Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79024
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林招松
dc.contributor.authorWan-Shan Kangen
dc.contributor.author康菀珊zh_TW
dc.date.accessioned2021-07-11T15:37:32Z-
dc.date.available2021-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-14
dc.identifier.citation[1] T.M. Tritt, M.A. Subramanian, Thermoelectric materials, phenomena, and applications: a bird's eye view, MRS Bull. 31 (2006) 188-198.
[2] P. Aranguren, D. Astrain, A. Rodríguez, A. Martínez, Experimental investigation of the applicability of a thermoelectric generator to recover waste heat from a combustion chamber, Appl. Energy 152 (2015) 121-130.
[3] http://www.csc.com.tw/CSC/hr/csr_2017/in/in7.htm,中鋼公司企業社會責任網。
[4] C. Liu, P. Chen, K. Li, A 1 kW thermoelectric generator for low-temperature geothermal resources, 39th Workshop on Geothermal Reservoir Engineering (2014).
[5] G.J. Snyder, Small thermoelectric generators, Electrochem. Soc. Interface 17 (2008) 54-56.
[6] S.J. Kim, J.H. We, B.J. Cho, A wearable thermoelectric generator fabricated on a glass fabric, Energy Environ. Sci. 7 (2014) 1959-1965.
[7] M. Hyland, H. Hunter, J. Liu, E. Veety, D. Vashaee, Wearable thermoelectric generators for human body heat harvesting, Appl. Energy 182 (2016) 518-524.
[8] Y. Zhou, J. Yu, Design optimization of thermoelectric cooling systems for applications in electronic devices, Int. J. Refrig. 35 (2012) 1139-1144.
[9] J. Wang, X.J. Zhao, Y.X. Cai, C. Zhang, W.W. Bao, Experimental study on the thermal management of high-power LED headlight cooling device integrated with thermoelectric cooler package, Energy Convers. Manag. 101 (2015) 532-540.
[10] L.D. Hicks, M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B 47 (1993) 12727-12731.
[11] L.D. Hicks, M.S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B 47 (1993) 16631-16634.
[12] L.D. Hicks, T.C. Harman, X. Sun, M.S. Dresselhaus, Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B 53 (1996) R10493-R10496.
[13] J. He, J. Xu, G. Liu, X. Tan, H. Shao, Z. Liu, J. Xu, J. Jiang, H. Jiang, Enhanced power factor in the promising thermoelectric material SnPbxTe prepared via zone-melting, RSC Adv. 5 (2015) 59379-59383.
[14] L. Han, S.H. Spangsdorf, N.V. Nong, L.T. Hung, Y.B. Zhang, H.N. Pham, Y.Z. Chen, A. Roch, L. Stepien, N. Pryds, Effects of spark plasma sintering conditions on the anisotropic thermoelectric properties of bismuth antimony telluride, RSC Adv. 6 (2016) 59565-59573.
[15] L.D. Alegria, M.D. Schroer, A. Chatterjee, G.R. Poirier, M. Pretko, S.K. Patel, J.R. Petta, Structural and electrical characterization of Bi2Se3 nanostructures grown by metal-organic chemical vapor deposition, Nano Lett. 12 (2012) 4711-4714.
[16] S.E. Harrison, S. Li, Y. Huo, B. Zhou, Y.L. Chen, J.S. Harris, Two-step growth of high quality Bi2Te3 thin films on Al2O3 (000l) by molecular beam epitaxy, Appl. Phys. Lett. 102 (2013) 171906.
[17] Z. Zeng, P. Yang, Z. Hu, Temperature and size effects on electrical properties and thermoelectric power of bismuth telluride thin films deposited by co-sputtering, Appl. Surf. Sci. 268 (2013) 472-476.
[18] F. Xiao, C. Hangarter, B. Yoo, Y. Rheem, K.H. Lee, N.V. Myung, Recent progress in electrodeposition of thermoelectric thin films and nanostructures, Electrochim. Acta 53 (2008) 8103-8117.
[19] C. Boulanger, Thermoelectric material electroplating: a historical review, J. Electron. Mater. 39 (2010) 1818-1827.
[20] M. Martín-González, O. Caballero-Calero, P. Díaz-Chao, Nanoengineering thermoelectrics for 21st century: energy harvesting and other trends in the field, Renew. Sust. Energ. Rev. 24 (2013) 288-305.
[21] R. Rostek, N. Stein, C. Boulanger, A review of electroplating for V-VI thermoelectric films: from synthesis to device integration, J. Mater. Res. 30 (2015) 2518-2543.
[22] T.M. Tritt, Holey and unholey semiconductors, Science 283 (1999) 804-805.
[23] H.J. Goldsmid, Introduction to Thermoelectricity, Springer, New York, 2010.
[24] H. Lee, W. Lee, J.Y. Kim, M.J. Ko, K. Kim, K. Seo, D. Lee, H. Kim, Highly dense and crystalline CuInSe2 thin films prepared by single bath electrochemical deposition, Electrochim. Acta 87 (2013) 450-456.
[25] C.S. Chiang, W.H. Lee, T.W. Chang, Y.H. Su, Improving conversion efficiency of co-electrodeposited CuInSe2 thin film solar cells with substrate and solution heating, J. Appl. Electrochem. 45 (2015) 549-556.
[26] S. Li, M.S. Toprak, H.M.A. Soliman, J. Zhou, M. Muhammed, D. Platzek, E. Müller, Fabrication of nanostructured thermoelectric bismuth telluride thick films by electrochemical deposition, Chem. Mater. 18 (2006) 3627-3633.
[27] S. Li, H.M.A. Soliman, J. Zhou, M.S. Toprak, M. Muhammed, D. Platzek, P. Ziolkowski, E. Müller, Effects of annealing and doping on nanostructured bismuth telluride thick films, Chem. Mater. 20 (2008) 4403-4410.
[28] W. Glatz, L. Durrer, E. Schwyter, C. Hierold, Novel mixed method for the electrochemical deposition of thick layers of Bi2+xTe3−x with controlled stoichiometry, Electrochim. Acta 54 (2008) 755-762.
[29] 周韋辰,Bi-Te-Se三元熱電厚膜製備及性質研究,台灣大學碩士論文,2016年7月。
[30] D. Del Frari, S. Diliberto, N. Stein, C. Boulanger, J.M. Lecuire, Pulsed electrodeposition of (Bi1−xSbx)2Te3 Thermoelectric Thin Films, J. Appl. Electrochem. 36 (2006) 449-454.
[31] S.K. Lim, M.Y. Kim, T.S. Oh, Thermoelectric properties of the bismuth–antimony–telluride and the antimony–telluride films processed by electrodeposition for micro-device applications, Thin Solid Films 517 (2009) 4199-4203.
[32] F.H. Li, W. Wang, Electrodeposition of p-type BixSb2−xTey thermoelectric film from dimethyl sulfoxide solution, Electrochim. Acta 55 (2010) 5000-5005.
[33] C. Schumacher, K.G. Reinsberg, R. Rostek, L. Akinsinde, S. Baessler, S. Zastrow, G. Rampelberg, P. Woias, C. Detavernier, J.A.C. Broekaert, J. Bachmann, K. Nielsch, Optimizations of pulsed plated p and n-type Bi2Te3-based ternary compounds by annealing in different ambient atmospheres, Adv. Energy Mater. 3 (2013) 95-104.
[34] X. Li, E. Koukharenko, I.S. Nandhakumar, J. Tudor, S.P. Beeby, N.M. White, High density p-Type Bi0.5Sb1.5Te3 nanowires by electrochemical templating through ion-track lithography ,Phys. Chem. Chem. Phys. 11 (2009) 3584-3590.
[35] F. Li, W. Wang, Electrodeposition of BixSb2−xTey thermoelectric thin films from nitric acid and hydrochloric acid systems, Appl. Surf. Sci. 255 (2009) 4225-4231.
[36] L. Qiu, J. Zhou, X. Cheng, R. Ahuja, Electrochemical deposition of Bi2Te3-based thin films, J. Phys. Chem. Solids 71 (2010) 1131-1136.
[37] 康菀珊,電鍍電位與鍍液離子濃度和pH值對電鍍碲化鉍的影響,台灣大學碩士論文,2012年7月。
[38] D.M. Rowe, CRC Handbook of Thermoelectrics, CRC Press LLC, New York, 1995.
[39] M.S. Dresslhaus, G. Dresslhaus, X. Sun, Z. Zhang, S.B. Cronin, T. Koga, J.Y. Ying, G. Chen, The promise of low-dimensional thermoelectric materials, Microscale Therm. Eng. 3 (1999) 89-100.
[40] L.D. Zhao, B.P. Zhang, W.S, Liu, J.F. Li, Effect of mixed grain sizes on thermoelectric performance of Bi2Te3 compound, J. Appl. Phys. 105 (2009) 023704.
[41] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edition, John Wiley & Sons, New York, 2001.
[42] N. Kanani, Electroplating-Basic Principles, Process and Practice, 1st edition, Elsevier, Netherlands, 2004.
[43] N. Ibl, Some theoretical aspects of pulse electrolysis, Surf. Technol. 10 (1980) 81-104.
[44] R.K. Pandey, S.N. Sahu, S. Chandra, Handbook of Semiconductor Electrodeposition, Marcel Dekker, New York, 1996, pp. 50-52.
[45] R.D. Engelken, Ionic Electrodeposition of II-VI and III-V Compounds, J. Electrochem. Soc. 135 (1988) 834-839.
[46] H. Bando, K. Koizumi, Y. Oikawa, K. Daikohara, V.A. Kulbachinskii, H. Ozaki, The time-dependent process of oxidation of the surface of Bi2Te3 studied by X-ray photoelectron spectroscopy, J. Phys.: Condens. Matter 12 (2000) 5607-5616.
[47] J.R. Drabble, C.H.L. Goodman, Chemical bonding in bismuth telluride, J. Phys. Chem. Solids 5 (1958) 142-144.
[48] T. Caillat, M. Carle, P. Pierrat, H. Scherrer, S. Scherrer, Thermoelectric properties of (BixSb1−x)2Te3 single crystal solid solutions grown by the T.H.M method, J. Phys. Chem. Solids 53 (1992) 1121-1129.
[49] M. Martín-González, A.L. Prieto, R. Gronsky, T. Sands, A.M. Stacy, High-density 40 nm diameter Sb-Rich Bi2−xSbxTe3 nanowires arrays, Adv. Mater. 15 (2003) 1003-1006.
[50] D. Del Frari, S. Diliberto, N. Stein, C. Boulanger, J.M. Lecuire, Comparative study of the electrochemical preparation of Bi2Te3, Sb2Te3, and (BixSb1−x)2Te3 films, Thin Solid Films 483 (2005) 44-49.
[51] J. Kuleshova, E. Koukharenko, X. Li, N. Frety, I. S. Nandhakumar, J. Tudor, S.P. Beeby, N.M. White, Optimization of the electrodeposition process of high-performance bismuth antimony telluride compounds for thermoelectric applications, Langmuir 26 (2010) 16980-16985.
[52] V. Richoux, S. Diliberto, C. Boulanger, Pulsed electroplating: A derivate form of electrodeposition for improvement of (Bi1−xSbx)2Te3 thin films, J. Electron. Mater. 39 (2010) 1914-1919.
[53] Y. Zheng, H. Xie, S. Shu, Y. Yan, H. Li, X. Tang, High-temperature mechanical and thermoelectric properties of p-type Bi0.5Sb1.5Te3 commercial zone melting ingots, J. Electron. Mater. 43 (2014) 2017-2022.
[54] J. Heinze, A. Rasche, M. Pageals, B. Geschke, On the origin of the so-called nucleation loop during electropolymerization of conducting polymers, J. Phys. Chem. 111 (2007) 989-997.
[55] I. Danaee, Theoretical and experimental studies of layer by layer nucleation and growth of palladium on stainless steel 316L, Chem. Aust. 24 (2013) 128-136.
[56] W.S. Kang, W.C. Chou, W.J. Li, T.H. Shen, C.S. Lin, Electrodeposition of Bi2Te3-based p and n-type ternary thermoelectric compounds in chloride baths, Thin Solid Films 660 (2018) 108-119.
[57] P. Cowache, D. Lincot, J. Vedel, Cathodic codeposition of cadmium telluride on conducting glass, J. Electrochem. Soc. 136 (1989) 1646-1650.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79024-
dc.description.abstract熱電材料可將電能與熱能交互轉換,可利用溫差發電,也可通電產生溫差以冷卻或控溫,在塊材與薄膜熱電材料的應用上,皆已有產業技術領導廠商,唯獨厚膜熱電材料尚未出現明顯技術領先者,而相較於蒸鍍、濺鍍等真空製程,電化學沉積法具備低成本、成膜速度快等特性,對於開發熱電厚膜元件有相當大的優勢,本研究將探討各電鍍參數與三元低溫熱電材料碲化鉍銻還原特性和微結構之效應。
Bi0.5Sb1.5Te3熱電材料的電鍍由於物種彼此間的還原電位差異大,很難同時兼顧鍍層微結構的緻密性與成分比例,而藉由電化學循環伏安分析可檢測錯合劑濃度對BiIII、SbIII和TeIV離子還原行為的影響。透過氯離子(Cl−)與BiIII、SbIII和TeIV離子的錯合可調控還原電位,將三者間還原峰位置的差異由287 mV減少至150 mV。在0.35 M鹽酸,1 mM BiIII + 10 mM SbIII + 7.5 mM TeIV + 0.1 M酒石酸+ 0.5 M氯化鈉的鍍液條件於−90 mV下定電位電鍍10分鐘可獲得Bi0.49Sb1.45Te3.06鍍層,電鍍初期鍍層結構緻密,但由於電極表面離子濃度逐步消耗,還原最終由擴散控制主導,使鍍層結構和表面粗糙度隨電鍍時間增加而變得鬆散。
藉由脈衝電鍍工作週期的調控,可控制電極表面與鍍液界面的離子濃度,在電鍍電位−90 mV、休鍍電流0 A、工作週期91%、0.09 Hz、脈衝次數480次時,可獲得厚約4.5 μm,球狀的Bi0.45Sb1.19Te3.36鍍層,但隨著脈衝次數增加,鍍層球狀顆粒的沉積速率不一,導致鍍層結構變得鬆散,此結構的變化可對應到循環伏安掃描結果中成核圈的逐漸變小直到完全消失。鍍層粗糙度上升會使電阻率上升以及功率因子下降,但並未對Seebeck係數造成明顯影響,最佳的功率因子出現在脈衝次數216次,2.0 μm厚的Bi0.45Sb1.22Te3.33鍍層,其室溫下的Seebeck係數和功率因子分別為+150 μV/K和150 μW/m∙K2。在鍍層和金底材界面處觀察到一碲含量富集層,為獲得緻密碲化鉍銻電鍍鍍層的良好熱電性質,需考慮其電阻與未被補償的歐姆壓降。
zh_TW
dc.description.abstractThermoelectric (TE) materials can transfer electricity to heat, and vice versa, which can be applied to thermoelectric power generator or cooler. The applications of thermoelectric materials are generally divided into bulk, thick film, and thin film. The manufacture processes of bulk and thin film are much well developed than those of thick film. Compared with the vacuum systems, such as evaporation and sputtering, electrochemical deposition can fabricate thick film at lower cost and higher deposition rate. The main object of this dissertation is to develop the co-deposition process of ternary Bi0.5Sb1.5Te3 thick film TE materials.
The obstacle of co-deposition Bi0.5Sb1.5Te3 is the large reduction potential difference among BiIII, SbIII, and TeIV, which makes microstructure and composition not be controlled at the same time. The complexation of Cl− with BiIII, SbIII, and TeIV reduces the difference of position of cathodic peaks from 287 mV to 150 mV. Bi0.49Sb1.45Te3.06 deposit was obtained by potentiostatic deposition at −90 mV for 10 min in the solution containing 1 mM BiIII, 10 mM SbIII, 7.5 mM TeIV, 0.1 M tartaric acid, 0.5 M NaCl, and 0.35 M HCl. However, deposit roughness became larger with continued electroplating when the reduction reaction turned into diffusion control.
The ions concentration at electrode/electrolyte interface can be controlled by the parameters of pulsed electrodeposition. A compact Bi0.45Sb1.19Te3.36 deposit with a thickness of around 4.5 μm and spherical morphology was obtained by pulsed deposition at −90 mV deposition potential, 0 A resting current, 91% duty cycle, 0.09 Hz for 480 cycles. As the deposition cycle was increased, electroplating of p-type deposit proceeded on selected existing grains, resulting in nodular and dendritic grains developed on top of a compact under layer. Meanwhile, the nucleation loop in cyclic voltammograms disappeared. The loose structure associated with nodular and dendritic p-type grains resulted in an increased resistance and decreased power factor, but slightly influenced the Seebeck coefficient. The p-type Bi0.45Sb1.22Te3.33 film with optimal thermoelectric properties was obtained via pulsed deposition with a thickness of around 2 μm and had a Seebeck coefficient of +150 μV/K and a power factor of 150 μW/m·K2 at room temperature. The presence of a distinct Te-rich layer was observed at the p-type film/substrate interface and the electric resistance and uncompensated ohmic drop caused by this layer need to be considered for the electrodeposition of a compact p-type Bi-Sb-Te film with optimal TE properties.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:37:32Z (GMT). No. of bitstreams: 1
ntu-107-D01527002-1.pdf: 3636476 bytes, checksum: 4fb02497f8faf6ab620c74ae7aab9642 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
總目錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
第二章 文獻回顧 3
2.1 熱電效應 3
2.2 熱電優值 4
2.2.1 提升熱電優值之困難 5
2.2.2 提升熱電優值之方法 6
2.3 電化學基本原理 9
2.3.1 循環伏安原理(Cyclic voltammetry) 9
2.3.2 電鍍 10
2.3.2.1 脈衝電鍍 13
2.3.2.2 化合物電鍍機制 17
2.4 碲化鉍銻 19
2.4.1 基本性質 19
2.4.2 電鍍碲化鉍銻鍍層 22
第三章 實驗方法與步驟 25
3.1三極電化學系統與實驗前準備 26
3.2 循環伏安掃描 26
3.3 三元碲化鉍銻電鍍鍍層製備 27
3.3.1 定電位電鍍 27
3.3.2 脈衝電鍍 27
3.4 鍍層分析 28
3.4.1 微結構分析 28
3.4.2 熱電性質量測 29
第四章 結果與討論 31
4.1 氯離子濃度對還原行為之影響 31
4.2 電鍍三元碲化鉍銻 34
4.2.1 定電位電鍍 34
4.2.1.1 電鍍電位與時間 34
4.2.1.2 鹽酸濃度 37
4.2.1.3 鍍液攪拌 39
4.2.2 脈衝電鍍 40
4.2.2.1 工作週期、頻率與脈衝次數 40
4.2.2.2 鍍液溫度 45
4.2.2.3微機電元件電鍍 47
4.3 熱電性質量測 49
4.4 鍍層無法維持緻密度之成因探討 50
4.4.1 成核圈之變化 50
4.4.2 碲富集層 52
第五章 結論 53
第六章 未來研究方向 55
參考文獻 56
dc.language.isozh-TW
dc.title三元碲化鉍銻電化學還原行為與微結構控制及熱電性質zh_TW
dc.titleElectrochemical Reduction Behavior, Microstructure Control and Thermoelectric Properties of Bismuth Antimony Tellurideen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.oralexamcommittee蔡文達,莊東漢,廖建能,李文錦
dc.subject.keyword碲化鉍銻,熱電,電鍍,Seebeck係數,循環伏安,zh_TW
dc.subject.keywordbismuth antimony telluride,thermoelectric,electrodeposition,Seebeck coefficient,cyclic voltammetry,en
dc.relation.page60
dc.identifier.doi10.6342/NTU201803398
dc.rights.note有償授權
dc.date.accepted2018-08-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-D01527002-1.pdf
  目前未授權公開取用
3.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved