請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79094完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖婉君 | |
| dc.contributor.author | Yan-Ting Chen | en |
| dc.contributor.author | 陳彥廷 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:43:28Z | - |
| dc.date.available | 2023-08-23 | |
| dc.date.copyright | 2018-08-23 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2018-08-10 | |
| dc.identifier.citation | [1] Mijumbi, Rashid, et al. 'Network function virtualization: State-of-the-art and research challenges.' IEEE Communications Surveys & Tutorials 18.1 (2016): 236-262.
[2] Chiosi, Margaret, et al. 'Network functions virtualisation: An introduction, benefits, enablers, challenges and call for action.' SDN and OpenFlow World Congress. Vol. 48. sn, 2012. [3] Halpern, Joel, and Carlos Pignataro. Service function chaining (sfc) architecture. No. RFC 7665. 2015. [4] Hu, Yun Chao, et al. 'Mobile edge computing—A key technology towards 5G.' ETSI White Paper 11.11 (2015): 1-16. [5] ETSI, GS NFV. “Network Functions Virtualisation (NFV); Use Cases,” ETSI GS NFV 1 (2013) [6] ETSI, MECISG. 'Mobile edge computing (mec); framework and reference architecture.' ETSI, DGS MEC 3 (2016). [7] ETSI, MECISG. “Mobile Edge Computing (MEC); Deployment of Mobile Edge Computing in an NFV environment.” ETSI, DGS MEC 17 (2018) [8] Mehraghdam, Sevil, Matthias Keller, and Holger Karl. 'Specifying and placing chains of virtual network functions.' Cloud Networking (CloudNet), 2014 IEEE 3rd International Conference on. IEEE, 2014. [9] Huin, Nicolas, Brigitte Jaumard, and Frédéric Giroire. 'Optimization of network service chain provisioning.' Communications (ICC), 2017 IEEE International Conference on. IEEE, 2017. [10] Patel, Akanksha, Mythili Vutukuru, and Dilip Krishnaswamy. 'Mobility-aware VNF placement in the LTE EPC.' Network Function Virtualization and Software Defined Networks (NFV-SDN), 2017 IEEE Conference on. IEEE, 2017. [11] Taleb, Tarik, Adlen Ksentini, and Pantelis Frangoudis. 'Follow-me cloud: When cloud services follow mobile users.' IEEE Transactions on Cloud Computing(2016). [12] Fischer, Andreas, et al. 'Virtual network embedding: A survey.' IEEE Communications Surveys & Tutorials 15.4 (2013): 1888-1906. [13] Jaccard, Paul. 'Étude comparative de la distribution florale dans une portion des Alpes et des Jura.' Bull Soc Vaudoise Sci Nat 37 (1901): 547-579. [14] Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, “Exploring network structure, dynamics, and function using NetworkX”, in Proceedings of the 7th Python in Science Conference (SciPy2008), Gäel Varoquaux, Travis Vaught, and Jarrod Millman (Eds), (Pasadena, CA USA), pp. 11–15, Aug 2008 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79094 | - |
| dc.description.abstract | 網絡功能虛擬化(NFV)現在已經成為一個熱門的話題,其主要是將傳統上高度整合在硬體設備中的服務,透過虛擬化的技術應用到商用服務器。受益於這一概念,服務功能鏈(SFC)已然成為當今新應用程序構建方式的主流,將巨大且資源消耗大的網絡服務分解為一系列微小的,鬆散連接的虛擬網絡功能(VNF) 。通過這種方式,服務提供商可以更靈活地配置自己的服務。在此背景下,移動邊緣計算(MEC)的概念被提出討論。 MEC可以在無線接入網絡(RAN)內為移動用戶提供IT服務環境和雲端計算功能。目的是減少延遲,確保高效的網路運營和服務傳遞品質,並提供改進的用戶體驗。然而,隨著移動用戶的爆炸性增長,越來越多的對於延遲敏感的服務,如車載網絡,增強實境......等,給傳統的雲端環境帶來了壓力。這些服務通常伴隨著頻繁的用戶移動和對延遲的嚴格限制,這意味著雲端服務不能離用戶太遠。為了妥善處理這種困境,需要MEC遷移機制來根據不同的服務需求來管理用戶服務。服務實時遷移允許將連續運行的VNF從一個MEC移動到另一個MEC,這使得可以確保這些用戶的體驗品質(QoE)。儘管服務實時遷移技術使其成為可能,但它卻大幅的增加頻寬上的使用。在本篇論文中,我們提出了一種有效的演算法,以充分利用服務器的資源來容納更多用戶,同時保證系統中每個用戶的無縫服務體驗。模擬結果顯示,與其他算法相比,我們的演算法可以在相同的服務接受率下最小化服務遷移時間。特別是,我們的模擬顯示我們的演算法可以在滿足未來服務遷移請求的同時獲得更好的資源利用率。 | zh_TW |
| dc.description.abstract | Network Function Virtualization (NFV) has now become a promising concept which virtualizes hardware based application to commodity servers. Based on this concept, Service Function Chaining (SFC) is becoming the de facto approach to how new applications are built today, which a giant and resource-hungry network service is decomposed into a chain of tiny, loosely connected virtual network functions (VNF). In this way, service provider can deploy their own services with more flexibility. In this context, the concept of Mobile Edge Computing (MEC) has been proposed. MEC provides an IT service environment and cloud-computing capabilities at the edge of the mobile network, within the Radio Access Network (RAN) and in close proximity to mobile users. The aim is to reduce latency, ensure highly efficient network operation and service delivery, and offer an improved user experience. However, with the explosive growth in mobile users, more and more delay-sensitive services, such as vehicle network, augmented reality… and so on, put stress on traditional cloud environment. These services usually come with frequent user movements and harsh restriction on latency, which means the service user requests can not be placed too far from the user. To handle this dilemma properly, there is a need for MEC migration mechanism to manage user services according to the different service requirement. Service live migration allows moving a continuously running VNF from one MEC to another, which makes it possible to ensure Quality of Experience (QoE) for these users. Although the technique of service live migration makes it possible, it put a great stress on bandwidth usage. In this work, we propose an efficient online Follow-Me Chain (FMC) algorithm to fully utilize the server's resource to accommodate more users while guaranteeing seamless service experience for every user in the system. The simulation results show that FMC can minimize service migration time with same service acceptance rate while comparing to others algorithm. Especially, our simulation implies that FMC can reach better resource utilization while satisfying future service migration request.
Keywords -- Network Function Virtualization, Service Function Chaining, Mobile Edge Computing | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:43:28Z (GMT). No. of bitstreams: 1 ntu-106-R05921050-1.pdf: 997490 bytes, checksum: 47902b6edc4a161d4dae605bba73febf (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES vii LIST OF TABLES viii Chapter 1 Introduction 1 1.1 Background 3 1.2 Motivation and Contribution 8 Chapter 2 System Model 11 2.1 Substrate Network 12 2.2 User Mobility Model 13 2.2.1 Service Function Chain Requests 13 2.2.2 Mobility Model 14 2.3 SFC Handover Cost and SFC Constraints 15 2.3.1 Allocation Constraints 15 2.3.2 Capacity Constraints 16 2.3.3 Link Delay Constraints 16 2.3.4 Mobility Constraints 16 2.3.5 SFC Handover Cost 16 2.4 Complexity Analysis 18 Chapter 3 Follow-Me Chain Algorithm 19 3.1 Initial Placement 19 3.2 Handover Handling 22 Chapter 4 Performance Evaluation 25 4.1 Environment 25 4.2 Simulation Setup 25 4.3 Simulation Results 25 4.3.1 Initiation Placement and Migration Time 26 4.3.2 Tradeoff between Migration Speed and Network Congestion 27 4.3.3 Different of Feasible Service Path Set 29 Chapter 5 Conclusion and Future Work 31 REFERENCE 32 | |
| dc.language.iso | en | |
| dc.subject | 移動邊緣計算 | zh_TW |
| dc.subject | 網路功能虛擬化 | zh_TW |
| dc.subject | 服務功能鍊 | zh_TW |
| dc.subject | Network Function Virtualization | en |
| dc.subject | Mobile Edge Computing | en |
| dc.subject | Service Function Chaining | en |
| dc.title | 服務功能鏈問題的移動感知演算法 | zh_TW |
| dc.title | Mobility-aware Algorithm for Service Function Chaining | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林宗男,陳俊良,吳曉光,郭耀煌 | |
| dc.subject.keyword | 網路功能虛擬化,服務功能鍊,移動邊緣計算, | zh_TW |
| dc.subject.keyword | Network Function Virtualization,Service Function Chaining,Mobile Edge Computing, | en |
| dc.relation.page | 33 | |
| dc.identifier.doi | 10.6342/NTU201802928 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-10 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-08-23 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-R05921050-1.pdf 未授權公開取用 | 974.11 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
