Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79049
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林亮音zh_TW
dc.contributor.advisorLiang-In Linen
dc.contributor.author吳潔雯zh_TW
dc.contributor.authorKIT MAN NGen
dc.date.accessioned2021-07-11T15:39:40Z-
dc.date.available2024-02-28-
dc.date.copyright2018-10-11-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Lowenberg B, Downing JR, Burnett A. Acute myeloid leukemia. The New England journal of medicine 1999 Sep 30; 341(14): 1051-1062.

2. De Kouchkovsky I, Abdul-Hay M. 'Acute myeloid leukemia: a comprehensive review and 2016 update'. Blood cancer journal 2016 Jul 1; 6(7): e441.

3. Tenen DG. Disruption of differentiation in human cancer: AML shows the way. Nature reviews Cancer 2003 Feb; 3(2): 89-101.

4. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016 May 19; 127(20): 2391-2405.

5. Burnett A, Wetzler M, Lowenberg B. Therapeutic advances in acute myeloid leukemia. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2011 Feb 10; 29(5): 487-494.

6. Mayer RJ, Davis RB, Schiffer CA, Berg DT, Powell BL, Schulman P, et al. Intensive postremission chemotherapy in adults with acute myeloid leukemia. Cancer and Leukemia Group B. The New England journal of medicine 1994 Oct 6; 331(14): 896-903.

7. Small D. FLT3 mutations: biology and treatment. Hematology American Society of Hematology Education Program 2006: 178-184.

8. Stirewalt DL, Radich JP. The role of FLT3 in haematopoietic malignancies. Nature reviews Cancer 2003 Sep; 3(9): 650-665.

9. Swords R, Freeman C, Giles F. Targeting the FMS-like tyrosine kinase 3 in acute myeloid leukemia. Leukemia 2012 Oct; 26(10): 2176-2185.

10. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood 2002 Sep 1; 100(5): 1532-1542.

11. Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H, et al. Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene 2000 Feb 3; 19(5): 624-631.

12. Kiyoi H, Ohno R, Ueda R, Saito H, Naoe T. Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene 2002 Apr 11; 21(16): 2555-2563.

13. Choudhary C, Schwable J, Brandts C, Tickenbrock L, Sargin B, Kindler T, et al. AML-associated Flt3 kinase domain mutations show signal transduction differences compared with Flt3 ITD mutations. Blood 2005 Jul 1; 106(1): 265-273.

14. Smith CC, Wang Q, Chin CS, Salerno S, Damon LE, Levis MJ, et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature 2012 Apr 15; 485(7397): 260-263.

15. Levis M. Midostaurin approved for FLT3-mutated AML. Blood 2017 Jun 29; 129(26): 3403-3406.

16. Lamba JK. Genetic factors influencing cytarabine therapy. Pharmacogenomics 2009 Oct; 10(10): 1657-1674.

17. Larrosa-Garcia M, Baer MR. FLT3 Inhibitors in Acute Myeloid Leukemia: Current Status and Future Directions. Molecular cancer therapeutics 2017 Jun; 16(6): 991-1001.

18. Treiber DK, Shah NP. Ins and outs of kinase DFG motifs. Chemistry & biology 2013 Jun 20; 20(6): 745-746.

19. Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Molecular cancer therapeutics 2011 Dec; 10(12): 2298-2308.

20. Grullich C. Cabozantinib: a MET, RET, and VEGFR2 tyrosine kinase inhibitor. Recent results in cancer research Fortschritte der Krebsforschung Progres dans les recherches sur le cancer 2014; 201: 207-214.

21. Fellner C. Launch of Breakthrough Therapies Will Reshape Renal Cell Carcinoma Market. P & T : a peer-reviewed journal for formulary management 2016 Aug; 41(8): 523-525.

22. DeBerardinis RJ, Thompson CB. Cellular metabolism and disease: what do metabolic outliers teach us? Cell 2012 Mar 16; 148(6): 1132-1144.

23. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (New York, NY) 2009 May 22; 324(5930): 1029-1033.

24. Liberti MV, Locasale JW. The Warburg Effect: How Does it Benefit Cancer Cells? Trends in biochemical sciences 2016 Mar; 41(3): 211-218.

25. Bhattacharya B, Mohd Omar MF, Soong R. The Warburg effect and drug resistance. British journal of pharmacology 2016 Mar; 173(6): 970-979.

26. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nature reviews Cancer 2004 Nov; 4(11): 891-899.

27. Smeitink J, van den Heuvel L, DiMauro S. The genetics and pathology of oxidative phosphorylation. Nature reviews Genetics 2001 May; 2(5): 342-352.

28. Tagg SL, Foster PA, Leese MP, Potter BV, Reed MJ, Purohit A, et al. 2-Methoxyoestradiol-3,17-O,O-bis-sulphamate and 2-deoxy-D-glucose in combination: a potential treatment for breast and prostate cancer. British journal of cancer 2008 Dec 2; 99(11): 1842-1848.

29. Barban S, Schulze HO. The effects of 2-deoxyglucose on the growth and metabolism of cultured human cells. The Journal of biological chemistry 1961 Jul; 236: 1887-1890.

30. Zhang D, Li J, Wang F, Hu J, Wang S, Sun Y. 2-Deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy. Cancer letters 2014 Dec 28; 355(2): 176-183.

31. Stein M, Lin H, Jeyamohan C, Dvorzhinski D, Gounder M, Bray K, et al. Targeting tumor metabolism with 2-deoxyglucose in patients with castrate-resistant prostate cancer and advanced malignancies. The Prostate 2010 Sep 15; 70(13): 1388-1394.

32. Shutt DC, O'Dorisio MS, Aykin-Burns N, Spitz DR. 2-deoxy-D-glucose induces oxidative stress and cell killing in human neuroblastoma cells. Cancer biology & therapy 2010 Jun 1; 9(11): 853-861.

33. Zhang XD, Deslandes E, Villedieu M, Poulain L, Duval M, Gauduchon P, et al. Effect of 2-deoxy-D-glucose on various malignant cell lines in vitro. Anticancer research 2006 Sep-Oct; 26(5a): 3561-3566.

34. Livermore DM. Tigecycline: what is it, and where should it be used? The Journal of antimicrobial chemotherapy 2005 Oct; 56(4): 611-614.

35. Skrtic M, Sriskanthadevan S, Jhas B, Gebbia M, Wang X, Wang Z, et al. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer cell 2011 Nov 15; 20(5): 674-688.

36. Wang B, Ao J, Yu D, Rao T, Ruan Y, Yao X. Inhibition of mitochondrial translation effectively sensitizes renal cell carcinoma to chemotherapy. Biochemical and biophysical research communications 2017 Aug 26; 490(3): 767-773.

37. Bode AM, Dong Z. Post-translational modification of p53 in tumorigenesis. Nature reviews Cancer 2004 Oct; 4(10): 793-805.

38. Rivlin N, Brosh R, Oren M, Rotter V. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes & cancer 2011 Apr; 2(4): 466-474.

39. Freed-Pastor WA, Prives C. Mutant p53: one name, many proteins. Genes & development 2012 Jun 15; 26(12): 1268-1286.

40. Vousden KH, Lane DP. p53 in health and disease. Nature reviews Molecular cell biology 2007 Apr; 8(4): 275-283.

41. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nature protocols 2006; 1(5): 2315-2319.

42. Gautheron DC. Mitochondrial oxidative phosphorylation and respiratory chain: review. Journal of inherited metabolic disease 1984; 7 Suppl 1: 57-61.

43. Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annual review of cell and developmental biology 2011; 27: 441-464.

44. Wognum B, Yuan N, Lai B, Miller CL. Colony forming cell assays for human hematopoietic progenitor cells. Methods in molecular biology (Clifton, NJ) 2013; 946: 267-283.

45. Yu JS, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development (Cambridge, England) 2016 Sep 1; 143(17): 3050-3060.

46. Ward PS, Thompson CB. Signaling in control of cell growth and metabolism. Cold Spring Harbor perspectives in biology 2012 Jul 1; 4(7): a006783.

47. Ju HQ, Zhan G, Huang A, Sun Y, Wen S, Yang J, et al. ITD mutation in FLT3 tyrosine kinase promotes Warburg effect and renders therapeutic sensitivity to glycolytic inhibition. Leukemia 2017 Oct; 31(10): 2143-2150.

48. Srinivasan S, Guha M, Avadhani NG. Mitochondrial respiratory defects promote the Warburg effect and cancer progression. Molecular & cellular oncology 2016 Mar; 3(2): e1085120.

49. Logan A, Pell VR, Shaffer KJ, Evans C, Stanley NJ, Robb EL, et al. Assessing the Mitochondrial Membrane Potential in Cells and In Vivo using Targeted Click Chemistry and Mass Spectrometry. Cell metabolism 2016 Feb 9; 23(2): 379-385.

50. Tallman MS, Gilliland DG, Rowe JM. Drug therapy for acute myeloid leukemia. Blood 2005 Aug 15; 106(4): 1154-1163.

51. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, et al. Drug resistance in cancer: an overview. Cancers 2014 Sep 5; 6(3): 1769-1792.

52. Zheng HC. The molecular mechanisms of chemoresistance in cancers. Oncotarget 2017 Aug 29; 8(35): 59950-59964.

53. Farge T, Saland E, de Toni F, Aroua N, Hosseini M, Perry R, et al. Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism. Cancer discovery 2017 Jul; 7(7): 716-735.

54. Buzzai M, Licht JD. New molecular concepts and targets in acute myeloid leukemia. Current opinion in hematology 2008 Mar; 15(2): 82-87.

55. Taussig DC, Vargaftig J, Miraki-Moud F, Griessinger E, Sharrock K, Luke T, et al. Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34(-) fraction. Blood 2010 Mar 11; 115(10): 1976-1984.

56. Sarry JE, Murphy K, Perry R, Sanchez PV, Secreto A, Keefer C, et al. Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rgammac-deficient mice. The Journal of clinical investigation 2011 Jan; 121(1): 384-395.

57. Guan Y, Gerhard B, Hogge DE. Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood 2003 Apr 15; 101(8): 3142-3149.

58. Chatterjee A, Ghosh J, Ramdas B, Mali RS, Martin H, Kobayashi M, et al. Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3- and KIT-Driven Leukemogenesis. Cell reports 2014 Nov 20; 9(4): 1333-1348.

59. Song K, Li M, Xu X, Xuan LI, Huang G, Liu Q. Resistance to chemotherapy is associated with altered glucose metabolism in acute myeloid leukemia. Oncology letters 2016 Jul; 12(1): 334-342.

60. Liu Y, Fiskum G, Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. Journal of neurochemistry 2002 Mar; 80(5): 780-787.

61. Guay C, Madiraju SR, Aumais A, Joly E, Prentki M. A role for ATP-citrate lyase, malic enzyme, and pyruvate/citrate cycling in glucose-induced insulin secretion. The Journal of biological chemistry 2007 Dec 7; 282(49): 35657-35665.

62. Ou Y, Wang SJ, Jiang L, Zheng B, Gu W. p53 Protein-mediated regulation of phosphoglycerate dehydrogenase (PHGDH) is crucial for the apoptotic response upon serine starvation. The Journal of biological chemistry 2015 Jan 2; 290(1): 457-466.

63. Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 2013 Apr 4; 496(7443): 101-105.

64. Jiang P, Du W, Mancuso A, Wellen KE, Yang X. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 2013 Jan 31; 493(7434): 689-693.

65. Goldstein I, Yizhak K, Madar S, Goldfinger N, Ruppin E, Rotter V. p53 promotes the expression of gluconeogenesis-related genes and enhances hepatic glucose production. Cancer & metabolism 2013 Feb 4; 1(1): 9.

66. Fathi AT, Chen YB. Treatment of FLT3-ITD acute myeloid leukemia. American journal of blood research 2011; 1(2): 175-189.

67. El Fakih R, Rasheed W, Hawsawi Y, Alsermani M, Hassanein M. Targeting FLT3 Mutations in Acute Myeloid Leukemia. Cells 2018 Jan 8; 7(1).

68. Beffinger M, Skwarska A. The role of FLT3 kinase as an AML therapy target. Current pharmaceutical design 2012; 18(19): 2758-2765.

69. Chu SH, Small D. Mechanisms of resistance to FLT3 inhibitors. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy 2009 Feb-Apr; 12(1-2): 8-16.

70. Lu JW, Wang AN, Liao HA, Chen CY, Hou HA, Hu CY, et al. Cabozantinib is selectively cytotoxic in acute myeloid leukemia cells with FLT3-internal tandem duplication (FLT3-ITD). Cancer letters 2016 Jul 1; 376(2): 218-225.

71. Kurzrock R, Sherman SI, Ball DW, Forastiere AA, Cohen RB, Mehra R, et al. Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2011 Jul 1; 29(19): 2660-2666.

72. Smith CC, Lin K, Stecula A, Sali A, Shah NP. FLT3 D835 mutations confer differential resistance to type II FLT3 inhibitors. Leukemia 2015 Dec; 29(12): 2390-2392.

73. Huang A, Ju HQ, Liu K, Zhan G, Liu D, Wen S, et al. Metabolic alterations and drug sensitivity of tyrosine kinase inhibitor resistant leukemia cells with a FLT3/ITD mutation. Cancer letters 2016 Jul 28; 377(2): 149-157.

74. Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 2015 Apr 2; 520(7545): 57-62.

75. Mayers JR, Torrence ME, Danai LV, Papagiannakopoulos T, Davidson SM, Bauer MR, et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science (New York, NY) 2016 Sep 9; 353(6304): 1161-1165.

76. Lisek K, Campaner E, Ciani Y, Walerych D, Del Sal G. Mutant p53 tunes the NRF2-dependent antioxidant response to support survival of cancer cells. Oncotarget 2018 Apr 17; 9(29): 20508-20523.

77. Fenouille N, Bassil CF, Ben-Sahra I, Benajiba L, Alexe G, Ramos A, et al. The creatine kinase pathway is a metabolic vulnerability in EVI1-positive acute myeloid leukemia. Nature medicine 2017 Mar; 23(3): 301-313.

78. Sborov DW, Haverkos BM, Harris PJ. Investigational cancer drugs targeting cell metabolism in clinical development. Expert opinion on investigational drugs 2015 Jan; 24(1): 79-94.

79. Parmar S, Rundhaugen LM, Boehlke L, Riley M, Nabhan C, Raji A, et al. Phase II trial of arsenic trioxide in relapsed and refractory acute myeloid leukemia, secondary leukemia and/or newly diagnosed patients at least 65 years old. Leukemia research 2004 Sep; 28(9): 909-919.

80. Mullard A. FDA approves first-in-class cancer metabolism drug. Nature reviews Drug discovery 2017 Sep 1; 16(9): 593.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79049-
dc.description.abstract急性骨髓性白血病(Acute myeloid leukemia, AML)是一種骨髓性造血前驅細胞異常增生及分化所導致的血液惡性疾病,在AML患者中,以FLT3-ITD(Fms-like tyrosine kinase 3-internal tandem duplication) 基因突變最為常見,發生率約25-30%,並且與預後不良有關。因此,FLT3被認為是在AML治療上具有潛力的目標分子。
Cytarabine (Ara-C)是目前常用於治療AML病人的化療藥物之一,約60-80%病患經治療後得到完全緩解(complete remission),然而許多病患在於緩解後再復發或無法達到緩解,主要原因是患者體內的癌細胞對於化療藥物產生抗藥性。另外,在實驗室先前的研究中,發現低劑量的酪胺酸激酶抑制劑cabozantinib (XL-184)能夠抑制具有FLT3-ITD突變的AML細胞株MV4-11以及Molm-13的生長,可是,目前發現酪胺酸激酶抑制劑在臨床應用上同樣面臨著抗藥性問題的阻礙。因此,針對臨床上AML病人使用化療藥物和標靶藥物後可能所面臨的抗藥性問題,本實驗室先前利用MV4-11以及Molm-13兩株人類AML細胞株分別建立出三株具抗藥性的細胞株:MV4-11-R、MV4-11-XR以及Molm-13-XR。
結果顯示,三株抗藥性細胞株的生長速度明顯較母株增加。另外,我們分析三株抗藥性細胞株在FLT3及其下游訊息傳遞路徑中的蛋白表現,結果顯示三株具抗藥性的細胞株的AKT磷酸化程度都明顯高於母株細胞;AKT的活化可以調控細胞的能量代謝,影響細胞對於葡萄糖的攝取與利用。
我們利用RNA次世代定序(RNA-seq)分析抗藥性細胞與母株細胞在mRNA表達之差異。我們發現MV4-11-R中具差異性顯著上升與下降的基因分別與代謝路徑和p53訊息路徑有關,而MV4-11-XR和Molm-13-XR中具差異性顯著上升的基因同樣與代謝機制有關。因此,我們針對三株抗藥細胞株的代謝路徑進行探討。我們分別進行了葡萄糖攝取試驗、GAPDH活性試驗、乳酸產量試驗、ATP測定以及海馬生物能量代謝分析等。結果顯示,MV4-11-R、MV4-11-XR與Molm-13-XR三株抗藥細胞的代謝路徑有別於母株細胞,在三株抗藥細胞中都有發現他們對糖解作用的依賴性有增加的現象。接著,我們進行了代謝體分析,再合併先前RNA次世代定序的結果,最終在MV4-11-R、MV4-11-XR、Molm-13-XR中分別找出了6個、5個和1個有機會作為藥物標的的候選基因。
總體而言,實驗室所建立的三株抗藥性細胞株在代謝機制上有別於母株細胞。另外,在先前實驗室的研究中,已經發現MV4-11-R在p53基因序列上除了有原本母株細胞的p53 R248W突變以外,同時還增加了p53 D281G突變,而p53基因又與代謝路徑的調控有關,因此,p53 D281G突變可能是造成代謝路徑異常並誘導細胞抗藥性的發生的原因。
zh_TW
dc.description.abstractAcute myeloid leukemia (AML) is a malignant disease representing abnormal prolif-eration and differentiation of myeloid progenitor cells. An internal tandem duplication in the FLT3 gene (FLT3-ITD) is the most common genetic alterations in AML patients, with an incidence of about 25-30%, associated with poor prognosis. Therefore, FLT3 is con-sidered as a potential target molecule in AML treatment.
Cytarabine (Ara-C) is one of the chemotherapeutic drugs for the treatment of AML. The complete remission (CR) rate reaches 60-80% for AML patients after treatment. However, many patients relapse or unable to achieve remission and relapses results from the existence of chemoresistant cells, which is a major obstacle in cancer therapy.
Our previous studies demonstrated that low dose of cabozantinib (XL-184) was able to inhibit the growth of FLT3-ITD AML cell lines MV4-11 and Molm-13. It has been known that the clinical use of Tyrosine kinase inhibitor (TKI) for the cancer treatment might be hindered by drug resistance among some patients.
To better elucidate the drug resistance mechanisms of cytarabine and cabozantinib, we established three drug-resistant cell lines from MV4-11 and Molm-13 by increasing exposure to cytarabine or cabozantinib, including cytarabine-resistant MV4-11(MV4-11-R), cabozantinib-resistant MV4-11(MV4-11-XR) and cabozantin-ib-resistant-Molm-13(Molm-13-XR), respectively.
In our current study, we found that three drug-resistant cells proliferated more rapid-ly compared with the parental cells. Furthermore, we examined the downstream signaling pathways of FLT3. Western blotting analysis demonstrated the high expression of total FLT3, p-FLT3 and p-AKT among three resistant cell lines. Of them, PI3K/AKT/mTOR signaling is known to play a role in cell proliferation, survival and metabolism.
Next, we performed RNA-sequencing (RNA-seq) analysis to investigate the differ-ential expression genes (DEGs) between drug-resistant cell lines and parental cells. Up-regulated and down-regulated DEGs with significant difference in MV4-11-R are associ-ated with metabolic pathways and p53 signaling pathway, respectively. In addition, upreg-ulated DEGs with significances in MV4-11-XR and Molm-13-XR are also related to the metabolic pathways. Thus, we investigated the metabolic alterations of the three drug-resistant cell lines. We performed glycose uptake, GAPDH activity, lactate produc-tion, ATP content and Seahorse bioenergy metabolism analysis, etc. The results showed that MV4-11-R, MV4-11-XR and Molm-13-XR highly relied on glycolysis. Furthermore, we measured the alterations in metabolites between drug-resistant cells and parental cells. Herein, we combined both transcriptome and metabolome data, and found out 6, 5 and 1 candidate gene(s) in MV4-11-R, MV4-11-XR, and Molm-13-XR, respectively.
In general, the metabolism of three drug-resistant cell lines are different from parental cells. Moreover, our previous studies showed that MV4-11-R harbored p53 R248W and D281G mutations as MV4-11-P harbored p53 R248W mutation only. Therefore, the p53 D281G mutation may contribute to the cytarabine-resistance of MV4-11-R and induce drug resistance.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:39:40Z (GMT). No. of bitstreams: 1
ntu-107-R05424028-1.pdf: 12448014 bytes, checksum: 09d600e4539a7eab6af185658775ba42 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents目錄
目錄 ............................................................................................................................... I
圖目錄 .......................................................................................................................... VI
表目錄 ........................................................................................................................... X
縮寫表 .......................................................................................................................... XI
摘要 ............................................................................................................................. XII
Abstract ..................................................................................................................... XIV
第一章 前言 ................................................................................................................ 1
1.1. 急性骨髓性白血病(Acute Myeloid Leukemia, AML) ................................... 1
1.1.1. 急性骨髓性白血病之分類 ............................................................ 1
1.1.2. 急性骨髓性白血病之治療 ............................................................ 1
1.2. Fms-like tyrosine kinase 3 (FLT3) .................................................................. 2
1.3. Cytarabine (Ara-C) .......................................................................................... 3
1.4. 酪胺酸激酶抑制劑(Tyrosine kinase inhibitor, TKI) ...................................... 4
1.4.1. 酪胺酸激酶抑制劑(Tyrosine kinase inhibitor, TKI) ...................... 4
1.4.2. Cabozantinib (XL-184) ................................................................... 4
1.5. 代謝路徑(Metabolic pathway) ....................................................................... 5
1.5.1. 瓦氏效應(Warburg effect) .............................................................. 5
1.5.2. 氧化磷酸化(Oxidative phosphorylation) ....................................... 6
1.5.3. 2-deoxy-D-glucose (2-DG) ............................................................. 6
1.5.4. Tigecycline ...................................................................................... 6
1.6. p53 基因 ....................................................................................................... 7
第二章 研究目的 ....................................................................................................... 8
第三章 材料與方法 ................................................................................................... 9
3.1. 材料 ............................................................................................................... 9
3.1.1. 細胞株 ........................................................................................... 9
3.1.2. 儀器設備 ....................................................................................... 9
3.1.3. 藥品與試劑 .................................................................................. 11
3.1.4. 抗體 .............................................................................................. 14
3.1.5. 試劑組 .......................................................................................... 15
3.1.6. 藥品與試劑配置 .......................................................................... 16
3.2. 方法 .............................................................................................................. 19
3.2.1. 細胞培養 ...................................................................................... 19
3.2.2. 細胞抑殺試驗(MTS assay) ........................................................... 19
3.2.3. 細胞毒性及活性試驗(ACP assay) ............................................... 19
3.2.4. 細胞生長曲線(Cell proliferation curve) ....................................... 20
3.2.5. 細胞萃取物製備 .......................................................................... 20
3.2.6. 蛋白質定量 .................................................................................. 20
3.2.7. 西方點墨法(Western blot analysis) .............................................. 21
3.2.8. RNA萃取 ..................................................................................... 22
3.2.9. 反轉錄聚合酶連鎖反應(q-RT-PCR) ............................................ 22
3.2.10. 聚合酶連鎖反應(PCR) ................................................................. 23
3.2.11. 電泳分析 ...................................................................................... 24
3.2.12. 聚合酶連鎖反應產物純化(Clean-up) .......................................... 24
3.2.13. PCR產物序列分析(Sequencing) ................................................. 25
3.2.14. 即時監控聚合酶連鎖反應(Real-time PCR) ................................ 25
3.2.15. RNA次世代定序分析(RNA-seq) ................................................ 26
3.2.16. 基因選殖(Gene cloning) ............................................................... 27
3.2.17. 細胞群落形成試驗(Colony forming assay) ................................. 30
3.2.18. 葡萄糖攝取試驗(Glucose uptake assay) ...................................... 31
3.2.19. GAPDH活性試驗(GAPDH activity assay) ................................. 32
3.2.20. 乳酸產量試驗(Lactate production assay) ..................................... 32
3.2.21. ATP含量之測定(ATP assay) ........................................................ 33
3.2.22. 海馬生物能量代謝分析(seahorse) ............................................... 34
3.2.23. 細胞內活性氧化物含量之測定(ROS) ......................................... 36
3.2.24. 細胞內粒線體膜電位之分析(ΔΨm) ............................................ 37
3.2.25. 細胞內粒線體含量之測定(Mitochondrial mass) ......................... 38
3.2.26. 代謝體分析(Metabolomics analysis) ............................................ 39
3.2.27. 統計方法 ...................................................................................... 39
第四章 實驗結果 ...................................................................................................... 40
4.1. 對cytarabine (Ara-C)具抗藥性的細胞株MV4-11-R ......................................... 40
4.1.1. Cytarabine (Ara-C)對MV4-11細胞之毒殺效果 ............................... 40
4.1.2. MV4-11-R與母株細胞的生長速度和細胞特性 ................................ 40
4.1.3. MV4-11-R之FLT3以及其訊息傳遞下游分子的活化情形 ............. 41
4.1.4. MV4-11-R與母株細胞p53序列之分析 ............................................ 41
4.1.5. MV4-11-R與母株細胞在轉錄體之差異 ............................................ 42
4.1.6. MV4-11-R與母株細胞在葡萄糖代謝上之差異 ................................ 43
4.1.7. MV4-11-R與母株細胞在產能機制上之差異 .................................... 44
4.1.8. MV4-11-R與母株細胞粒線體生成與功能上之差異 ........................ 44
4.1.9. 抑制糖解作用或粒線體有氧呼吸作用對MV4-11-R之影響 ........... 45
4.1.10. MV4-11-R與母株細胞代謝體之分析 ................................................ 46
4.2. 對cabozantinib (XL-184)具抗藥性的細胞MV4-11-XR .................................... 47
4.2.1. Cabozantinib (XL-184)對MV4-11-XR細胞之毒殺效果 .................. 47
4.2.2. MV4-11-XR與母株細胞的生長速度和細胞特性 ............................. 48
4.2.3. MV4-11-XR之FLT3以及其訊息傳遞下游分子的活化情形 .......... 48
4.2.4. MV4-11-XR與母株細胞在轉錄體上之差異 ..................................... 49
4.2.5. MV4-11-XR與母株細胞在葡萄糖代謝上之差異 ............................. 49
4.2.6. MV4-11-XR與母株細胞在產能機制上之差異 ................................. 50
4.2.7. MV4-11-XR與母株細胞粒線體生成與功能上之差異 ..................... 51
4.2.8. 抑制糖解作用或粒線體有氧呼吸作用對MV4-11-XR之影響 ........ 51
4.2.9. MV4-11-XR與母株細胞代謝體之分析 ............................................. 52
4.3. 對cabozantinib (XL-184)具抗藥性的細胞Molm-13-XR .................................. 53
4.3.1. Cabozantinib (XL-184)對Molm-13細胞之毒殺效果 ....................... 53
4.3.2. 比較Molm-13-XR與母株細胞的生長速度和細胞特性 .................. 53
4.3.3. Molm-13-XR之FLT3以及其訊息傳遞下游分子的活化情形 ........ 54
4.3.4. Molm-13- XR與母株細胞在轉錄體之差異 ...................................... 54
4.3.5. Molm-13- XR與母株細胞在葡萄糖代謝上之差異 .......................... 55
4.3.6. Molm-13-XR與母株細胞在產能機制上之差異 ............................... 55
4.3.7. Molm-13- XR與母株細胞在粒線體生成與功能上之差異 .............. 56
4.3.8. 抑制糖解作用或粒線體有氧呼吸作用對MV4-11-XR之影響 ........ 56
4.3.9. Molm-13- XR與母株細胞代謝體之分析 .......................................... 57
第五章 討論 .............................................................................................................. 58
第六章 參考文獻 ...................................................................................................... 66
圖 .................................................................................................................................. 76
附圖 ............................................................................................................................ 121
表 ................................................................................................................................ 133
附表 ............................................................................................................................ 145
-
dc.language.isozh_TW-
dc.title探討具抗藥性之FLT3-ITD急性骨髓性白血病代謝機制的改變zh_TW
dc.titleMetabolic Alterations of Drug-Resistance Acute Myeloid Leukemia Harboring FLT3-ITD Mutationen
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee胡忠怡;郭靜穎;歐大諒;田蕙芬zh_TW
dc.contributor.oralexamcommitteeChung-Yi Hui;Ching-Ying Kuo;Da-Liang Ou;Hwei-Fang Tienen
dc.subject.keyword急性骨髓性白血病,FLT3-ITD,Cytarabine (Ara-C),Cabozantinib (XL-184),抗藥性,zh_TW
dc.subject.keywordAcute myeloid leukemia,FLT3-ITD,Cytarabine (Ara-C),Cabozantinib (XL-184),Drug-resistance,en
dc.relation.page146-
dc.identifier.doi10.6342/NTU201802091-
dc.rights.note未授權-
dc.date.accepted2018-08-13-
dc.contributor.author-college醫學院-
dc.contributor.author-dept醫學檢驗暨生物技術學研究所-
dc.date.embargo-lift2023-10-11-
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-106-2.pdf
  目前未授權公開取用
12.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved