請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79016完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 藍崇文 | |
| dc.contributor.author | I-Tseng Liu | en |
| dc.contributor.author | 劉以增 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:36:51Z | - |
| dc.date.available | 2023-08-19 | |
| dc.date.copyright | 2018-08-19 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2018-08-15 | |
| dc.identifier.citation | [1] The European Commission's Priorities. https://ec.europa.eu/commission/index_en.
[2] C.W. Lan, C. Hsu, K. Nakajima, Handbook of Crystal Growth: Bulk Crystal Growth, Multicrystalline silicon crystal growth for photovoltaic applications, second ed., Elsevier, 2015, pp. 373-374. [3] A. Herguth, G. Schubert, M. Kaes, G. Hahn, Investigations on the long time behavior of the metastable boron–oxygen complex in crystalline silicon, Prog. Photovolt. Res. Appl. 16 (2008) 135-140. [4] B. Lim, S. Hermann, K. Bothe, J. Schmidt, R. Brendel, Solar cells on low-resistivity boron-doped Czochralski-grown silicon with stabilized efficiencies of 20%, Appl. Phys. Lett. 93 (2008) 162102. [5] G. Ziegler, J. Heinrich, G. Wötting, Review relationships between processing, microstructure and properties of dense and reaction-bonded silicon nitride, J. Mater. Sci. 22 (1987) 3041-3086. [6] R.G. Pigeon, A. Varma, A.E. Miller, Some factors influencing the formation of reaction-bonded silicon nitride, J. Mater. Sci. 28 (1993) 1919-1936. [7] S. Liu, K. Huang, H. Zhu, Recovery of silicon powder from silicon wiresawing slurries by tuning the particle surface potential combined with centrifugation, Sep. Purif. Technol. 118 (2013) 448-454. [8] K. Huang, H. Deng, J. Li, H. Zhu, Separation of Si/SiC wiresaw cutting powder through sedimentation by adjusting the solution pHs, 2012, EPD Congress 2012. John Wiley & Sons Inc. pp. 297-304. [9] D.G. Li, P.F. Xing, Y.X. Zhuang, F. Li, G.F. Tu, Recovery of high purity silicon from SoG crystalline silicon cutting slurry waste, Trans. Nonferrous Met. Soc. China 24 (2014) 1237-1241. [10] A. Yoko, Y. Oshima, Recovery of silicon from silicon sludge using supercritical water, J. Supercrit. Fluids 75 (2013) 1-5. [11] Y.C. Lin, C.Y. Tai, Recovery of silicon powder from kerfs loss slurry using phase-transfer separation method, Sep. Purif. Technol. 74 (2010) 170-177. [12] H.P. Hsu, W.P. Huang, C.F. Yang, C.W. Lan, Silicon recovery from cutting slurry by phase transfer separation, Sep. Purif. Technol. 133 (2014) 1-7. [13] Y.C. Lin, T.Y. Wang, C.W. Lan, C.Y. Tai, Recovery of silicon powder from kerf loss slurry by centrifugation, Powder Technol. 200 (2010) 216-223. [14] T.H. Tsai, Pretreatment of recycling wiresaw slurries—Iron removal using acid treatment and electrokinetic separation, Sep. Purif. Technol. 68 (2009) 24-29. [15] T.H. Tsai, J.H. Huang, Metal removal from silicon sawing waste using the electrokinetic method, J. Taiwan Inst. Chem. Eng. 40 (2009) 1-5. [16] T.H. Tsai, Silicon sawing waste treatment by electrophoresis and gravitational settling, J. Hazard. Mater. 189 (2011) 526-530. [17] H.L. Hu, Y.P. Zeng, K.H. Zuo, Y.F. Xia, D.X. Yao, J. Günster, J.G. Heinrich, S. Li, Synthesis of porous Si3N4/SiC ceramics with rapid nitridation of silicon, J. Eur. Ceram. Soc. 35 (2015) 3781-3787. [18] T.H. Tsai, Recycling silicon wire-saw slurries: Separation of silicon and silicon carbide in a ramp settling tank under an applied electrical field, J. Air Waste. Manag. Assoc. 63 (2013) 521-527. [19] Y.F. Wu, Y.M. Chen, Separation of silicon and silicon carbide using an electrical field, Sep. Purif. Technol. 68 (2009) 70-74. [20] S. Nishijima, Y. Izumi, S.I. Takeda, H. Suemoto, A. Nakahira, S.I. Horie. Recycling of abrasives from wasted slurry by superconducting magnetic separation, IEEE Trans. Appl. Supercond. 13 (2003) 1596-1599. [21] P.F. Xing, J. Guo, Y.X. Zhuang, F. Li, G.F. Tu, Rapid recovery of polycrystalline silicon from kerf loss slurry using double-layer organic solvent sedimentation method, Int. J. Min. Met. Mater. 20 (2013) 947-952. [22] S.A. Sergiienko, B.V. Pogorelov, V.B. Daniliuk, Silicon and silicon carbide powders recycling technology from wire-saw cutting waste in slicing process of silicon ingots, Sep. Purif. Technol. 133 (2014) 16-21. [23] S. Liu, K. Huang, H. Zhu, Separation of Si and SiC microparticles of solar grade silicon cutting slurry by micropore membrane, Energy Technol. (2014) 321-329. [24] M.S. Kong, H.C. Jung, H.S. Hong, H.S Chung, A study of hot consolidation properties for recycled silicon powder, Curr. Appl. Phys. 11 (2011) S54-S58. [25] 黄美玲、熊裕华、魏秀琴、尹传强、周浪,'硅片线锯砂浆中硅粉与碳化硅粉的泡沫浮选分离回收',电子元件与材料,4 (2010) 74-77。 [26] N. Yuge, M. Abe, K. Hanazawa, H. Baba, N. Nakamura, Y. Kato, Y. Sakaguchi, S. Hiwasa, F. Aratani, Purification of metallurgical‐grade silicon up to solar grade, Prog. Photovolt. Res. Appl. 9 (2001) 203-209. [27] T.Y. Wang, Y.C. Lin, C.Y. Tai, R. Sivakumar, D.K. Raia, C.W. Lan, A novel approach for recycling of kerf loss silicon from cutting slurry waste for solar cell applications, J. Cryst. Growth 310 (2008) 3403-3406. [28] S. Liu, K. Huang, H. Zhu, Removal of Fe, B and P impurities by enhanced separation technique from silicon-rich powder of the multi-wire sawing slurry, Chem. Eng. J. 299 (2016) 276-281. [29] T. Buonassisi, A. Istratov, M.D. Pickett, J.P. Rakotoniain, O. Breitenstein, M.A. Marcus, S.M. Heald, E.R. Weber, Transition metals in photovoltaic-grade ingot-cast multicrystalline silicon: Assessing the role of impurities in silicon nitride crucible lining material, J. Cryst. Growth 287 (2006) 402-407. [30] E. Olsen, E.J. Øvrelid, Silicon nitride coating and crucible—effects of using upgraded materials in the casting of multicrystalline silicon ingots, Prog. Photovolt. Res. Appl. 16 (2008) 93-100. [31] R. Kvande, L. Arnberg, C. Martin, Influence of crucible and coating quality on the properties of multicrystalline silicon for solar cells, J. Cryst. Growth 311 (2009) 765-768. [32] M.C. Schubert, J. Schon, F. Schindler, W. Kwapil, A. Abdollahinia, B. Michl, S. Riepe, C. Schmid, M. Schumann, S. Meyer, W. Warta, Impact of impurities from crucible and coating on mc-silicon quality—The example of iron and cobalt, IEEE J. Photovolt. 3 (2013) 1250-1258. [33] 林明獻 (Lin Ming Xian),“矽晶圓半導體材料技術”,第三版,全華圖書股份有限公司,台灣 (2013)。 [34] S. Liu, K. Huang, H. Zhu, Source of boron and phosphorus impurities in the silicon wiresawing slurry and their removal by acid leaching, Sep. Purif. Technol. 172 (2017) 113-118. [35] M.V. Pufleau, T.S. Chadha, G. Yablonsky, P. Biswas, Carbon elimination from silicon kerf: Thermogravimetric analysis and mechanistic considerations, Sci. Rep. 7 (2017) 40535. [36] G. Dou, D. Wang, X. Zhong, B. Qin, Effectiveness of catechin and poly (ethylene glycol) at inhibiting the spontaneous combustion of coal, Fuel Process. Technol. 120 (2014) 123–127. [37] W. Carl, Passivity during the oxidation of silicon at elevated temperatures, J. Appl. Phys. 29 (1958) 1295-1297. [38] M.N. Ranaman, A.J. Moulson, The removal of surface silica and its effect on the nitridation of high-purity silicon, J. Mater. Sci. 19 (1984) 189-194. [39] P. Ravishankar, Liquid Encapsulated Bridgman (LEB) method for directional solidification of silicon using calcium chloride, J. Cryst. Growth 94 (1989) 62-68. [40] O. Minster, J. Granier, C. Potard, N. Eustathopoulos, Molding and directional solidification of solar-grade silicon using an insulating molten salt, J. Cryst. Growth 82 (1987) 155-161. [41] T. Saito, A. Shimura, S. Ichikawa, A reusable mold in directional solidification for silicon solar cells, Sol. Energy Mater. 9 (1983) 337-345. [42] M. Müller, W. Bauer, R. Knitter, Processing of micro-components made of sintered reaction-bonded silicon nitride (SRBSN). Part 1: Factors influencing the reaction-bonding process, Ceram. Int. 35 (2009) 2577-2585. [43] N. Thallapalli, C. Rao, Preparation and characterization of Si3N4-BN ceramic composites by gel-casting, Mat. Sci. Res. India 13 (2016) 28-33. [44] J. Rakshit, J. Mukerji, Properties of reaction bonded silicon nitride obtained from slip cast preforms, Bull. Mater. Sci. 13 (1990) 259-270. [45] K. Somton, K. Dateraksa, P. Laoratanakul, M. Rodchoma, R. McCuiston, A study of slip solids content and wall thickness on thermal shock behavior of a slip cast reaction bonded silicon nitride ladle, Ceram. Int. 41 (2015) 3324-3329. [46] D. Yao, Y.F. Xia, Y.P. Zeng, K.H. Zuo, L.J. Dong, Porous Si3N4 ceramics prepared via slip casting of Si and reaction bonded silicon nitride, Ceram. Int. 37 (2011) 3071–3076. [47] E. Olsen, A. Solheim, H. SØrheim, Mould parts of silicon nitride and method for producing such mould parts. U.S. patent No. 7422631B2 (2006). [48] E.K. Erik, Growth of multiple silicon ingots in a new type of reusable silicon nitride crucible, 9th CSSC, Arizona (2016). [49] V. Schneider, C. Reimann, J. Friedrich, 2012, Cleaning a crucible, preferably silicon crucible for processing semiconductor materials, comprises e.g. melting contaminated crucible with a semiconductor material such that impurities from crucible are included by semiconductor material. DE102012201116A1. [50] K.H. Koa, K.S. Banga, K.T. Limb, D.S. Park, H.D. Kim, C. Parka, Microstructural study of a discoloration process during in reaction bonding of silicon nitride, J. Ceram. Process. Res. 8 (2007) 199-202. [51] X. Zhu, Y. Zhou, K. Hirao, Effects of processing method and additive composition on microstructure and thermal conductivity of Si3N4 ceramics, J. Eur. Ceram. Soc. 26 (2006) 711–718. [52] H.N. Kim, J.W. Koa, J.M. Kim, Y.J. Parka, J.W. Lee, H.D. Kim, S.S. Baek, S.J. Lee, L. Seo, Enhanced nitridation of silicon compacts by Yb2O3 addition, Ceram. Int. 42 (2016) 7072–7079. [53] H. Hyuga, K. Yoshida, N. Kondo, H. Kita, H. Okano, J. Sugai, J. Tsuchida, Influence of zirconia addition on reaction bonded silicon nitride produced from various silicon particle sizes, J. Ceram. Soc. JPN. 116 (2008) 688-693. [54] H. Hyuga, K. Yoshida, N. Kondo, H. Kita, H. Okano, J. Sugai, J. Tsuchida, Nitridation enhancing effect of ZrO2 on silicon powder, Mater. Lett. 62 (2008) 3475–3477. [55] M.W. Lindley, D.P. Elias, B.F. Jones, K.C. Pitman, The influence of hydrogen in the nitriding gas on the strength, structure and composition of reaction-sintered silicon nitride, J. Mater. Sci. 14 (1979) 70-85. [56] H. Dervisbegovic, F.L. Riley, The Role of Hydrogen in the Nitridation of Silicon Powder Compacts, J. Mater. Sci. 16 (1981) 1945-1965. [57] H.M. Jennings, On reactions between silicon and nitrogen, J. Mater. Sci. 23 (1983) 2573-2583. [58] M. Maalmi, A. Varma, Intrinsic nitridation kinetics of high-purity silicon powder, AIChE J. 42 (1996) 3477-3483. [59] M. Maalmi, A. Varma, W.C. Strieder, Reaction-bonded silicon nitride synthesis: experiments and model, Chem. Eng. Sci. 53 (1998) 679-689. [60] B.F. Jones, M.W. Lindley, Reaction sintered silicon nitride, J. Mater. Sci. 11 (1976) 1288-1295. [61] R. Roligheten, G. Rian, S. Julsrud, Reusable crucibles and method of manufacturing them, U.S. patent No. 20090249999A1 (2003). [62] V. Schneider, C. Reimann, J. Friedrich, G. Müller, Nitride bonded silicon nitride as a reusable crucible material for directional solidification of silicon, Cryst. Res. Technol. 51 (2016) 74-86. [63] S.I. Raider, R. Flitsch, J.A. Aboaf, W.A. Pliskin, Surface oxidation of silicon nitride films, J. Electrochem. Soc. 123 (1976) 560-565. [64] H. Wang, G.S. Fischman, In situ synthesis of silicon carbide whiskers from silicon nitride powders, J. Am. Ceram. Soc. 74 (1991) 1519-1522. [65] M. Hillert, S. Jonsson, B. Sundman, Thermodynamic calculation of the Si-N-O system, J. Am. Ceram. Soc. 83 (1992) 648-654. [66] D.J. Devlin, K.E. Amin, A method for quantitative phase analysis of silicon nitride by X-Ray diffraction, Powder Diffr. 5 (1990) 121-124. [67] D.J. Park, Oxidation behavior of silicon carbide at 1200℃ in both air and water–vapor rich environments, Corros. Sci. 88 (2014) 416-422. [68] Optimizing Silicon Nitride Ceramics. https://www.ceramicindustry.com/ articles/86745-optimizing-silicon-nitride-ceramics, 2004. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79016 | - |
| dc.description.abstract | 隨著太陽光電產業快速發展,2017年產出超過90 GW,其中矽晶電池就超過92%。製造矽晶碇過程中,鑄碇過的石英坩堝與矽晶圓切割損失矽泥是太陽能產業兩大廢棄物。近年來,在晶圓切割製程上幾乎完全被鑽石線切割製程取代,使得切削的矽泥損失減少至40%,然而仍是大量的耗損。
因此吾人嘗試落實循環經濟、循環材料及永續發展的概念並建立可以處理上述問題的製程,透過使用回收矽粉製成氮化矽坩堝,達到純度比目前商用的石英坩堝更為高,與純氮化矽相比燒結時的形變率更低,坩堝在每次重複使用時雜質會被矽錠帶走,會越用越純,進而提高矽錠的品質以及太陽電池的效率。並同時解決廢棄石英坩堝的問題。 與一般文獻不同之處在於吾人使用回收矽而非一般商用矽粉且不須額外添加氮化矽粉,做為製作坩堝的起始原料。切割損失矽泥經過酸洗製程去除金屬與硼磷後,利用注漿成型方法做出坩堝生坯,並於常溫下於空氣流動的環境風乾。風乾的坯體經過3小時500℃高溫熱處理,去除矽泥中的切割冷卻劑及潤滑劑等高分子添加劑與基板中的樹酯後,透過控制升溫速率與持溫溫度在氮氣與氫氣(5 vol%)的氣氛下進行氮化,製作成RBSN (Reaction-Bonded Silicon Nitride)坩堝。 在長晶時使用氬氣與氮氣的(5vol%)氣氛中,可有效的避免氮化矽於高溫下低氮氣分壓下的裂解現象,並減緩結構弱化與剝落的問題。另外,吾人比較傳統氮化矽塗佈層的影響與坩堝初始純度對於長晶的影響以提高重複使用的次數與減少紅區。 | zh_TW |
| dc.description.abstract | As the rapid development in PV industry, more than 90GW production, which consist of more than 92% silicon-based solar cell, was reached in 2017. Nevertheless, two major wastes, that is, kerf-loss silicon and broken quartz crucibles for casting, are produced. Nowadays, procedure for wafer slicing is almost replaced by diamond wire slicing. Even through, 40 wt.% of weight loss is unavoidable.
We try to imply the concept of circular economy and circular material by proposing and presenting procedures for solving problems mention above via converting recycling kerf-loss silicon into silicon nitride crucibles, which can not only lower linear shrinkage than silicon nitride sintering but also become purer after every crystal growth. We can obtain higher ingot quality at initial crystal growth and therefore higher efficiency for solar cell. We do believe our idea and design can turn a new leaf in PV industry. Compare to literatures, we recycling kerf-loss silicon are purified by acid to remove metals, boron and phosphorus. After that, slip casting is applied for crucible manufacturing and drying under room temperature. Green body undergoes heat pre-treatment at 500℃ for 3 hr to remove polymer from coolant and lubricant in slicing procedure and also resin from substracts. Nitridation is followed. We control heating rate and holding temperature during nitridating and under atmosphere of N2 mixed with 5 wt.% H2. 5 wt.% N2 is added in Ar to avoid decomposition of silicon nitride during crystal growth. Also we present the effect of commercial silicon nitride coating and the effect of crucible purity to enhance the reusability of crucible. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:36:51Z (GMT). No. of bitstreams: 1 ntu-106-R05524066-1.pdf: 5282952 bytes, checksum: bb0ad0f46a236b7495bc8d2523f9a1a8 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機 2 第二章 文獻回顧 3 2-1 切割矽泥回收與清洗方式 4 2-1-1酸洗移除回收矽泥所含金屬雜質 5 2-1-2酸洗移除回收矽泥所含硼磷雜質 8 2-1-3 熱處理移除回收矽泥所含碳質 8 2-2 可回收坩堝製備與應用 9 2-3 氮化製程與影響因素 11 2-4 氮化矽坩堝長晶 15 第三章 實驗方法及實驗器材 17 3-1實驗藥品 17 3-1-1矽泥回收程序及矽晶生長使用藥品 17 3-2實驗設備與器材 18 3-2-1矽泥清洗程序設備 18 3-2-2多晶鑄造高溫爐(G1 scale) 20 3-2-3氮化反應高溫爐 20 3-2-4多晶矽生長前後處理設備 21 3-2-5注漿相關設備及模具 23 3-2-6量測設備 23 3-3回收矽泥純化與坩堝製備 27 3-4實驗設計 31 3-4-1 升溫速率與最高溫度對氮化程度的影響 31 3-4-2 石英坩堝與氮化矽坩堝長晶實驗 33 3-4-3 回收矽泥製作氮化矽坩堝長晶實驗 33 3-4-3-1坩堝純度對長晶的影響 34 3-4-3-2坩堝氮化程度對長晶的影響 34 3-4-3-3坩堝塗佈層對長晶的影響 35 3-4-3-4坩堝重複使用對長晶的影響 35 第四章 研究結果與討論 36 4-1回收矽泥之性質 36 4-1-1 原料來源之影響 36 4-1-2 不同規模(scale)清洗效果 38 4-1-3 酸洗結果與商用材料之比較 39 4-2回收矽坩堝製作 40 4-2-1 升溫速率與對氮化反應之影響 41 4-2-2 不同溫度對氮化之影響 44 4-2-3 坩堝收縮率 47 4-2-4 氮化程度之計算 48 4-2-5 坩堝製作過程碳、氧含量之分析 49 4-3 長晶實驗結果與分析 51 4-3-1 商用石英坩堝與商用氮化矽坩堝長晶之結果 51 4-3-2 回收矽坩堝長晶之結果 53 4-3-2-1 氮化程度與坩堝純度對長晶的影響 53 4-3-2-2 商用氮化矽塗佈層對長晶結果 57 4-3-2-3 重複使用之坩堝狀況 59 第五章 結論 62 參考文獻 64 | |
| dc.language.iso | zh-TW | |
| dc.subject | 氮化矽 | zh_TW |
| dc.subject | 氮化矽裂解 | zh_TW |
| dc.subject | 氮化程度 | zh_TW |
| dc.subject | 可重複使用 | zh_TW |
| dc.subject | 矽回收 | zh_TW |
| dc.subject | 切割損失 | zh_TW |
| dc.subject | 鑽石線切割 | zh_TW |
| dc.subject | Decomposition of silicon nitride | en |
| dc.subject | Degree of nitridation | en |
| dc.subject | Silicon nitride | en |
| dc.subject | Reusable | en |
| dc.subject | Diamond-wire slicing | en |
| dc.subject | Kerf-loss | en |
| dc.subject | Silicon recycle | en |
| dc.title | 切割矽泥回收製作可重複使用的坩堝在多晶矽生長之研究 | zh_TW |
| dc.title | Multi-crystalline Silicon Growth by Reusable Crucible Made from Recycled Kerf-loss Silicon | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖英志,陳亮欽,郭俞麟,王承浩 | |
| dc.subject.keyword | 鑽石線切割,切割損失,矽回收,氮化矽,可重複使用,氮化程度,氮化矽裂解, | zh_TW |
| dc.subject.keyword | Diamond-wire slicing,Kerf-loss,Silicon recycle,Silicon nitride,Reusable,Degree of nitridation,Decomposition of silicon nitride, | en |
| dc.relation.page | 67 | |
| dc.identifier.doi | 10.6342/NTU201803321 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-08-19 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-R05524066-1.pdf 未授權公開取用 | 5.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
