請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79058完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳彥榮 | |
| dc.contributor.author | You-Chun Lin | en |
| dc.contributor.author | 林宥君 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:40:26Z | - |
| dc.date.available | 2023-08-24 | |
| dc.date.copyright | 2018-08-24 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-13 | |
| dc.identifier.citation | Abate-Shen, C. (2002). Deregulated homeobox gene expression in cancer: cause or consequence? Nat Rev Cancer, 2(10), 777-785.
Al-Hajj, M., et al. (2003). Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A, 100(7), 3983-3988. Arimochi, H., et al. (2006). Suppressive effect of Clostridium perfringens-produced heat-stable substance(s) on proliferation of human colon adenocarcinoma HT29 cells in culture. Cancer Lett, 241(2), 228-234. Bae, S. K., et al. (1999). Egr-1 mediates transcriptional activation of IGF-II gene in response to hypoxia. Cancer Res, 59(23), 5989-5994. Bapat, S. A., et al. (2005). Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res, 65(8), 3025-3029. Bhatlekar, S., et al. (2014). Identification of a developmental gene expression signature, including HOX genes, for the normal human colonic crypt stem cell niche: overexpression of the signature parallels stem cell overpopulation during colon tumorigenesis. Stem Cells Dev, 23(2), 167-179. Biesiada, E., et al. (1996). Egr-1 activates basic fibroblast growth factor transcription. Mechanistic implications for astrocyte proliferation. J Biol Chem, 271(31), 18576-18581. Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 3(7), 730-737. Boone, D. N., et al. (2011). Egr1 mediates p53-independent c-Myc-induced apoptosis via a noncanonical ARF-dependent transcriptional mechanism. Proc Natl Acad Sci U S A, 108(2), 632-637. Bowen, K. A., et al. (2009). PTEN loss induces epithelial--mesenchymal transition in human colon cancer cells. Anticancer Res, 29(11), 4439-4449. Brenner, D. A., et al. (1993). Type I collagen gene regulation and the molecular pathogenesis of cirrhosis. Am J Physiol, 264(4 Pt 1), G589-595. Buitrago, M., et al. (2005). The transcriptional repressor Nab1 is a specific regulator of pathological cardiac hypertrophy. Nat Med, 11(8), 837-844. Cadigan, K. M., & Nusse, R. (1997). Wnt signaling: a common theme in animal development. Genes Dev, 11(24), 3286-3305. Calogero, A., et al. (2001). The early growth response gene EGR-1 behaves as a suppressor gene that is down-regulated independent of ARF/Mdm2 but not p53 alterations in fresh human gliomas. Clin Cancer Res, 7(9), 2788-2796. Calogero, A., et al. (2004). Inhibition of cell growth by EGR-1 in human primary cultures from malignant glioma. Cancer Cell Int, 4(1), 1. Campos, B., et al. (2010). Differentiation therapy exerts antitumor effects on stem-like glioma cells. Clin Cancer Res, 16(10), 2715-2728. Castaigne, S., et al. (1990). All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results. Blood, 76(9), 1704-1709. Chaudhary, P. M., & Roninson, I. B. (1991). Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell, 66(1), 85-94. Chen, A., et al. (2006). Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene, 25(2), 278-287. Chen, G. Q., et al. (2017). Halofuginone dually regulates autophagic flux through nutrient-sensing pathways in colorectal cancer. Cell Death Dis, 8(5), e2789. Chen, G. Q., et al. (2015). Halofuginone inhibits colorectal cancer growth through suppression of Akt/mTORC1 signaling and glucose metabolism. Oncotarget, 6(27), 24148-24162. Chen, Y., et al. (2016). Halofuginone inhibits radiotherapy-induced epithelial-mesenchymal transition in lung cancer. Oncotarget, 7(44), 71341-71352. Choi, B. T., et al. (2003). Anti-inflammatory effects of aqueous extract from Dichroa febrifuga root in rat liver. Acta Pharmacol Sin, 24(2), 127-132. Christy, B., & Nathans, D. (1989). DNA binding site of the growth factor-inducible protein Zif268. Proc Natl Acad Sci U S A, 86(22), 8737-8741. Christy, B. A., et al. (1988). A gene activated in mouse 3T3 cells by serum growth factors encodes a protein with 'zinc finger' sequences. Proc Natl Acad Sci U S A, 85(21), 7857-7861. Collins, A. T., et al. (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res, 65(23), 10946-10951. de Sousa e Melo, F., et al. (2017). A distinct role for Lgr5(+) stem cells in primary and metastatic colon cancer. Nature, 543(7647), 676-680. Di Cristofano, A., & Pandolfi, P. P. (2000). The multiple roles of PTEN in tumor suppression. Cell, 100(4), 387-390. Dinkel, A., et al. (1998). The transcription factor early growth response 1 (Egr-1) advances differentiation of pre-B and immature B cells. J Exp Med, 188(12), 2215-2224. Duclot, F., & Kabbaj, M. (2017). The Role of Early Growth Response 1 (EGR1) in Brain Plasticity and Neuropsychiatric Disorders. Front Behav Neurosci, 11, 35. Ehrengruber, M. U., et al. (2000). Modulation of early growth response (EGR) transcription factor-dependent gene expression by using recombinant adenovirus. Gene, 258(1-2), 63-69. Eid, M. A., et al. (1998). Expression of early growth response genes in human prostate cancer. Cancer Res, 58(11), 2461-2468. Elkin, M., et al. (1999). Inhibition of bladder carcinoma angiogenesis, stromal support, and tumor growth by halofuginone. Cancer Res, 59(16), 4111-4118. Fan, X., et al. (2006). Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res, 66(15), 7445-7452. Friedmann-Morvinski, D., & Verma, I. M. (2014). Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep, 15(3), 244-253. Fundia, A., et al. (1995). Non-random distribution of spontaneous chromosome aberrations in two Bloom Syndrome patients. Hereditas, 122(3), 239-243. Gashler, A. L., et al. (1993). A novel repression module, an extensive activation domain, and a bipartite nuclear localization signal defined in the immediate-early transcription factor Egr-1. Mol Cell Biol, 13(8), 4556-4571. Gavish, Z., et al. (2002). Growth inhibition of prostate cancer xenografts by halofuginone. Prostate, 51(2), 73-83. Gitenay, D., & Baron, V. T. (2009). Is EGR1 a potential target for prostate cancer therapy? Future Oncol, 5(7), 993-1003. Gnainsky, Y., et al. (2006). Involvement of the tyrosine phosphatase early gene of liver regeneration (PRL-1) in cell cycle and in liver regeneration and fibrosis effect of halofuginone. Cell Tissue Res, 324(3), 385-394. Goguel, A. F., et al. (1995). Evolution of chromosomal alterations and biologic features in two small cell lung carcinoma cell lines established from one patient during the course of the disease. Cancer Genet Cytogenet, 80(1), 47-54. Granot, I., et al. (1991). Increased skin tearing in broilers and reduced collagen synthesis in skin in vivo and in vitro in response to the coccidiostat halofuginone. Poult Sci, 70(7), 1559-1563. Groszer, M., et al. (2001). Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science, 294(5549), 2186-2189. Guerquin, M. J., et al. (2013). Transcription factor EGR1 directs tendon differentiation and promotes tendon repair. J Clin Invest, 123(8), 3564-3576. Halevy, O., et al. (1996). Inhibition of collagen type I synthesis by skin fibroblasts of graft versus host disease and scleroderma patients: effect of halofuginone. Biochem Pharmacol, 52(7), 1057-1063. He, J., et al. (2015). Downregulation of ATG14 by EGR1-MIR152 sensitizes ovarian cancer cells to cisplatin-induced apoptosis by inhibiting cyto-protective autophagy. Autophagy, 11(2), 373-384. He, X., et al. (2018). Sinomenine Induces G1-Phase Cell Cycle Arrest and Apoptosis in Malignant Glioma Cells Via Downregulation of Sirtuin 1 and Induction of p53 Acetylation. Technol Cancer Res Treat, 17, 1533034618770305. Hofer, G., et al. (1996). Transcription factor Egr-1 regulates glomerular mesangial cell proliferation. J Biol Chem, 271(45), 28306-28310. Horst, D., et al. (2008). CD133 expression is an independent prognostic marker for low survival in colorectal cancer. Br J Cancer, 99(8), 1285-1289. Huang, R. P., et al. (1997). Decreased Egr-1 expression in human, mouse and rat mammary cells and tissues correlates with tumor formation. Int J Cancer, 72(1), 102-109. Huo, S., et al. (2015). Effect of halofuginone on the inhibition of proliferation and invasion of hepatocellular carcinoma HepG2 cell line. Int J Clin Exp Pathol, 8(12), 15863-15870. Inoue, S., et al. (2013). Mule/Huwe1/Arf-BP1 suppresses Ras-driven tumorigenesis by preventing c-Myc/Miz1-mediated down-regulation of p21 and p15. Genes Dev, 27(10), 1101-1114. Jang, C. S., et al. (1948). Pharmacology of ch'ang shan (Dichroa febrifuga) a Chinese antimalarial herb. Nature, 161(4089), 400. Jiang, S., et al. (2005). Antimalarial activities and therapeutic properties of febrifugine analogs. Antimicrob Agents Chemother, 49(3), 1169-1176. Jin, X., et al. (2017). Cancer stem cells and differentiation therapy. Tumour Biol, 39(10), 1010428317729933. Juarez, P., et al. (2017). Halofuginone inhibits TGF-beta/BMP signaling and in combination with zoledronic acid enhances inhibition of breast cancer bone metastasis. Oncotarget, 8(49), 86447-86462. Jung, K. H., et al. (2016). Differentiation therapy for hepatocellular carcinoma: Multifaceted effects of miR-148a on tumor growth and phenotype and liver fibrosis. Hepatology, 63(3), 864-879. Kaufmann, K., & Thiel, G. (2001). Epidermal growth factor and platelet-derived growth factor induce expression of Egr-1, a zinc finger transcription factor, in human malignant glioma cells. J Neurol Sci, 189(1-2), 83-91. Kaufmann, K., & Thiel, G. (2002). Epidermal growth factor and thrombin induced proliferation of immortalized human keratinocytes is coupled to the synthesis of Egr-1, a zinc finger transcriptional regulator. J Cell Biochem, 85(2), 381-391. Kawano, Y., & Kypta, R. (2003). Secreted antagonists of the Wnt signalling pathway. J Cell Sci, 116(Pt 13), 2627-2634. Kim, J., et al. (2014). EGR1-dependent PTEN upregulation by 2-benzoyloxycinnamaldehyde attenuates cell invasion and EMT in colon cancer. Cancer Lett, 349(1), 35-44. Kim, Y. H., et al. (2000). The production of nitric oxide and TNF-alpha in peritoneal macrophages is inhibited by Dichroa febrifuga Lour. J Ethnopharmacol, 69(1), 35-43. Klein, D., et al. (2013). Hox genes are involved in vascular wall-resident multipotent stem cell differentiation into smooth muscle cells. Sci Rep, 3, 2178. Koepfli, J. B., et al. (1949). Alkaloids of Dichroa febrifuga; isolation and degradative studies. J Am Chem Soc, 71(3), 1048-1054. Lanoix, J., et al. (1991). Regulated expression of Krox-24 and other serum-responsive genes during differentiation of P19 embryonal carcinoma cells. Cell Growth Differ, 2(8), 391-399. Lanoix, J., et al. (1998). Wild-type egr1/Krox24 promotes and dominant-negative mutants inhibit, pluripotent differentiation of p19 embryonal carcinoma cells. Oncogene, 17(19), 2495-2504. Lasham, A., et al. (2016). A novel EGR-1 dependent mechanism for YB-1 modulation of paclitaxel response in a triple negative breast cancer cell line. Int J Cancer, 139(5), 1157-1170. Leiba, M., et al. (2006). Halofuginone inhibits NF-kappaB and p38 MAPK in activated T cells. J Leukoc Biol, 80(2), 399-406. Lemaire, P., et al. (1988). Two mouse genes encoding potential transcription factors with identical DNA-binding domains are activated by growth factors in cultured cells. Proc Natl Acad Sci U S A, 85(13), 4691-4695. Levin, W. J., et al. (1995). Expression patterns of immediate early transcription factors in human non-small cell lung cancer. The Lung Cancer Study Group. Oncogene, 11(7), 1261-1269. Li, H., et al. (2018). Zhiheshouwu ethanol extract induces intrinsic apoptosis and reduces unsaturated fatty acids via SREBP1 pathway in hepatocellular carcinoma cells. Food Chem Toxicol. Li, L., & Bhatia, R. (2011). Stem cell quiescence. Clin Cancer Res, 17(15), 4936-4941. Liao, C. H., et al. (2005). Antitumor mechanism of evodiamine, a constituent from Chinese herb Evodiae fructus, in human multiple-drug resistant breast cancer NCI/ADR-RES cells in vitro and in vivo. Carcinogenesis, 26(5), 968-975. Lim, R. W., et al. (1987). Cloning of tetradecanoyl phorbol ester-induced 'primary response' sequences and their expression in density-arrested Swiss 3T3 cells and a TPA non-proliferative variant. Oncogene, 1(3), 263-270. Liu, C., et al. (1999). The transcription factor EGR-1 suppresses transformation of human fibrosarcoma HT1080 cells by coordinated induction of transforming growth factor-beta1, fibronectin, and plasminogen activator inhibitor-1. J Biol Chem, 274(7), 4400-4411. Lopez-Arribillaga, E., et al. (2015). Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch. Development, 142(1), 41-50. Luo, Y., et al. (2017). The role of halofuginone in fibrosis: more to be explored? J Leukoc Biol, 102(6), 1333-1345. Mahalingam, D., et al. (2010). Early growth response-1 is a regulator of DR5-induced apoptosis in colon cancer cells. Br J Cancer, 102(4), 754-764. Marshall, H., et al. (1996). Retinoids and Hox genes. Faseb j, 10(9), 969-978. McGaha, T. L., et al. (2002). Halofuginone, an inhibitor of type-I collagen synthesis and skin sclerosis, blocks transforming-growth-factor-beta-mediated Smad3 activation in fibroblasts. J Invest Dermatol, 118(3), 461-470. Milbrandt, J. (1987). A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science, 238(4828), 797-799. Min, I. M., et al. (2008). The transcription factor EGR1 controls both the proliferation and localization of hematopoietic stem cells. Cell Stem Cell, 2(4), 380-391. Mott, J. D., & Werb, Z. (2004). Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol, 16(5), 558-564. Munera, J. O., et al. (2017). Differentiation of Human Pluripotent Stem Cells into Colonic Organoids via Transient Activation of BMP Signaling. Cell Stem Cell, 21(1), 51-64.e56. Myung, D. S., et al. (2014). Expression of early growth response-1 in colorectal cancer and its relation to tumor cell proliferation and apoptosis. Oncol Rep, 31(2), 788-794. Nagler, A., et al. (2004). Suppression of hepatocellular carcinoma growth in mice by the alkaloid coccidiostat halofuginone. Eur J Cancer, 40(9), 1397-1403. Nair, P., et al. (1997). Early growth response-1-dependent apoptosis is mediated by p53. J Biol Chem, 272(32), 20131-20138. Nardelli, J., et al. (1991). Base sequence discrimination by zinc-finger DNA-binding domains. Nature, 349(6305), 175-178. Nguyen, H. Q., et al. (1993). The zinc finger transcription factor Egr-1 is essential for and restricts differentiation along the macrophage lineage. Cell, 72(2), 197-209. O'Brien, C. A., et al. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123), 106-110. Oguri, T., et al. (2007). MRP8/ABCC11 directly confers resistance to 5-fluorouracil. Mol Cancer Ther, 6(1), 122-127. Oh, C. K., et al. (2016). Acquisition of Chemoresistance and Other Malignancy-related Features of Colorectal Cancer Cells Are Incremented by Ribosome-inactivating Stress. J Biol Chem, 291(19), 10173-10183. Park, C. H., et al. (1971). Mouse myeloma tumor stem cells: a primary cell culture assay. J Natl Cancer Inst, 46(2), 411-422. Patwardhan, S., et al. (1991). EGR3, a novel member of the Egr family of genes encoding immediate-early transcription factors. Oncogene, 6(6), 917-928. Peng, W. X., et al. (2016). Egr-1 promotes hypoxia-induced autophagy to enhance chemo-resistance of hepatocellular carcinoma cells. Exp Cell Res, 340(1), 62-70. Perez-Castillo, A., et al. (1993). NGFI-A gene expression is necessary for T lymphocyte proliferation. J Biol Chem, 268(26), 19445-19450. Pines, M. (2014). Halofuginone for fibrosis, regeneration and cancer in the gastrointestinal tract. World J Gastroenterol, 20(40), 14778-14786. Pines, M., & Nagler, A. (1998). Halofuginone: a novel antifibrotic therapy. Gen Pharmacol, 30(4), 445-450. Popov, Y., et al. (2006). Halofuginone induces matrix metalloproteinases in rat hepatic stellate cells via activation of p38 and NFkappaB. J Biol Chem, 281(22), 15090-15098. Powell, C. B., et al. (2003). Aqueous extract of herba Scutellaria barbatae, a chinese herb used for ovarian cancer, induces apoptosis of ovarian cancer cell lines. Gynecol Oncol, 91(2), 332-340. Pratt, S., et al. (2005). The multidrug resistance protein 5 (ABCC5) confers resistance to 5-fluorouracil and transports its monophosphorylated metabolites. Mol Cancer Ther, 4(5), 855-863. Press, T., et al. (2015). EGR1 supports the osteogenic differentiation of dental stem cells. Int Endod J, 48(2), 185-192. Rafty, L. A., & Khachigian, L. M. (2001). Sp1 phosphorylation regulates inducible expression of platelet-derived growth factor B-chain gene via atypical protein kinase C-zeta. Nucleic Acids Res, 29(5), 1027-1033. Reya, T., et al. (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 423(6938), 409-414. Reya, T., et al. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105-111. Ricci-Vitiani, L., et al. (2009). Colon cancer stem cells. J Mol Med (Berl), 87(11), 1097-1104. Riggs, P. K., et al. (2000). Alteration of Egr-1 mRNA during multistage carcinogenesis in mouse skin. Mol Carcinog, 27(4), 247-251. Russo, M. W., et al. (1995). Identification of NAB1, a repressor of NGFI-A- and Krox20-mediated transcription. Proc Natl Acad Sci U S A, 92(15), 6873-6877. Ryu, J. W., et al. (2017). Paradoxical induction of growth arrest and apoptosis by EGF via the up-regulation of PTEN by activating Redox factor-1/Egr-1 in human lung cancer cells. Oncotarget, 8(3), 4181-4195. Sakakini, N., et al. (2016). A Positive Feed-forward Loop Associating EGR1 and PDGFA Promotes Proliferation and Self-renewal in Glioblastoma Stem Cells. J Biol Chem, 291(20), 10684-10699. Scharenberg, C. W., et al. (2002). The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood, 99(2), 507-512. Scharnhorst, V., et al. (2000). EGR-1 enhances tumor growth and modulates the effect of the Wilms' tumor 1 gene products on tumorigenicity. Oncogene, 19(6), 791-800. Scheicher, R., et al. (2015). CDK6 as a key regulator of hematopoietic and leukemic stem cell activation. Blood, 125(1), 90-101. Shin, S. Y., et al. (2012). 2'-Hydroxyflavanone induces apoptosis through Egr-1 involving expression of Bax, p21, and NAG-1 in colon cancer cells. Mol Nutr Food Res, 56(5), 761-774. Siegel, R. L., et al. (2018). Cancer statistics, 2018. CA Cancer J Clin, 68(1), 7-30. Singh, S. K., et al. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Res, 63(18), 5821-5828. Sobolewski, C., et al. (2015). Histone Deacetylase Inhibitors Activate Tristetraprolin Expression through Induction of Early Growth Response Protein 1 (EGR1) in Colorectal Cancer Cells. Biomolecules, 5(3), 2035-2055. Sukhatme, V. P., et al. (1988). A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell, 53(1), 37-43. Suzuki, H., et al. (2004). Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet, 36(4), 417-422. Svaren, J., et al. (2000). EGR1 target genes in prostate carcinoma cells identified by microarray analysis. J Biol Chem, 275(49), 38524-38531. Svaren, J., et al. (1996). NAB2, a corepressor of NGFI-A (Egr-1) and Krox20, is induced by proliferative and differentiative stimuli. Mol Cell Biol, 16(7), 3545-3553. Takaya, Y., et al. (1999). New type of febrifugine analogues, bearing a quinolizidine moiety, show potent antimalarial activity against Plasmodium malaria parasite. J Med Chem, 42(16), 3163-3166. Tao, X., et al. (2015). EGR1 induces tenogenic differentiation of tendon stem cells and promotes rabbit rotator cuff repair. Cell Physiol Biochem, 35(2), 699-709. Thiel, G., & Cibelli, G. (2002). Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol, 193(3), 287-292. Thiel, G., et al. (2000). The human transcriptional repressor protein NAB1: expression and biological activity. Biochim Biophys Acta, 1493(3), 289-301. Tian, T., et al. (2010). PTEN inhibits the migration and invasion of HepG2 cells by coordinately decreasing MMP expression via the PI3K/Akt pathway. Oncol Rep, 23(6), 1593-1600. Valent, P., et al. (2012). Cancer stem cell definitions and terminology: the devil is in the details. Nat Rev Cancer, 12(11), 767-775. Varnum-Finney, B., et al. (2000). Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med, 6(11), 1278-1281. Velu, C. S., et al. (2014). Therapeutic antagonists of microRNAs deplete leukemia-initiating cell activity. J Clin Invest, 124(1), 222-236. Virolle, T., et al. (2001). The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nat Cell Biol, 3(12), 1124-1128. Wang, B., et al. (2009). A key role for early growth response-1 and nuclear factor-kappaB in mediating and maintaining GRO/CXCR2 proliferative signaling in esophageal cancer. Mol Cancer Res, 7(5), 755-764. Wang, L. F., et al. (2018). The extracellular matrix protein mindin attenuates colon cancer progression by blocking angiogenesis via Egr-1-mediated regulation. Oncogene, 37(5), 601-615. Willert, K., et al. (2003). Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature, 423(6938), 448-452. Worringer, K. A., et al. (2014). The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes. Cell Stem Cell, 14(1), 40-52. Wynn, T. A. (2011). Integrating mechanisms of pulmonary fibrosis. J Exp Med, 208(7), 1339-1350. Xia, X., et al. (2018). Halofuginone-induced autophagy suppresses the migration and invasion of MCF-7 cells via regulation of STMN1 and p53. J Cell Biochem, 119(5), 4009-4020. Yan, L., et al. (2017). MiR-301b promotes the proliferation, mobility, and epithelial-to-mesenchymal transition of bladder cancer cells by targeting EGR1. Biochem Cell Biol, 95(5), 571-577. Yan, Y., et al. (2016). All-trans retinoic acids induce differentiation and sensitize a radioresistant breast cancer cells to chemotherapy. BMC Complement Altern Med, 16, 113. Yang, Y., et al. (2016). LL-37 stimulates the functions of adipose-derived stromal/stem cells via early growth response 1 and the MAPK pathway. Stem Cell Res Ther, 7(1), 58. Yin, C., et al. (2008). Differentiation therapy of hepatocellular carcinoma in mice with recombinant adenovirus carrying hepatocyte nuclear factor-4alpha gene. Hepatology, 48(5), 1528-1539. Zcharia, E., et al. (2012). Inhibition of matrix metalloproteinase-2 by halofuginone is mediated by the Egr1 transcription factor. Anticancer Drugs, 23(10), 1022-1031. Zhang, L., et al. (2012). BMP4 administration induces differentiation of CD133+ hepatic cancer stem cells, blocking their contributions to hepatocellular carcinoma. Cancer Res, 72(16), 4276-4285. Zhang, W., et al. (2018). Transcription factor EGR1 promotes differentiation of bovine skeletal muscle satellite cells by regulating MyoG gene expression. J Cell Physiol, 233(1), 350-362. Zhou, S., et al. (2001). The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med, 7(9), 1028-1034. Zhu, A. J., & Watt, F. M. (1999). beta-catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion. Development, 126(10), 2285-2298. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79058 | - |
| dc.description.abstract | 癌幹細胞具有較強的抗化療藥物以及轉移能力,因此不易治療根除,被認為是導致癌症復發及轉移的原因。Egr-1 為轉錄因子可以調控細胞的增生及凋亡,也會促使幹細胞的分化。而在癌症的研究中發現 Egr-1 同時作為促癌基因和抑癌基因,但是目前還不清楚 Egr-1 對於癌幹細胞的影響。本篇研究在大腸癌細胞株 DLD1 中過量表現及削弱 Egr-1,並藉由球體及群落形成檢測、群落抗藥性試驗、邊緣族群分析、大腸癌幹細胞標記表現量檢測以及轉移能力分析,發現 Egr-1 會透過抑制癌幹細胞的自我更新,降低其族群數量,以及促使分化。此外,我發現給予大腸癌細胞株 DLD1,常山植物的萃取物處理後,會促進 Egr-1 蛋白質的表現,並且也會降低癌幹細胞的族群數量及特性,代表著常山萃取物可能是透過促進 Egr-1 來達成抑制癌幹細胞的功效。未來可以利用這些藥物,使病患腫瘤組織中,癌幹細胞群減少甚至消失,進而降低癌症的復發以及轉移,增加治療的成功率。 | zh_TW |
| dc.description.abstract | Cancer stem cells (CSCs) are the small population cells in tumor and have the ability of self-renewal to maintain themselves and differentiation into various non-stem cancer cells. CSCs are responsible for tumor progression, drug resistance, metastasis and cancer recurrence. Early growth response-1 (Egr-1), a zinc finger transcription factor, is involved in regulation of cell proliferation, apoptosis and stem cell differentiation. In cancer, Egr-1 has a dual role as both an oncogene and a tumor suppressor. Therefore, Egr-1 may play an important role in CSCs. In this study, I demonstrated that Egr-1 could inhibited self-renewal ability of CSCs to form spheres and colonies. The ratio of side population and colorectal CSCs markers were reduced. In addition, Egr-1 could also suppress drug resistance and migration of CSCs. These data demonstrated that Egr-1 could reduce the number of CSCs in cancer through inhibition of self-renewal and inducing CSCs differentiation. Furthermore, after treatment of Dichroa febrifuga extract, Egr-1 protein expression was upregulated in colorectal cancer cells, and the abilities of CSCs, such as self-renewal and drug resistance, were inhibited. These evidences revealed that Dichroa febrifuga extract had an antitumor effect may associate with the induction of Egr-1. Therefore, Dichroa febrifuga extract might be useful for decreasing or even eliminating CSCs in tumor mass. This method might be a CSCs target therapy to prevent tumor recurrence and metastasis. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:40:26Z (GMT). No. of bitstreams: 1 ntu-107-R05b22021-1.pdf: 6077730 bytes, checksum: 1743250e38c3b18cfbb40a50882b1de1 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 中文摘要i
Abstractii 1. 文獻回顧1 1.1 大腸癌與癌幹細胞1 1.1.1 大腸癌1 1.1.2 癌幹細胞1 1.2 Early growth response gene 1 (Egr-1)4 1.2.1 概述4 1.2.2 調控細胞的生長與凋亡5 1.2.3 促進幹細胞的分化5 1.2.4 與癌症的關係6 1.2.5 與癌幹細胞的關係8 1.3 中草藥常山植物萃取物與純物質 Halofuginone (HF) 9 1.3.1 常山萃取物、常山鹼、Halofuginone (HF)9 1.3.2 Halofuginone (HF) 與癌症10 1.3.3 Halofuginone (HF) 與 Egr-112 2. 材料與方法14 2.1 細胞培養14 2.2 質體建構14 2.3 病毒製作15 2.4 病毒力價 (virus titer) 測定15 2.5 病毒轉染 (virus transfection)16 2.6 RNA萃取16 2.7 定量即時聚合酶連鎖反應 (quantitative real-time PCR, qRT-PCR)17 2.8 細胞蛋白質萃取17 2.9 十二烷基硫酸鈉聚丙烯醯胺膠體電泳 (Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, SDS-PAGE) 與西方墨點法 (Western blotting)17 2.10 抗藥性測試 (drug resistance)18 2.11 球體形成試驗 (sphere formation assay)19 2.12 群落形成 (colony formation assay) 及群落抗藥性試驗 (Drug resistance of colony formation assay)19 2.13 Transwell 細胞遷移試驗 (Transwell migration assay)19 2.14 邊緣族群 (side population)20 2.15 常山萃取物樣品製備21 2.16 統計分析21 3. 結果22 3.1 過量表現 Egr-1 會降低癌幹細胞的族群數量並且抑制自我更新22 3.2 削弱 Egr-1 增加癌幹細胞數量並且降低癌幹細胞進行分化22 3.3 常山萃取物促進 Egr-1 的蛋白質表現23 3.4 常山萃取物降低癌幹細胞數量24 3.5 Halofugione (HF) 促進 Egr-1 的蛋白質表現24 3.6 Halofugione 降低癌幹細胞的族群數量 25 4. 討論26 4.1 Egr-1 的影響26 4.1.1 Egr-1 抑制癌幹細胞的自我更新26 4.1.2 Egr-1 減少癌幹細胞的數量27 4.1.3 Egr-1 抑制癌幹細胞的抗藥性27 4.1.4 Egr-1 抑制癌細胞的轉移能力28 4.1.5 Egr-1 影響大腸分化基因的表現28 4.2 常山萃取物與 HF 的影響29 4.2.1 常山萃取物抑制癌細胞的生長29 4.2.2 常山萃取物促進 Egr-1 的表現,來抑制癌幹細胞29 4.2.3常山萃取物的成分組成30 4.2.4 HF促進 Egr-1 的表現,來抑制癌幹細胞31 5. 結果圖33 圖 1: 過量表現 Egr-1 會抑制癌幹細胞維持族群數量36 圖 2: 削弱 Egr-1 增加癌幹細胞的族群數量42 圖 3: 常山萃取物促進 DLD1 表現 Egr-149 圖 4: 常山萃取物降低癌幹細胞的族群數量52 圖 5: Halofuginone (HF) 促進 DLD1 表現 Egr-154 圖 6: Halofuginone 降低癌幹細胞的族群數量56 6. 附錄表56 附錄表 1. qRT-PCR 引子57 附錄表 2. 抗體59 7. 參考文獻60 附錄 – 英文版70 Abstract70 Introduction72 Material and Methods76 Results83 Discussion88 Figures93 Supplementary Tables101 References103 | |
| dc.language.iso | zh-TW | |
| dc.subject | 分化 | zh_TW |
| dc.subject | 大腸癌 | zh_TW |
| dc.subject | 癌幹細胞 | zh_TW |
| dc.subject | Egr-1 | zh_TW |
| dc.subject | 常山萃取物 | zh_TW |
| dc.subject | Egr-1 | en |
| dc.subject | colorectal cancer | en |
| dc.subject | differentiation | en |
| dc.subject | Dichroa febrifuga extract | en |
| dc.subject | cancer stem cell | en |
| dc.title | Egr-1 於大腸癌幹細胞之功能研究 | zh_TW |
| dc.title | The Role of Egr-1 in Colorectal Stem Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃楓婷,蔡素宜 | |
| dc.subject.keyword | 大腸癌,癌幹細胞,Egr-1,常山萃取物,分化, | zh_TW |
| dc.subject.keyword | colorectal cancer,cancer stem cell,Egr-1,Dichroa febrifuga extract,differentiation, | en |
| dc.relation.page | 106 | |
| dc.identifier.doi | 10.6342/NTU201803179 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-13 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科技學系 | zh_TW |
| dc.date.embargo-lift | 2023-08-24 | - |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-R05b22021-1.pdf 未授權公開取用 | 5.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
