請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79017完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡偉博(Wei-Bor Tsai) | |
| dc.contributor.author | Shuo-Hsiang Chou | en |
| dc.contributor.author | 周碩祥 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:36:56Z | - |
| dc.date.available | 2023-08-18 | |
| dc.date.copyright | 2020-08-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.citation | [1]Nishida, N., Yano, H., Nishida, T., Kamura, T., Kojiro, M. (2006). Angiogenesis in cancer. Vascular health and risk management, 2(3), 213. [2]Miller, K. D., Siegel, R. L., Lin, C. C., Mariotto, A. B., Kramer, J. L., Rowland, J. H., ... Jemal, A. (2016). Cancer treatment and survivorship statistics, 2016. CA: a cancer journal for clinicians, 66(4), 271-289. [3]DeVita, V. T., Chu, E. (2008). A history of cancer chemotherapy.Cancer research,68(21), 8643-8653. [4]Khan, F. M., Gibbons, J. P. (2014). Khan's the physics of radiation therapy. Lippincott Williams Wilkins. [5]Yingchoncharoen, P., Kalinowski, D. S., Richardson, D. R. (2016). Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacological reviews, 68(3), 701-787. [6]Singal, P. K., Iliskovic, N. (1998). Doxorubicin-induced cardiomyopathy. New England Journal of Medicine, 339(13), 900-905. [7]Al-Ghamdi, S. S. (2008). Time and dose dependent study of doxorubicin induced DU-145 cytotoxicity. Drug metabolism letters, 2(1), 47-50. [8]Betancourt, T., Brown, B., Brannon-Peppas, L. (2007). Doxorubicin-loaded PLGA nanoparticles by nanoprecipitation: preparation, characterization and in vitro evaluation. [9]Gabizon, A., Shmeeda, H., Barenholz, Y. (2003). Pharmacokinetics of pegylated liposomal doxorubicin. Clinical pharmacokinetics, 42(5), 419-436. [10]Akao, T., Kimura, T., Hirofuji, Y. S., Matsunaga, K., Imayoshi, R., Nagao, J. I., ... Taniguchi, K. (2010). A poly (γ-glutamic acid)–amphiphile complex as a novel nanovehicle for drug delivery system. Journal of drug targeting, 18(7), 550-556. [11]Maeda, H., Wu, J., Sawa, T., Matsumura, Y. Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 65, 271–284 (2000). [12]Greish, K. (2010). Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. In Cancer nanotechnology (pp. 25-37). Humana Press. [13]Lee, Y., Thompson, D. H. (2017). Stimuli‐responsive liposomes for drug delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 9(5), e1450. [14]Senapati, S., Mahanta, A. K., Kumar, S., Maiti, P. (2018). Controlled drug delivery vehicles for cancer treatment and their performance. Signal transduction and targeted therapy, 3(1), 1-19. [15]Ye, L., Zhang, Y., Yang, B., Zhou, X., Li, J., Qin, Z., ... Yao, F. (2016). Zwitterionic-modified starch-based stealth micelles for prolonging circulation time and reducing macrophage response. ACS Applied Materials Interfaces, 8(7), 4385-439a8. [16]Suk, J. S., Xu, Q., Kim, N., Hanes, J., Ensign, L. M. (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced drug delivery reviews, 99, 28-51. [17]Woodle, M. C., Lasic, D. D. (1992). Sterically stabilized liposomes. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes, 1113(2), 171-199. [18]Gref, R., Minamitake, Y., Peracchia, M. T., Trubetskoy, V., Torchilin, V., Langer, R. (1994). Biodegradable long-circulating polymeric nanospheres. Science, 263(5153), 1600-1603. [19]Stirland, D. L., Nichols, J. W., Miura, S., Bae, Y. H. (2013). Mind the gap: a survey of how cancer drug carriers are susceptible to the gap between research and practice.Journal of Controlled Release, 172(3), 1045-1064. [20]Lila, A. S. A., Kiwada, H., Ishida, T. (2013). The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. Journal of Controlled Release,172(1), 38-47. [21]Hatakeyama, H., Akita, H., Harashima, H. (2013). The polyethyleneglycol dilemma: advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biological and Pharmaceutical Bulletin, 36(6), 892-899. [22]Chen, S., Zheng, J., Li, L., Jiang, S. (2005). Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials. Journal of the American Chemical Society, 127(41), 14473-14478. [23]Lin, X., Jain, P., Wu, K., Hong, D., Hung, H. C., O’Kelly, M. B., ... Jiang, S. (2018). Ultralow fouling and functionalizable surface chemistry based on zwitterionic carboxybetaine random copolymers. Langmuir, 35(5), 1544-1551. [24]Jiang, S., Cao, Z. (2010). Ultralow‐fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Advanced materials, 22(9), 920-932. [25]Bedu-Addo, F. K., Huang, L. (1995). Interaction of PEG-phospholipid conjugates with phospholipid: implications in liposomal drug delivery. Advanced drug delivery reviews, 16(2-3), 235-247. [26]Cao, Z., Zhang, L., Jiang, S. (2012). Superhydrophilic zwitterionic polymers stabilize liposomes. Langmuir, 28(31), 11625-11632. [27]Iyer, A. K., Khaled, G., Fang, J., Maeda, H. (2006). Exploiting the enhanced permeability and retention effect for tumor targeting. Drug discovery today, 11(17-18), 812-818. [28]Akhtar, M. J., Ahamed, M., Alhadlaq, H. A., Alrokayan, S. A., Kumar, S. (2014). Targeted anticancer therapy: overexpressed receptors and nanotechnology. Clinica chimica acta, 436, 78-92. [29]Fernández, M., Javaid, F., Chudasama, V. (2018). Advances in targeting the folate receptor in the treatment/imaging of cancers. Chemical science, 9(4), 790-810. [30]Saul, J. M., Annapragada, A., Natarajan, J. V., Bellamkonda, R. V. (2003). Controlled targeting of liposomal doxorubicin via the folate receptor in vitro. Journal of Controlled Release, 92(1-2), 49-67. [31]Lee, R. J., Low, P. S. (1995). Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1233(2), 134-144. [32]Lee, R. J., Low, P. S. (1994). Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. Journal of Biological Chemistry, 269(5), 3198-3204. [33]Horowitz, A. T., Goren, D., Tzemach, D., Mandelbaum-Shavit, F., Qazen, M. M., Zalipsky, S. (1999). Targeting folate receptor with folate linked to extremities of poly (ethylene glycol)-grafted liposomes: in vitro studies. Bioconjugate chemistry, 10(2), 289-298. [34]Sercombe, L., Veerati, T., Moheimani, F., Wu, S. Y., Sood, A. K., Hua, S. (2015). Advances and challenges of liposome assisted drug delivery. Frontiers in pharmacology, 6, 286. [35]Schiffelers, R. M., Koning, G. A., ten Hagen, T. L., Fens, M. H., Schraa, A. J., Janssen, A. P., ... Storm, G. (2003). Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. Journal of Controlled Release, 91(1-2), 115-122. [36]M., Koning, G. A., ten Hagen, T. L., Fens, M. H., Schraa, A. J., Janssen, A. P., ... Storm, G. (2003). Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. Journal of Controlled Release, 91(1-2), 115-122. [37]Gregoriadis, G., Davis, C. (1979). Stability of liposomes invivo and invitro is promoted by their cholesterol content and the presence of blood cells. Biochemical and biophysical research communications, 89(4), 1287-1293. [38]Vemuri, S., Rhodes, C. T. (1995). Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharmaceutica Acta Helvetiae, 70(2), 95-111. [39]Li, J., Wang, X., Zhang, T., Wang, C., Huang, Z., Luo, X., Deng, Y. (2015). A review on phospholipids and their main applications in drug delivery systems. Asian journal of pharmaceutical sciences, 10(2), 81-98. [40]Huang, J., Buboltz, J. T., Feigenson, G. W. (1999). Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1417(1), 89-100. [41]Cheetham, J. J., Wachtel, E., Bach, D., Epand, R. M. (1989). Role of the stereochemistry of the hydroxyl group of cholesterol and the formation of nonbilayer structures in phosphatidylethanolamines. Biochemistry, 28(22), 8928-8934. [42]Marianecci, C., Rinaldi, F., Di Marzio, L., Pozzi, D., Caracciolo, G., Manno, D., ... Carafa, M. (2013). Interaction of pH-sensitive non-phospholipid liposomes with cellular mimetic membranes. Biomedical microdevices, 15(2), 299-309. [43]Baillie, A. J., Florence, A. T., Hume, L. R., Muirhead, G. T., Rogerson, A. (1985). The preparation and properties of niosomes—non‐ionic surfactant vesicles. Journal of pharmacy and pharmacology, 37(12), 863-868. [44]Carafa, M., Marianecci, C., Lucania, G., Marchei, E., Santucci, E. (2004). New vesicular ampicillin-loaded delivery systems for topical application: characterization, in vitro permeation experiments and antimicrobial activity. Journal of controlled release, 95(1), 67-74. [45]Cui, Z. K., Lafleur, M. (2014). Lamellar self-assemblies of single-chain amphiphiles and sterols and their derived liposomes: Distinct compositions and distinct properties. Colloids and Surfaces B: Biointerfaces, 114, 177-185. [46]Carbajal, G., Cui, Z. K., Lafleur, M. (2013). Non-phospholipid liposomes with high sterol content display a very limited permeability. Science China Chemistry, 56(1), 40-47. [47]Bastiat, G., Oliger, P., Karlsson, G., Edwards, K., Lafleur, M. (2007). Development of non-phospholipid liposomes containing a high cholesterol concentration. Langmuir, 23(14), 7695-7699. [48]Cui, Z. K., Bastiat, G., Jin, C., Keyvanloo, A., Lafleur, M. (2010). Influence of the nature of the sterol on the behavior of palmitic acid/sterol mixtures and their derived liposomes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1798(6), 1144-1152. [49]Cieślak, A., Wauthoz, N., Orellana, A. N., Lautram, N., Béjaud, J., Hureaux, J., ... Bastiat, G. (2017). Stealth nanocarriers based sterosomes using PEG post-insertion process. European Journal of Pharmaceutics and Biopharmaceutics, 115, 31-38. [50]Cui, Z. K., Edwards, K., Orellana, A. N., Bastiat, G., Benoit, J. P., Lafleur, M. (2014). Impact of interfacial cholesterol-anchored polyethylene glycol on sterol-rich non-phospholipid liposomes. Journal of colloid and interface science, 428, 111-120. [51]Iden, D. L., Allen, T. M. (2001). In vitro and in vivo comparison of immunoliposomes made by conventional coupling techniques with those made by a new post-insertion approach. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1513(2), 207-216. [52]Allen, T. M., Sapra, PUJA, Moase, ELAINE. (2002). Use of the post-insertion method for the formation of ligand-coupled liposomes. Cellular and Molecular Biology Letters, 7(2), 217-219. [53]Rodriguez‐Emmenegger, C., Schmidt, B. V., Sedlakova, Z., Šubr, V., Alles, A. B., Brynda, E., Barner‐Kowollik, C. (2011). Low temperature aqueous living/controlled (RAFT) polymerization of carboxybetaine methacrylamide up to high molecular weights. Macromolecular rapid communications, 32(13), 958-965. [54]Lee, E. S., Na, K., Bae, Y. H. (2003). Polymeric micelle for tumor pH and folate-mediated targeting. Journal of Controlled Release, 91(1-2), 103-113. [55]Linsley, C. S., Zhu, M., Quach, V. Y., Wu, B. M. (2019). Preparation of photothermal palmitic acid/cholesterol liposomes. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 107(5), 1384-1392. [56]Moreira, J. N., Ishida, T., Gaspar, R., Allen, T. M. (2002). Use of the post-insertion technique to insert peptide ligands into pre-formed stealth liposomes with retention of binding activity and cytotoxicity. Pharmaceutical research, 19(3), 265-269. [57]Xu, H., Paxton, J. W., Wu, Z. (2015). Enhanced pH-responsiveness, cellular trafficking, cytotoxicity and long-circulation of PEGylated liposomes with post-insertion technique using gemcitabine as a model drug. Pharmaceutical Research, 32(7), 2428-2438. [58]Ye, L., Zhang, Y., Yang, B., Zhou, X., Li, J., Qin, Z., ... Yao, F. (2016). Zwitterionic-modified starch-based stealth micelles for prolonging circulation time and reducing macrophage response. ACS Applied Materials Interfaces, 8(7), 4385-4398. [59]Wang, W., Xiong, W., Wan, J., Sun, X., Xu, H., Yang, X. (2009). The decrease of PAMAM dendrimer-induced cytotoxicity by PEGylation via attenuation of oxidative stress. Nanotechnology, 20(10), 105103. [60]Gad, S. C. (Ed.). (2008). Pharmaceutical manufacturing handbook: production and processes (Vol. 5). John Wiley Sons. [61]Wang, H., Rempel, G. L. (2015). Introduction of polymer nanoparticles for drug delivery applications. J Nanotechnol Nanomed Nanobiotechnol, 2(008). [62]Barenholz, Y. C. (2012). Doxil®—the first FDA-approved nano-drug: lessons learned. Journal of controlled release, 160(2), 117-134. [63]Markman, M. (2006). Pegylated liposomal doxorubicin in the treatment of cancers of the breast and ovary. Expert opinion on pharmacotherapy, 7(11), 1469-1474. [64]Molineux, G. (2003). Pegylation: engineering improved biopharmaceuticals for oncology. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 23(8P2), 3S-8S. [65]Pozzi, D., Colapicchioni, V., Caracciolo, G., Piovesana, S., Capriotti, A. L., Palchetti, S., ... Laganà, A. (2014). Effect of polyethyleneglycol (PEG) chain length on the bio–nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells. Nanoscale, 6(5), 2782-2792. [66]Pan, D., Turner, J. L., Wooley, K. L. (2003). Folic acid-conjugated nanostructured materials designed for cancer cell targeting. Chemical communications, (19), 2400-2401. [67]Yuan, J., Zhou, X., Cao, W., Bi, L., Zhang, Y., Yang, Q., Wang, S. (2017). Improved antitumor efficacy and pharmacokinetics of bufalin via PEGylated liposomes. Nanoscale research letters, 12(1), 585. [68]Li, W., Zhan, P., De Clercq, E., Lou, H., Liu, X. (2013). Current drug research on PEGylation with small molecular agents. Progress in Polymer Science, 38(3-4), 421-444. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79017 | - |
| dc.description.abstract | 聚乙二醇修飾之脂質體已經廣泛被用來作為藥物載體應用於癌細胞治療。然而,高成本的磷脂質與其在血液中的不穩定性和聚乙二醇修飾所衍生的問題限制了其應用的範疇。藉此,我們提出一個由棕梠酸和高含量膽固醇組成的非磷脂質藥物載體,藉由羥基甜菜鹼超親水性聚合物長度和重量百分比最佳化的表面修飾條件之後,由於羥基甜菜鹼超親水性聚合物良好的抗蛋白質吸附能力,體外結果顯示有效提升在蛋白質溶液中的穩定性,進而能夠躲避巨噬細胞的辨識達到延長載體在血液中的循環時間。 進而乃至於癌細胞的治療應用,我們嘗試在修飾載體表面之高分子羥基甜菜鹼超親水性聚合物接枝上具有標靶功能可被細胞辨識的葉酸分子,包覆艾黴素作為海拉癌細胞的體外治療。從體外的毒殺試驗中,結果顯示接枝上葉酸的羥基甜菜鹼修飾高固醇載體相較羥基甜菜鹼修飾的高固醇載體具有比較好的細胞毒殺效果,而羥基甜菜鹼修飾特性也使其比相較單純施以艾黴素更能減少對一般細胞的毒性,在能不被免疫系統辨識的修飾條件下,增加藥物積累於腫瘤細胞,提升對腫瘤細胞的選擇率,此結果也與體外細胞攝取的試驗結果相呼應。藉由這些體外試驗的研究結果,顯示此由葉酸接枝的羥基甜菜鹼修飾高固醇載體具有良好乘載抗癌小分子藥物做為癌症治療的潛力。 | zh_TW |
| dc.description.abstract | Over the past few decades, liposomes composed of phospholipids have been emerging as a useful mean for drug delivery. However, the expensiveness of phospholipids and unstableness of phospholipid liposomes in the blood limit their wide applications. To surmount the challenge, we developed a non-phospholipid sterosomes decorated with a zwitterionic poly(carboxybetaine) (PCB). Superhydrophilic PCB, comparable with PEG, is expected to keep sterosomes more stable in complex media such as blood, and to imbue them with the stealth properties for escaping MPS clearance, prolonging the circulation time. In addition, targeting ligands of folic acid was conjugated to PCB-modified sterosomes, and doxorubicin was incorporated into the sterosomes for anti-cancer treatment. The results of cellular uptake indicated that the folic acid conjugated PCB-modified sterosomes triggered less the activation of macrophages and enhancement in HeLa cancer cells owing to FA decoration. Also, the results of cytotoxicity efficiency showed the decrement of HeLa in cell viability, reducing systemic toxicity of L929 fibroblast cells. All the results in vitro study mention above contributed to better selectivity of tumor cells compared to pure doxorubicin treatment, suggesting that this folic acid decorated PCB-modified sterosomes are more suitable as drug delivery carriers for anti-tumor therapy in conclusion. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:36:56Z (GMT). No. of bitstreams: 1 U0001-1808202003454200.pdf: 5770043 bytes, checksum: 60a741711748cdcb8ca2259df8fae95f (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | Content 論文口試委員審定書 I ACKNOWLEGEMENT II 摘要 III ABSTRACT IV CONTENT V LIST OF FIGURES VIII LIST OF TABLES XV CHAPTER 1 INTRODUCTION 1 1.1 Overview of anti-tumor therapy 1 1.1.1 Chemotherapy 1 1.1.2 Strategy of Nano Carriers for Cancer Therapy 5 1.2 Zwitterionic modification 9 1.2.1 Poly(carboxybetaine methacrylate) 9 1.3 Targeted therapy 11 1.4 Non-phospholipid Liposomes (Sterosomes) 13 1.5 Post-Insertion Method 16 1.6 Aims and Motivation 18 1.7 Research Framework 19 CHAPTER 2 MATERIALS AND METHODS 20 2.1 Chemicals 20 2.1.1 Synthesis of zwitterionic polymers 20 2.1.2 Preparation of liposomes 21 2.1.3 Cell culture 22 2.1.4 Cell viability 23 2.1.5 Cellular uptake 23 2.2 Experimental instruments 23 2.3 Experimental materials 24 2.4 Solution formula 25 2.5 Methods 27 2.5.1 Synthesis of PCB-based materials 27 2.5.2 Preparation of Un-modified Sterosomes 32 2.5.3 Preparation of PCB-modified Sterosomes 33 2.5.4 Characteristics of sterosomes 34 2.5.5 In vitro stability test (Protein Resistance Test) 35 2.5.6 In vitro release profile of doxorubicin 36 2.5.7 Cell culture 36 2.5.8 Cell viability 37 2.5.9 In vitro cellular uptake 38 2.5.10 Cytotoxicity test 39 2.5.11 Statistic analysis 40 CHAPTER 3 RESULTS AND DISCUSSION 41 3.1 Optimization of PCB-modified sterosomes 41 3.1.1 Gel Permeation Chromatography analysis for molecular weight 41 3.1.2 Size and Zeta potential of sterosomes formulations 42 3.1.3 Protein Resistance test 43 3.1.4 Cellular uptake of doxorubicin quantification 44 3.1.5 Cell viability of blank PCB-modified sterosomes 46 3.2 Folic acid conjugated PCB-modified sterosomes 47 3.2.1 Gel Permeation Chromatography for molecular weight 47 3.2.2 Size and Zeta potential of blank sterosomes formulations 47 3.2.3 Morphology of sterosomes under TEM 48 3.2.4 Protein Resistance test 48 3.2.5 Cytotoxicity of blank sterosomes 49 3.2.6 Characterization of DOX-loaded sterosomes formulations 50 3.2.7 UV spectra for characteristic peaks of sterosomes surface 50 3.2.8 In vitro releasing profile of Doxorubicin 51 3.2.9 Cell Killing Efficiency of DOX-loaded sterosomes 52 3.2.10 Cellular uptake of doxorubicin quantification 54 3.3 Discussion 56 CHAPTER 4 CONCLUSION 92 CHAPTER 5 FUTURE WORK 93 CHAPTER 6 REFERENCE 94 | |
| dc.language.iso | en | |
| dc.subject | 葉酸 | zh_TW |
| dc.subject | 脂質體 | zh_TW |
| dc.subject | 非磷脂載體 | zh_TW |
| dc.subject | 羥基甜菜鹼聚合物 | zh_TW |
| dc.subject | 艾黴素 | zh_TW |
| dc.subject | 抗腫瘤治療 | zh_TW |
| dc.subject | poly(carboxybetaine) | en |
| dc.subject | sterosomes | en |
| dc.subject | doxorubicin | en |
| dc.subject | folic acid | en |
| dc.subject | cancer treatment | en |
| dc.title | 利用羧酸甜菜鹼兩性離子聚合物修飾非磷脂質之高固醇載體包覆艾黴素應用於癌細胞治療 | zh_TW |
| dc.title | Development of Poly(carboxybetaine) Modified Non-phospholipid Sterosomes as Doxorubicin Carrier for Cancer Therapy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王孟菊(Meng-Jiy Wang),蔡曉雯(Shiao-Wen Tsai) | |
| dc.subject.keyword | 抗腫瘤治療,非磷脂載體,脂質體,艾黴素,葉酸,羥基甜菜鹼聚合物, | zh_TW |
| dc.subject.keyword | cancer treatment,sterosomes,doxorubicin,folic acid,poly(carboxybetaine), | en |
| dc.relation.page | 99 | |
| dc.identifier.doi | 10.6342/NTU202003915 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-08-18 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1808202003454200.pdf 未授權公開取用 | 5.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
