請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79019
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃正雅 | |
dc.contributor.author | Yu-An Chen | en |
dc.contributor.author | 陳郁安 | zh_TW |
dc.date.accessioned | 2021-07-11T15:37:07Z | - |
dc.date.available | 2023-10-09 | |
dc.date.copyright | 2018-10-09 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-14 | |
dc.identifier.citation | 1. Peterson DS, Fling BW, Mancini M, Cohen RG, Nutt JG, Horak FB. Dual-task interference and brain structural connectivity in people with Parkinson's disease who freeze. J Neurol Neurosurg Psychiatry. 2015;86:786-792.
2. Wu T, Hallett M. A functional MRI study of automatic movements in patients with Parkinson's disease. Brain. 2005;128:2250-2259. 3. Kelly VE, Eusterbrock AJ, Shumway-Cook A. A review of dual-task walking deficits in people with Parkinson's disease: motor and cognitive contributions, mechanisms, and clinical implications. Parkinsons Dis. 2012;2012:918719. 4. Kang GA, Bronstein JM, Masterman DL, Redelings M, Crum JA, Ritz B. Clinical characteristics in early Parkinson's disease in a central California population-based study. Mov Disord. 2005;20:1133-1142. 5. Olanow CW, Watts RL, Koller WC. An algorithm (decision tree) for the management of Parkinson's disease (2001): treatment guidelines. Neurology. 2001;56:S1-S88. 6. Rudzinska M, Bukowczan S, Stozek J, et al. Causes and consequences of falls in Parkinson disease patients in a prospective study. Neurol Neurochir Pol. 2013;47:423-430. 7. Giladi N, Shabtai H, Simon ES, Biran S, Tal J, Korczyn AD. Construction of freezing of gait questionnaire for patients with Parkinsonism. Parkinsonism Relat Disord. 2000;6:165-170. 8. Amboni M, Cozzolino A, Longo K, Picillo M, Barone P. Freezing of gait and executive functions in patients with Parkinson's disease. Mov Disord. 2008;23:395-400. 9. Beck EN, Ehgoetz Martens KA, Almeida QJ. Freezing of Gait in Parkinson's Disease: An Overload Problem? PLoS One. 2015;10:e0144986. 10. Shine JM, Matar E, Ward PB, et al. Differential neural activation patterns in patients with Parkinson's disease and freezing of gait in response to concurrent cognitive and motor load. PLoS One. 2013;8:e52602. 11. Tard C, Delval A, Duhamel A, Moreau C, Devos D, Dujardin K. Specific Attentional Disorders and Freezing of Gait in Parkinson's Disease. J Parkinsons Dis. 2015;5:379-387. 12. Shumway-Cook A, Woollacott M, Kerns KA, Baldwin M. The effects of two types of cognitive tasks on postural stability in older adults with and without a history of falls. J Gerontol A Biol Sci Med Sci. 1997;52:M232-240. 13. Brown RG, Marsden CD. Dual task performance and processing resources in normal subjects and patients with Parkinson's disease. Brain. 1991;114 ( Pt 1A):215-231. 14. Laessoe U, Hoeck HC, Simonsen O, Voigt M. Residual attentional capacity amongst young and elderly during dual and triple task walking. Hum Mov Sci. 2008;27:496-512. 15. Nieuwhof F, Bloem BR, Reelick MF, et al. Impaired dual tasking in Parkinson's disease is associated with reduced focusing of cortico-striatal activity. Brain. 2017;140:1384-1398. 16. Bloem BR, Grimbergen YA, van Dijk JG, Munneke M. The 'posture second' strategy: a review of wrong priorities in Parkinson's disease. J Neurol Sci. 2006;248:196-204. 17. Heinzel S, Maechtel M, Hasmann SE, et al. Motor dual-tasking deficits predict falls in Parkinson's disease: A prospective study. Parkinsonism Relat Disord. 2016;26:73-77. 18. O’Connell E, Guidon M. Fear of falling and dual-task performance in people with Parkinson’s disease. European Journal of Physiotherapy. 2016;18:167-172. 19. Yogev G, Giladi N, Peretz C, Springer S, Simon ES, Hausdorff JM. Dual tasking, gait rhythmicity, and Parkinson's disease: which aspects of gait are attention demanding? Eur J Neurosci. 2005;22:1248-1256. 20. O'Shea S, Morris ME, Iansek R. Dual task interference during gait in people with Parkinson disease: effects of motor versus cognitive secondary tasks. Phys Ther. 2002;82:888-897. 21. Bloem BR, Valkenburg VV, Slabbekoorn M, Willemsen MD. The Multiple Tasks Test: development and normal strategies. Gait Posture. 2001;14:191-202. 22. Bloem BR, Grimbergen YA, Cramer M, Willemsen M, Zwinderman AH. Prospective assessment of falls in Parkinson's disease. J Neurol. 2001;248:950-958. 23. Spildooren J, Vercruysse S, Desloovere K, Vandenberghe W, Kerckhofs E, Nieuwboer A. Freezing of gait in Parkinson's disease: the impact of dual-tasking and turning. Mov Disord. 2010;25:2563-2570. 24. Dibilio V, Stummer C, Drenthen L, Bloem BR, Nonnekes J, Weerdesteyn V. Secondary task performance during challenging walking tasks and freezing episodes in Parkinson's disease. J Neural Transm (Vienna). 2016;123:495-501. 25. Woollacott M, Shumway-Cook A. Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture. 2002;16:1-14. 26. Pashler H, Johnston JC. Attentional limitations in dual-task performance. In: Pashler H, ed. Attention. Hove, England1998:155-189. 27. Wulf G, McNevin N, Shea CH. The automaticity of complex motor skill learning as a function of attentional focus. Q J Exp Psychol A. 2001;54:1143-1154. 28. van Vliet PM, Wulf G. Extrinsic feedback for motor learning after stroke: what is the evidence? Disabil Rehabil. 2006;28:831-840. 29. Johnson L, Burridge JH, Demain SH. Internal and external focus of attention during gait re-education: an observational study of physical therapist practice in stroke rehabilitation. Phys Ther. 2013;93:957-966. 30. Peterson DS, Smulders K. Cues and Attention in Parkinsonian Gait: Potential Mechanisms and Future Directions. Front Neurol. 2015;6:255. 31. Wulf G. Attentional focus and motor learning: a review of 15 years. International Review of Sport and Exercise Psychology. 2013;6:77-104. 32. Fernandes A, Sousa AS, Rocha N, Tavares JM. Parkinson's Disease and Cognitive-Motor Dual-Task: Is Motor Prioritization Possible in the Early Stages of the Disease? J Mot Behav. 2016;48:377-383. 33. Canning CG. The effect of directing attention during walking under dual-task conditions in Parkinson's disease. Parkinsonism Relat Disord. 2005;11:95-99. 34. Fok P, Farrell M, McMeeken J. Prioritizing gait in dual-task conditions in people with Parkinson's. Hum Mov Sci. 2010;29:831-842. 35. Yogev-Seligmann G, Rotem-Galili Y, Dickstein R, Giladi N, Hausdorff JM. Effects of explicit prioritization on dual task walking in patients with Parkinson's disease. Gait Posture. 2012;35:641-646. 36. Kelly VE, Eusterbrock AJ, Shumway-Cook A. The effects of instructions on dual-task walking and cognitive task performance in people with Parkinson's disease. Parkinsons Dis. 2012;2012:671261. 37. Shaw JA, Huffman JL, Frank JS, Jog MS, Adkin AL. The effects of skill focused instructions on walking performance depend on movement constraints in Parkinson's disease. Gait Posture. 2011;33:119-123. 38. Wulf G, Landers M, Lewthwaite R, Tollner T. External focus instructions reduce postural instability in individuals with Parkinson disease. Phys Ther. 2009;89:162-168. 39. McNevin NH, Shea CH, Wulf G. Increasing the distance of an external focus of attention enhances learning. Psychol Res. 2003;67:22-29. 40. Park SH, Yi CW, Shin JY, Ryu YU. Effects of external focus of attention on balance: a short review. J Phys Ther Sci. 2015;27:3929-3931. 41. Wu T, Hallett M, Chan P. Motor automaticity in Parkinson's disease. Neurobiol Dis. 2015;82:226-234. 42. Heremans E, Nieuwboer A, Vercruysse S. Freezing of gait in Parkinson's disease: where are we now? Curr Neurol Neurosci Rep. 2013;13:350. 43. Rosso AL, Cenciarini M, Sparto PJ, Loughlin PJ, Furman JM, Huppert TJ. Neuroimaging of an attention demanding dual-task during dynamic postural control. Gait Posture. 2017;57:193-198. 44. Lu CF, Liu YC, Yang YR, Wu YT, Wang RY. Maintaining Gait Performance by Cortical Activation during Dual-Task Interference: A Functional Near-Infrared Spectroscopy Study. PLoS One. 2015;10:e0129390. 45. Yu SH, Huang CY. Improving posture-motor dual-task with a supraposture-focus strategy in young and elderly adults. PLoS One. 2017;12:e0170687. 46. Beurskens R, Steinberg F, Antoniewicz F, Wolff W, Granacher U. Neural Correlates of Dual-Task Walking: Effects of Cognitive versus Motor Interference in Young Adults. Neural Plast. 2016;2016:8032180. 47. Costa A, Ianez E, Ubeda A, et al. Decoding the Attentional Demands of Gait through EEG Gamma Band Features. PLoS One. 2016;11:e0154136. 48. Marcar VL, Bridenbaugh SA, Kool J, Niedermann K, Kressig RW. A simple procedure to synchronize concurrent measurements of gait and brain electrical activity and preliminary results from a pilot measurement involving motor-cognitive dual-tasking in healthy older and young volunteers. J Neurosci Methods. 2014;228:46-49. 49. Pizzamiglio S, Naeem U, Abdalla H, Turner DL. Neural Correlates of Single- and Dual-Task Walking in the Real World. Front Hum Neurosci. 2017;11:460. 50. Nutt JG, Bloem BR, Giladi N, Hallett M, Horak FB, Nieuwboer A. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol. 2011;10:734-744. 51. Iansek R, Danoudis M. Freezing of Gait in Parkinson's Disease: Its pathophysiology and pragmatic approaches to management. Movement Disorders Clinical Practice. 2016. 52. Macht M, Kaussner Y, Moller JC, et al. Predictors of freezing in Parkinson's disease: a survey of 6,620 patients. Mov Disord. 2007;22:953-956. 53. Bartels AL, Leenders KL. Brain imaging in patients with freezing of gait. Mov Disord. 2008;23 Suppl 2:S461-467. 54. Vandenbossche J, Deroost N, Soetens E, et al. Freezing of gait in Parkinson's disease: disturbances in automaticity and control. Front Hum Neurosci. 2012;6:356. 55. Lohnes CA, Earhart GM. The impact of attentional, auditory, and combined cues on walking during single and cognitive dual tasks in Parkinson disease. Gait Posture. 2011;33:478-483. 56. Hamacher D, Herold F, Wiegel P, Hamacher D, Schega L. Brain activity during walking: A systematic review. Neurosci Biobehav Rev. 2015;57:310-327. 57. Cunillera T, Fuentemilla L, Perianez J, et al. Brain oscillatory activity associated with task switching and feedback processing. Cogn Affect Behav Neurosci. 2012;12:16-33. 58. Hwang IS, Huang CY. Neural Correlates of Task Cost for Stance Control with an Additional Motor Task: Phase-Locked Electroencephalogram Responses. PLoS One. 2016;11:e0151906. 59. Sauseng P, Klimesch W, Freunberger R, Pecherstorfer T, Hanslmayr S, Doppelmayr M. Relevance of EEG alpha and theta oscillations during task switching. Exp Brain Res. 2006;170:295-301. 60. Zhavoronkova LA, Shevtsova T, Pozdneev A, et al. Brain Mechanisms Impairment of Dual-Task Processing In Traumatic Brain Injury Patients. Journal of Functional Neurology, Rehabilitation, and Ergonomics. 2017;7:26-33. 61. Quinn N, Critchley P, Marsden CD. Young onset Parkinson's disease. Mov Disord. 1987;2:73-91. 62. Yu RL, Tan CH, Lu YC, Wu RM. Aldehyde dehydrogenase 2 is associated with cognitive functions in patients with Parkinson's disease. Sci Rep. 2016;6:30424. 63. Bjelland I, Dahl AA, Haug TT, Neckelmann D. The validity of the Hospital Anxiety and Depression Scale. An updated literature review. J Psychosom Res. 2002;52:69-77. 64. Dirnberger G, Jahanshahi M. Executive dysfunction in Parkinson's disease: a review. J Neuropsychol. 2013;7:193-224. 65. Nieuwboer A, Rochester L, Herman T, et al. Reliability of the new freezing of gait questionnaire: agreement between patients with Parkinson's disease and their carers. Gait Posture. 2009;30:459-463. 66. Pilgram LM, Earhart GM, Pickett KA. Impact of limiting visual input on gait: Individuals with Parkinson disease, age-matched controls, and healthy young participants. Somatosens Mot Res. 2016;33:29-34. 67. Granacher U, Muehlbauer T, Bridenbaugh S, Bleiker E, Wehrle A, Kressig RW. Balance training and multi-task performance in seniors. Int J Sports Med. 2010;31:353-358. 68. Navon D. Exploring two methods for estimating performance tradeoff. Bulletin of the Psychonomic Society. 1990;28:155-157. 69. Yuvaraj R, Murugappan M, Mohamed Ibrahim N, et al. On the analysis of EEG power, frequency and asymmetry in Parkinson's disease during emotion processing. Behav Brain Funct. 2014;10:12. 70. Huang CY, Su JH, Hwang IS. Rate control and quality assurance during rhythmic force tracking. Behav Brain Res. 2014;259:186-195. 71. Quiroz G, y A. Espinoza-Valdez, y R.A. Salido-Ruiz, y L. Mercado. Coherence analysis of EEG in locomotion using graphs. Revista Mexicana de Ingeniería Biomédica. 2017;38:235-246. 72. Handojoseno AM, Shine JM, Nguyen TN, Tran Y, Lewis SJ, Nguyen HT. Analysis and Prediction of the Freezing of Gait Using EEG Brain Dynamics. IEEE Trans Neural Syst Rehabil Eng. 2015;23:887-896. 73. Faulkner KA, Redfern MS, Cauley JA, et al. Multitasking: association between poorer performance and a history of recurrent falls. J Am Geriatr Soc. 2007;55:570-576. 74. von Stein A, Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol. 2000;38:301-313. 75. Brauns I, Teixeira S, Velasques B, et al. Changes in the theta band coherence during motor task after hand immobilization. Int Arch Med. 2014;7:51. 76. Zanto TP, Rubens MT, Thangavel A, Gazzaley A. Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory. Nat Neurosci. 2011;14:656-661. 77. Allcock LM, Rowan EN, Steen IN, Wesnes K, Kenny RA, Burn DJ. Impaired attention predicts falling in Parkinson's disease. Parkinsonism Relat Disord. 2009;15:110-115. 78. Marchese R, Bove M, Abbruzzese G. Effect of cognitive and motor tasks on postural stability in Parkinson's disease: a posturographic study. Mov Disord. 2003;18:652-658. 79. Hausdorff JM, Balash J, Giladi N. Effects of cognitive challenge on gait variability in patients with Parkinson's disease. J Geriatr Psychiatry Neurol. 2003;16:53-58. 80. Yogev-Seligmann G, Sprecher E, Kodesh E. The Effect of External and Internal Focus of Attention on Gait Variability in Older Adults. J Mot Behav. 2017;49:179-184. 81. Hausdorff JM. Gait variability: methods, modeling and meaning. J Neuroeng Rehabil. 2005;2:19. 82. de Melker Worms JLA, Stins JF, van Wegen EEH, Verschueren SMP, Beek PJ, Loram ID. Effects of attentional focus on walking stability in elderly. Gait Posture. 2017;55:94-99. 83. Stins JF, Beek PJ. A critical evaluation of the cognitive penetrability of posture. Exp Aging Res. 2012;38:208-219. 84. Remaud A, Boyas S, Caron GA, Bilodeau M. Attentional demands associated with postural control depend on task difficulty and visual condition. J Mot Behav. 2012;44:329-340. 85. Mihara M, Miyai I, Hatakenaka M, Kubota K, Sakoda S. Role of the prefrontal cortex in human balance control. Neuroimage. 2008;43:329-336. 86. Mahoney JR, Holtzer R, Izzetoglu M, Zemon V, Verghese J, Allali G. The role of prefrontal cortex during postural control in Parkinsonian syndromes a functional near-infrared spectroscopy study. Brain Res. 2016;1633:126-138. 87. Kline JE, Poggensee K, Ferris DP. Your brain on speed: cognitive performance of a spatial working memory task is not affected by walking speed. Front Hum Neurosci. 2014;8:288. 88. Zhao Y, Tang D, Hu L, et al. Concurrent working memory task decreases the Stroop interference effect as indexed by the decreased theta oscillations. Neuroscience. 2014;262:92-106. 89. Philipp AM, Weidner R, Koch I, Fink GR. Differential roles of inferior frontal and inferior parietal cortex in task switching: evidence from stimulus-categorization switching and response-modality switching. Hum Brain Mapp. 2013;34:1910-1920. 90. Sohn MH, Ursu S, Anderson JR, Stenger VA, Carter CS. The role of prefrontal cortex and posterior parietal cortex in task switching. Proc Natl Acad Sci U S A. 2000;97:13448-13453. 91. Verstraeten E, Cluydts R. Attentional switching-related human EEG alpha oscillations. Neuroreport. 2002;13:681-684. 92. Alcock L, Galna B, Perkins R, Lord S, Rochester L. Step length determines minimum toe clearance in older adults and people with Parkinson's disease. J Biomech. 2018;71:30-36. 93. Begg R, Best R, Dell'Oro L, Taylor S. Minimum foot clearance during walking: strategies for the minimisation of trip-related falls. Gait Posture. 2007;25:191-198. 94. Sutter EN, Seidler KJ, Duncan RP, Earhart GM, McNeely ME. Low to moderate relationships between gait and postural responses in Parkinson disease. J Rehabil Med. 2017;49:505-511. 95. Chee R, Murphy A, Danoudis M, Georgiou-Karistianis N, Iansek R. Gait freezing in Parkinson's disease and the stride length sequence effect interaction. Brain. 2009;132:2151-2160. 96. Iansek R, Huxham F, McGinley J. The sequence effect and gait festination in Parkinson disease: contributors to freezing of gait? Mov Disord. 2006;21:1419-1424. 97. Williams AJ, Peterson DS, Earhart GM. Gait coordination in Parkinson disease: effects of step length and cadence manipulations. Gait Posture. 2013;38:340-344. 98. Plotnik M, Giladi N, Hausdorff JM. A new measure for quantifying the bilateral coordination of human gait: effects of aging and Parkinson's disease. Exp Brain Res. 2007;181:561-570. 99. Plotnik M, Giladi N, Hausdorff JM. Bilateral coordination of walking and freezing of gait in Parkinson's disease. Eur J Neurosci. 2008;27:1999-2006. 100. Sheridan PL, Solomont J, Kowall N, Hausdorff JM. Influence of executive function on locomotor function: divided attention increases gait variability in Alzheimer's disease. J Am Geriatr Soc. 2003;51:1633-1637. 101. Moreau C, Defebvre L, Bleuse S, et al. Externally provoked freezing of gait in open runways in advanced Parkinson's disease results from motor and mental collapse. J Neural Transm (Vienna). 2008;115:1431-1436. 102. Beck EN, Almeida QJ. Dopa-Responsive Balance Changes Depend on Use of Internal Versus External Attentional Focus in Parkinson Disease. Phys Ther. 2017;97:208-216. 103. Baumeister J, von Detten S, van Niekerk SM, Schubert M, Ageberg E, Louw QA. Brain activity in predictive sensorimotor control for landings: an EEG pilot study. Int J Sports Med. 2013;34:1106-1111. 104. Slobounov S, Cao C, Jaiswal N, Newell KM. Neural basis of postural instability identified by VTC and EEG. Exp Brain Res. 2009;199:1-16. 105. Sipp AR, Gwin JT, Makeig S, Ferris DP. Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response. J Neurophysiol. 2013;110:2050-2060. 106. Caldwell JA, Prazinko B, Caldwell JL. Body posture affects electroencephalographic activity and psychomotor vigilance task performance in sleep-deprived subjects. Clin Neurophysiol. 2003;114:23-31. 107. Hulsdunker T, Mierau A, Neeb C, Kleinoder H, Struder HK. Cortical processes associated with continuous balance control as revealed by EEG spectral power. Neurosci Lett. 2015;592:1-5. 108. Gladwin TE, de Jong R. Bursts of occipital theta and alpha amplitude preceding alternation and repetition trials in a task-switching experiment. Biol Psychol. 2005;68:309-329. 109. Okuma Y. Practical approach to freezing of gait in Parkinson's disease. Pract Neurol. 2014;14:222-230. 110. Benedek M, Schickel RJ, Jauk E, Fink A, Neubauer AC. Alpha power increases in right parietal cortex reflects focused internal attention. Neuropsychologia. 2014;56:393-400. 111. Gallardo MJ, Cabello JP, Corrales MJ, et al. Freezing of gait in Parkinson's disease: functional neuroimaging studies of the frontal lobe. Neurol Res. 2018:1-6. 112. Pietracupa S, Suppa A, Upadhyay N, et al. Freezing of gait in Parkinson's disease: gray and white matter abnormalities. J Neurol. 2018;265:52-62. 113. Vastik M, Hok P, Valosek J, Hlustik P, Mensikova K, Kanovsky P. Freezing of gait is associated with cortical thinning in mesial frontal cortex. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2017;161:389-396. 114. Brown RG, Dittner A, Findley L, Wessely SC. The Parkinson fatigue scale. Parkinsonism Relat Disord. 2005;11:49-55. 115. Lamont RM, Morris ME, Woollacott MH, Brauer SG. Community walking in people with Parkinson's disease. Parkinsons Dis. 2012;2012:856237. 116. Plummer-D'Amato P, Brancato B, Dantowitz M, Birken S, Bonke C, Furey E. Effects of gait and cognitive task difficulty on cognitive-motor interference in aging. J Aging Res. 2012;2012:583894. 117. Strouwen C, Molenaar EA, Keus SH, et al. Are factors related to dual-task performance in people with Parkinson's disease dependent on the type of dual task? Parkinsonism Relat Disord. 2016;23:23-30. 118. Bluett B, Banks S, Cordes D, et al. Neuroimaging and neuropsychological assessment of freezing of gait in Parkinson's disease. Alzheimers Dement (N Y). 2018. In Press. 119. Ehgoetz Martens KA, Ellard CG, Almeida QJ. Does anxiety cause freezing of gait in Parkinson's disease? PLoS One. 2014;9:e106561. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79019 | - |
dc.description.abstract | 研究背景與目的:雙重作業行走指的是在行走時同時進行另一項作業(上姿勢作業)。由於同時執行兩項作業會競爭有限的大腦注意力資源,因此適當的注意力配置為達到雙重作業表現的關鍵因素。巴金森症患者(包含有凍凝步態者與無凍凝步態者)由於大腦注意力資源減少、作業轉換能力不佳與動作自動化控制能力降低,相較於其他族群使雙重作業之干擾更劇。然而,目前關於注意力聚焦策略對巴金森症患者於雙重作業行走的研究結果並不一致,且其相對應的神經生理機制仍未被仔細探討。因此本研究的主要目的為探討注意力聚焦策略(無聚焦、行走內聚焦、行走外聚焦、上姿勢聚焦)對有無凍凝步態之巴金森症患者於雙重作業行走情境下的影響。
研究方法:本研究共招募20位有凍凝步態(平均年齡:65.1 ± 7.7歲)及19位無凍凝步態(平均年齡:63.0 ± 8.0歲)之原發性巴金森症患者進行雙重作業行走測試。受試者使用四種不同的注意力聚焦策略(無聚焦策略、行走內聚焦策略、行走外聚焦策略、上姿勢聚焦策略),於行走時同時維持手中兩個鑲嵌的鐵環不互相碰觸(上姿勢作業)。本研究之分析參數包含:步態參數、鐵環穩定之錯誤率,以及腦電圖之theta (4-8赫茲)與alpha (8-12赫茲)的頻譜強度及其互頻強度。統計分析依據常態分佈的有無,使用4 × 2混合變異數分析(4 × 2 mixed ANOVA)或無母數分析,及最小顯著差異法(least significant difference)進行事後檢定,分析注意力聚焦策略與有無凍凝步態對各行為表現參數及腦電圖頻譜強度及其互頻強度的影響。 結果與討論:相較於無聚焦策略情境,給予注意力聚焦策略可藉由增加注意力控制的專注度提升雙重作業表現,且有無凍凝步態之巴金森症患者其表現與適用的注意力聚焦策略不同。有凍凝步態之巴金森症患者於雙重作業行走時相較於無凍凝步態之患者,步長較短、走路速度較慢,腦波之頻譜強度於theta及alpha頻帶較小,其可能原因為有凍凝步態之患者動作自動化控制能力較低、注意力資源容量較少。對於無凍凝步態之患者,使用行走外聚焦策略可促進行走控制的自動化與作業轉換的彈性,降低步長變異性與提升上姿勢作業表現;而對於有凍凝步態之患者,使用行走內聚焦策略可藉由增加自主意識控制以提升整體行走表現,且不影響上姿勢作業表現。 結論與臨床應用:在執行雙重作業行走時,行走外聚焦策略對於無凍凝步態之患者較佳,不但能有較穩定的步態及良好的上姿勢表現且有較佳的大腦注意力資源配置;而對於有凍凝步態之患者,行走內聚焦策略可增加自主意識控制以改善其動作障礙,為較佳的動作控制策略。本研究結果可應用於臨床治療巴金森患者的防跌衛教與雙重作業行走訓練。依據凍凝步態的有無,給予不同注意力聚焦策略的建議,使患者在日常活動中運用最適當的動作控制策略,以安全有效率的方式提升雙重作業行走之整體動作表現。 | zh_TW |
dc.description.abstract | Background and Purpose: Dual-task walking is defined as walking and performing another task (the suprapostural task) simultaneously. Because walking task and the concurrent task would compete in a limited attentional capacity, appropriate attention allocation between the two subtasks is critical for optimizing dual-task performance. For patients with Parkinson's disease (PD), including freezers and non-freezers, dual-task interference is greater due to reduced attentional capacity, impaired task switch ability, and decreased movement automaticity. However, the researches about attentional focus strategies in dual-task walking in PD have inconsistent results and lack of neural evidences. The purpose of this study was to investigate the effects of different attentional focus strategies (no instruction, walking-internal focus, walking-external focus, and supraposture-focus) on dual-task walking performance and its related cortical activity in PD with freezers and non-freezers.
Methods: Twenty freezers and nineteen non-freezers with idiopathic PD were recruited in this study. Each participant was requested to stabilize two interlocking sticks (suprapostural task) and walk simultaneously with different attentional focus strategies. Both behavioral and cortical data, including gait parameters, error movement rate of the stick stabilization, relative power spectrum and coherence peak of electroencephalography signals in theta (4-8 Hz) and alpha (8-12 Hz), were measured. Results: Giving attentional focus instruction would improve the dual-task performance by increasing concentration and attentional control than the no instruction condition. The FOG group had smaller step length, slower gait velocity, lower theta and alpha power than the non-FOG group in dual-task conditions. For the non-FOG group, the walking-EF strategy resulted in small walking variability and better suprapostural performance. In contrast to the non-FOG, the walking-IF strategy increased step length and gait velocity without sacrificing suprapostural performance. Conclusion and Clinical Application: In dual-task walking, the walking-EF strategy could improve walking and suprapostural performance with more effective resource allocation for non-freezers. While freezers could increase attentional control to improve the performance with walking-IF strategy, which is a safe motor control strategy for them. The present study provides an appropriate attentional strategy suggestion and training for patients with PD depending on the characteristic of FOG. This could help patients with PD to use the suitable movement strategy to improve dual-task walking performance safely and effectively. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:37:07Z (GMT). No. of bitstreams: 1 ntu-107-R05428001-1.pdf: 7162104 bytes, checksum: 9436e57d486b6f13d16b2e486436ca7b (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | Verification Letter from the Oral Examination Committee...i
Acknowledgement...ii Chinese Abstract...iii Abstract...v List of Abbreviation...xi List of Figures...xiii List of Tables...xvi Chapter 1 Introduction...1 1.1 Overview of Dual-task Interference in Parkinson’s Disease...1 1.2 Related Literature...2 1.2.1 Dual-task Walking in Parkinson’s Disease...2 1.2.2 Attentional Focus of Dual-task Walking...4 1.2.3 Limitation of Previous Study about Dual-task Walking in Parkinson’s Disease...7 1.2.4 Freezing of Gait and Attention...9 1.2.5 Characteristics of Cortical Activity with Electroencephalography in Dual-task Walking...11 1.3 Rationales...12 1.4 Purpose and Significance...13 1.5 Hypothesis...14 Chapter 2 Methods...16 2.1 Participants...16 2.2 System Set-up and Data Recording...17 2.3 Experimental Conditions and Procedures...19 2.4 Data Analyses...21 2.4.1 Behavioral Data...21 2.4.2 EEG Data...21 2.5 Statistical Analyses...23 Chapter 3 Results...24 3.1 Behavioral Performance...24 3.1.1 Comparisons of Single- and Dual-task Performance...24 3.1.2 Comparisons among Dual-task Walking Conditions...25 3.2 EEG Data...30 3.2.1 Comparisons of Frequency Power among Dual-task Walking Conditions...30 3.2.2 Comparisons of Cortico-cortical Coherence among Dual-task Walking Conditions...33 Chapter 4 Discussions...37 4.1 Attentional Focus Instructions Improve the Dual-task Performance...38 4.2 Improve Dual-task Performance for the non-FOG Group with Walking- EF Strategy...39 4.3 Improve Dual-task Performance for the FOG Group with Walking-IF Strategy...42 4.4 Group Effect in Dual-task Walking...45 4.5 Methodological Issues and Limitation...46 Chapter 5 Conclusion...49 References...50 Figures...59 Tables...81 Appendices...83 Appendix 1. Mini Mental State Examination (MMSE)...83 Appendix 2. Hospital Anxiety and Depression Scale (HADS)...87 Appendix 3. New Freezing of Gait Questionnaire (NFOG-Q)...89 Appendix 4. Research approval of National Taiwan University Hospital Research Ethics Committee...91 | |
dc.language.iso | en | |
dc.title | 注意力聚焦策略對有無凍凝步態之巴金森症患者於雙重作業行走的影響 | zh_TW |
dc.title | Effects of Attentional Focus on Dual-task Walking in Parkinson’s Disease with Freezer and Non-freezer | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳瑞美,余睿羚,周立偉 | |
dc.subject.keyword | 注意力,雙重作業,巴金森症,凍凝步態,腦電圖, | zh_TW |
dc.subject.keyword | attention,dual-task,Parkinson’s disease,freezing of gait,electroencephalography, | en |
dc.relation.page | 91 | |
dc.identifier.doi | 10.6342/NTU201803416 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-15 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 物理治療學研究所 | zh_TW |
dc.date.embargo-lift | 2023-10-09 | - |
顯示於系所單位: | 物理治療學系所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-R05428001-1.pdf 目前未授權公開取用 | 6.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。