Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79110
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李佳翰(Jia-Han Li)
dc.contributor.authorChang-Tsung Hsiehen
dc.contributor.author謝長宗zh_TW
dc.date.accessioned2021-07-11T15:44:43Z-
dc.date.available2023-08-10
dc.date.copyright2018-08-10
dc.date.issued2018
dc.date.submitted2018-08-08
dc.identifier.citation[1] D. Robaei and S. Watson, “Corneal blindness: a global problem,” Clinical & experimental ophthalmology, vol. 42(3), pp. 213-214 (2014).
[2] T. V. Chirila, S. Vijayasekaran, R. Horne, Y. C. Chen, P. D. Dalton, I. J. Constable and G. J. Crawford, “Interpenetrating polymer network (IPN) as a permanent joint between the elements of a new type of artificial cornea,” Journal of Biomedical Materials Research Part A, vol. 28(6), pp. 745-753 (1994).
[3] Herbert Gross, “Handbook of Optical Systems: Vol. 4 Survey of Optical Instruments,” WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-40380-6, (2008).
[4] http://www.cyberphysics.co.uk/topics/medical/Eye/eyeRefraction.html
[5] M. S. Cortina and J. de la Cruz Ed. “Keratoprostheses and artificial corneas: fundamentals and surgical applications,” Springer, (2015).
[6] H. Ridley, “Intra-ocular acrylic lenses: a recent development in the surgery of cataract,” Brit. J. Ophthal., vol. 36, no. 2, pp. 113-122 (1952).
[7] A. Gomaa, O. Comyn and C. Liu, “Keratoprostheses in clinical practice–a review,” Clinical & experimental ophthalmology, vol. 38(2), pp. 211-224 (2010).
[8] C. R. Hicks, G. J. Crawford, J. K. G. Dart, G. Grabner, E. J. Holland, R. D. Stulting, D. T. Tan and M. Bulsara, “AlphaCor: clinical outcomes,” Cornea, vol. 25(9), pp. 1034-1042 (2006).
[9] B. F. Khan, “Boston Keratoprosthesis: Design, Materials, and Manufacturing,” Keratoprostheses and Artificial Corneas. Springer Berlin Heidelberg, pp. 45-49 (2014).
[10] Q. Zhang, K. Su, MB. Chan-Park, H. Wu, D. Wang and R. Xu, “Development of high refractive ZnS/PVP/PDMAA hydrogel nanocomposites for artificial cornea implants,” Acta biomaterialia, vol. 10(3), pp. 1167-1176 (2014).
[11] M. C. Koetting, J. T. Peters, S. D. Steichen and N. A. Peppas, “Stimulus-responsive hydrogels: Theory, modern advances, and applications,” Materials Science and Engineering: R: Reports, vol.93, pp. 1-49 (2015).
[12] E. O. Curatu, G. H. Pettit, and J. A. Campin, “Customized schematic eye model for refraction correction design based on ocular wavefront and corneal topography measurements,” Proc. SPIE, vol.4611, 165–175 (2002).
[13] J. Tabernero, P. Piers, A. Benito, M. Redondo and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Investigative ophthalmology & visual science, vol. 47(10), pp. 4651-4658 (2006).
[14] J. Polans, B. Jaeken, R. P. McNabb, P. Artal and J. A. Izatt, “Wide-field optical model of the human eye with asymmetrically tilted and decentered lens that reproduces measured ocular aberrations,’’ Optica, vol. 2(2), pp. 124-134 (2015).
[15] 黃君偉, “光機電系統設計與製作,”五南出版社, (2013).
[16] P. Xie, Z. Hu, X. Zhang, X. Li, Z. Gao, D. Yuan and Q. Liu, “Application of 3-Dimensional Printing Technology to Construct an Eye Model for Fundus Viewing Study,” PLoS One 9, e109373 (2014).
[17] J. Liang, B. Grimm, S. Goelz and J. F. Bille “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” Journal of the Optical Society of America A, vol. 11(7), pp. 1949-1957 (1994).
[18] R. Tyson, “Principles of adaptive optics,” CRC press, (2010).
[19] 林世穆與蔡弘益 “Hartmann-Shack波前量測系統在人眼像差量測之應用,” 第12屆全國AOI論壇與展覽大會手冊 (2013).
[20] L. N. Thibos and X. Hong, “Clinical applications of the Shack-Hartmann aberrometer,” Optom Vis Sci. 76, 817–825 (1999).
[21] B. Jaeken, L. Lundström and P. Artal “Fast scanning peripheral wave-front sensor for the human eye,” Optics express, vol. 19(8), pp. 7903-7913 (2011).
[22] A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” Journal of the Optical Society of America A, vol. 24(8), pp. 2157-2174 (2007).
[23] E. Janunts, M. Kannengießer and A. Langenbucher, “Parametric fitting of corneal height data to a biconic surface.” Zeitschrift für Medizinische Physik, vol. 25(1), pp. 25-35 (2015).
[24] B. Jaeken, L. Lundström and P. Artal, “Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration,” Journal of the Optical Society of America A, vol. 28(9), pp. 1871-1879 (2011).
[25] H. Y. Sun, C. H. Lee, C. C. Chuang, “Reconstruction of the optical system of personalized eye models by using magnetic resonance imaging,” Applied Optics, vol. 55(32), pp. 9145-9153 (2016).
[26] Solo Hermelin, “Optical aberrations,” Available at: https://www.slideshare.net/solohermelin/optical-aberrations-43245080, Published on Jan. 6, (2015).
[27] R. J. Noll, “Zernike polynomials and atmospheric turbulence,” Journal of the Optical Society of America, vol. 66(3), pp. 207-211 (1976).
[28] E.P. Goodwin and J. C. Wyant, “Field guide to interferometric optical testing,” Bellingham, WA: SPIE, (2006).
[29] J. Xu and S. Zhuang, “Measurement of lens focal length with Hartmann–Shack wavefront sensor based on 4F system,” Optik - International Journal for Light and Electron Optics, vol. 126(13), pp. 1303-1306 (2015).
[30] Y. C. Cheng, J. H. Chen, R. J. Chang, C. Y. Wang, W. Y. Hsu and P. J. Wang, “Design and verifications of an eye model fitted with contact lenses for wavefront measurement systems,” Novel Optical Systems Design and Optimization XVIII. Vol. 9579. International Society for Optics and Photonics, (2015).
[31] J. porter, A. Guirao, L. G. Cox and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” Journal of the Optical Society of America A, vol. 18(8), pp. 1793-1803 (2001).
[32] J. Liang and D.R. Williams, “Aberrations and retinal image quality of the normal human eye,” Journal of the Optical Society of America A, vol. 14(11), pp. 2873-2883 (1997).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79110-
dc.description.abstract近年來,許多人因角膜受損而導致失明,是全球性的議題,對於那些病人而言,角膜的數量不足一直是個問題,因此用人工角膜替代受損角膜成為一種很好的取代方案。而具交聯網絡結構(interpenetrating polymer network, IPN)的水凝膠材料作為一種具生物相容性、親水性且有一定機械性質之材料,被認為是很好製作人工眼角膜的材料,配合3D列印可客製化等特性,提供病人除角膜移植外另一種更好的選擇。
本論文中我們建構模擬眼模型來分析用於製造人造角膜的兩種IPN水凝膠材料,P-407-DA(Poloxamer 407 diacrylate)+PAA(Polyacrylic acid)與P-407-DA+PHEMA(Poly(2-hydroxyethyl methacrylate))的光學性質。我們模擬三種不同的人工角膜表面類型,並使用Zernike多項式來分析它們的波前像差。結果表明,雙錐面是這三種表面的最佳面型。此外,我們發現增加人造角膜表面的非球面度對於模擬真實角膜也是非常重要的。本論文最後,我們也架構了一套Shack-Hartmann波前量測儀器用於量測光學元件之波前像差。
zh_TW
dc.description.abstractIn recent years, lots of people are blindness due to the corneal problem, which is a global issue. Due to the problem of the shortage of donor corneas, for those patients, artificial cornea is another way to solve their problem. IPN hydrogel is a good artificial corneal material due to its good biocompatibility, hydrophilicity and mechanical properties. In conjunction with 3D printing customizable features, it gives patients another choice to replace the damage cornea from transplant surgery to artificial cornea.
In this thesis, we simulate an eye model to analyze the optical quality of two different IPN hydrogel, P-407-DA+PAA and P407DA+PHEMA, which is with biocompatibility property for manufacturing artificial cornea. We simulate three difference surface types and use the Zernike polynomials to check their wavefront aberrations. The results show that biconic surface is the best surface type of these three surfaces in this work. Also, we found that increasing the asphericity in the surface of artificial cornea is important to approach the real cornea in our simulations. At last, we construct the Shack-Hartmann wavefront sensor to measure the optical element’s wavefront aberration.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:44:43Z (GMT). No. of bitstreams: 1
ntu-107-R05525048-1.pdf: 2087827 bytes, checksum: 47e8fe45c165adbb0f73aa84c1fbe59d (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
Contents iv
List of Figures vi
List of Tables viii
Chapter 1 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
Chapter 2 研究方法 7
2.1 人眼光學模型 7
2.2 人工角膜模型 10
2.3 波前像差 11
2.4 Zernike多項式 12
2.5 Shack-Hartmann 波前量測 15
Chapter 3 人工角膜之光學模擬及分析 17
3.1 人工角膜光學特性分析 18
3.2 人工角膜波前像差分析 20
3.3 人工角膜繞射影像分析 24
Chapter 4 Shack-Hartmann波前像差儀之架設 26
4.1 Shack-Hartmann系統設計與規格 26
4.2 實際量測結果 27
Chapter 5 結論與未來工作 29
參考文獻 30
dc.language.isozh-TW
dc.title人工眼角膜之光學模擬分析與架設Shack-Hartmann 波前量測儀器zh_TW
dc.titleAnalysis and Optical Simulation of Artificial Cornea and Construction of the Shack-Hartmann Wavefront Sensor Instrumenten
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顏家鈺(Jia-Yush Yen),王一中(I-Jong Wang),戴子安(Chi-An Dai),張恆華(Herng-Hua Chang)
dc.subject.keyword人工眼角膜,IPN水凝膠材料,人眼模型,波前像差,Shack-Hartmnn 波前像差儀器,zh_TW
dc.subject.keywordartificial cornea,IPN hydrogel,human eye model,wavefront aberration,Shack-Hartmann wavefront sensor,en
dc.relation.page32
dc.identifier.doi10.6342/NTU201802763
dc.rights.note有償授權
dc.date.accepted2018-08-09
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
dc.date.embargo-lift2023-08-10-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-R05525048-1.pdf
  目前未授權公開取用
2.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved