Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79092
標題: 次世代蜂巢式網路霧端資源優化
Fog Resource Optimization of Next Generation Cellular Networks
作者: Te-Chuan Chiu
邱德泉
指導教授: 逄愛君
關鍵字: 第五代蜂巢式網路,霧端/邊緣運算,極低延遲時間,合作式運算,協同式波束賦形,能源擷取技術,
Fifth-generation (5G) cellular networks,fog/edge computing,ultra-low latency,cooperative computing,collaborative beamforming,energy harvesting,
出版年 : 2018
學位: 博士
摘要: 霧端運算是一種源自於雲端運算演化,將運算從雲端延伸至邊緣以因應次世 代蜂巢式網路即將興起具有低延遲服務需求之前瞻性最佳解決手段。然而,如何睿智地管理擁有多種不同型態之霧端資源以同時全面考量 1)運算及無線通訊 2)無線電力及通訊則是一個深具挑戰同時並不直覺的問題,因此正是本博士論文的核心探討主軸。從第一種霧端資源最佳化觀點出發,首先針對運算能力匱乏卻擁有服務時間要求限制的物聯網裝置,我們提出了霧端無線存取網路架構,藉由多重霧群同時考量邊緣運算及近端通訊以解決在時間維度上通訊與運算之取捨問題來達成極低延遲時間服務。此外,我們設計一套追求低延遲霧合作群演算法,藉由動態規劃解法依序完成 1)綜觀最佳化主霧節點挑選機制及 2)我為人人策略之霧節點群選定機制以針對多重霧群提供最合適的異質霧端資源配置。最後,在方法分析上顯示出霧端無線存取網路透過追求低延遲霧合作群演算法可以順利達成低延遲服務目標。下一階段考量到另外一種霧端資源最佳化觀點,接著針對能源有限的物聯網裝置去執行近端運算或將運算工作量分擔至鄰近霧節點群,我們推崇可充電式無線霧端網路,其中每個霧節點各自搭載切換波束天線則能同時提供資料傳輸及環境感知無線充電,但多重霧節點群則需面對資料傳輸服務率與能源擷取功率之取捨問題。因此,我們提出了擁有最佳方法表現比值之多項式時間近似演算法。最後,從資料分析結果中明確呈現能源擷取服務透過環境感知無線電暨協同式能源及資料傳輸率波束賦形能夠順利被實現。
Fog computing, evolves from the cloud and migrates the computing to the edge, is a promising solution to meet the increasing demand for ultra-low latency services in next generation cellular networks. However, how to wisely manage various types of Fog resources regarding 1) joint computing and wireless communication and 2) joint wireless power and communication is a challenging and non-trivial problem as our major focus in this dissertation. For computing-limited IoT devices with time-intensive requirement from the first type of Fog resource optimization viewpoint, we propose a Fog Radio Access Network (F-RAN) framework to achieve the ultra-low latency by joint edge computing and near-range communications across multiple Fog groups but occurring a tradeoff between communication and computing in the time domain. Therefore, we propose a latency-driven cooperative Fog algorithm with dynamic programming solution for 1) globally optimized master F-RAN node selection and 2) simultaneous selection of the F-RAN nodes to serve proper heterogeneous Fog resource allocation for multi-Fog groups by one-for-all concept. The performance evaluations show that the low latency services can be accomplished by F-RAN via latency-driven Fog cooperation approach. Considering another type of Fog resource optimization for energy-limited IoT devices executing local computing or offloading their computing tasks to the neighboring Fog nodes, we advocate wireless powered Fog networks, in which Fog nodes with switched beam antennas can jointly provide data communication and ambient wireless power provision but facing a tradeoff between data service rate and harvested power across multiple Fog nodes. Thus, we propose a polynomial time approximation algorithm with the tightest performance ratio. The numerical results show that the energy harvesting services can be achieved by ambient radio frequency collaborative energy and rate beamforming.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79092
DOI: 10.6342/NTU201802915
全文授權: 有償授權
電子全文公開日期: 2023-08-23
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-D01922009-1.pdf
  未授權公開取用
1.54 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved