
3.1研究目的 14
3.2 研究方法 14
3.2.1 研究架構 14
3.2.2 納入條件 15
3.2.3 排除條件 15
3.2.4 臨床資訊收集流程 15
3.2.5 TAC穩定狀態之C0 16
3.2.6 給藥體重(dosing weight,DW)定義 16
3.2.7 TAC劑量校正C0(dose normalized C0,dnC0)定義 16
3.2.8 TAC抽血時間點 17
3.2.9 檢驗數據(laboratory data)採驗日期 17
3.2.10 併用藥品(combination drugs)定義 18
3.2.11 TAC血中濃度檢驗方法 18
3.2.12 Genotype方法 19
3.2.13 其他定義 19
3.2.14 統計分析 20
第四章 研究結果 23
4.1 病人篩選流程 23
4.2 病人人口學資料 23
4.3 免疫抑制劑與併用藥品 24
4.4 TAC劑量與血中濃度的變化 25
4.5 生化檢驗值的變化 25
4.6 基因型分布頻率 27
4.6.1 受贈者基因型 27
4.6.2 捐贈者基因型 27
4.7 TAC dnC0與dnC0/DW常態分布檢測 27
4.8 受贈者臨床因素對TAC血中濃度單變項迴歸分析 28
4.8.1 移植手術出院前 28
4.8.2 移植後3個月 28
4.8.3 移植後6個月 29
4.9 受贈者基因型對TAC血中濃度單變項迴歸分析 29
4.9.1 移植手術出院前 29
4.9.2 移植後3個月 30
4.9.3 移植後6個月 30
4.10 捐贈者基因型對TAC血中濃度單變項迴歸分析 31
4.10.1 移植手術出院前 31
4.10.2 移植後3個月 31
4.10.3 移植後6個月 31
4.11 受贈者臨床因素與基因型及捐贈者基因型對TAC血中濃度的影響:多元線性迴歸分析 32
4.11.1 移植手術出院前 32
4.11.2 移植後3個月. 33
4.11.3 移植後6個月 34
4.12 肝臟移植病人之捐贈者CYP3A5表現型之次族群分析 35
4.12.1受贈者臨床因素與基因型及捐贈者基因型對TAC血中濃度的影響:多元線性迴歸分析 35
4.13 肝臟移植病人之捐贈者CYP3A5非表現型之次族群分析 39
4.13.1受贈者臨床因素與基因型及捐贈者基因型對TAC血中濃度的影響:多元線性迴歸分析 39
第五章 討論 42
5.1 Prograf vs. Advagraf 42
5.2 ALP 43
5.3 類固醇 44
5.4 MMF & MPS 44
5.5 氫離子幫浦阻斷劑 45
5.6 AST 46
5.7 基因多型性 47
5.7.1 捐贈者CYP3A5(*3*3/ *1*3, *1*1) 47
5.7.2 受贈者CYP3A5(*3*3/ *1*3, *1*1) 49
5.7.3 受贈者CYP3A4*18B 49
5.7.4 CYP3A5(*3*3/ *1*3, *1*1)與CYP3A4*1G之關聯性 50
5.8 優勢與限制 51
第六章 結論 53
參考文獻 55
圖表 70
-
dc.language.isozh_TW-
dc.title肝臟移植病人及其捐贈者基因多型性對tacrolimus血中濃度之影響zh_TW
dc.titleThe influence of genetic polymorphism of recipient and donor on tacrolimus blood concentration in liver transplantationen
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree碩士-
dc.contributor.coadvisor胡瑞恒;蔡孟昆zh_TW
dc.contributor.coadvisorRey-Heng Hu;Meng-Kun Tsaien
dc.contributor.oralexamcommittee沈麗娟zh_TW
dc.contributor.oralexamcommitteeLi-Jiuan Shenen
dc.subject.keywordtacrolimus,肝臟移植,藥品動態學,臨床因素,基因多型性,捐贈者,zh_TW
dc.subject.keywordtacrolimus,liver transplantation,pharmacokinetics,clinical factors,genetic polymorphism,donor,en
dc.relation.page207-
dc.identifier.doi10.6342/NTU201802410-
dc.rights.note未授權-
dc.date.accepted2018-08-09-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床藥學研究所-
dc.date.embargo-lift2023-10-11-
顯示於系所單位:臨床藥學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-2.pdf
  目前未授權公開取用
3.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved