Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79007
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor宋孔彬(Kung-Bin Sung)
dc.contributor.authorChao-Shun Zhanen
dc.contributor.author詹朝舜zh_TW
dc.date.accessioned2021-07-11T15:36:04Z-
dc.date.available2023-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citation[1] Ferrari, M. and V. Quaresima, A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage, 2012. 63(2): p. 921-935.
[2] Lloyd-Fox, S., A. Blasi, and C. Elwell, Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy. Neuroscience & Biobehavioral Reviews, 2010. 34(3): p. 269-284.
[3] Gibson, A., et al., Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate. Neuroimage, 2006. 30(2): p. 521-528.
[4] Durduran, T., et al., Diffuse optics for tissue monitoring and tomography. Reports on Progress in Physics, 2010. 73(7): p. 076701.
[5] Jobsis, F.F., Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 1977. 198(4323): p. 1264-1267.
[6] Matcher, S., et al., Performance comparison of several published tissue near-infrared spectroscopy algorithms. Analytical biochemistry, 1995. 227(1): p. 54-68.
[7] Cooper, C.E., D.T. Delpy, and E.M. Nemoto, The relationship of oxygen delivery to absolute haemoglobin oxygenation and mitochondrial cytochrome oxidase redox state in the adult brain: a near-infrared spectroscopy study. Biochemical journal, 1998. 332(3): p. 627-632.
[8] Cooper, C.E., et al., Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain. Journal of Cerebral Blood Flow & Metabolism, 1999. 19(1): p. 27-38.
[9] Cooper, C.E. and R. Springett, Measurement of cytochrome oxidase and mitochondrial energetics by near–infrared spectroscopy. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 1997. 352(1354): p. 669-676.
[10] Lee, J., et al., Noninvasive optical cytochrome c oxidase redox state measurements using diffuse optical spectroscopy. Journal of biomedical optics, 2014. 19(5): p. 055001.
[11] Irani, F., et al., Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders. The Clinical Neuropsychologist, 2007. 21(1): p. 9-37.
[12] Crosson, B., et al., Functional imaging and related techniques: an introduction for rehabilitation researchers. Journal of rehabilitation research and development, 2010. 47(2): p. vii.
[13] Ogawa, S., et al., Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences, 1990. 87(24): p. 9868-9872.
[14] Chitnis, D., et al., Towards a wearable near infrared spectroscopic probe for monitoring concentrations of multiple chromophores in biological tissue in vivo. Review of Scientific Instruments, 2016. 87(6): p. 065112.
[15] Wyser, D., et al., Wearable and modular functional near-infrared spectroscopy instrument with multidistance measurements at four wavelengths. Neurophotonics, 2017. 4(4): p. 041413.
[16] Brigadoi, S., et al., Image reconstruction of oxidized cerebral cytochrome C oxidase changes from broadband near-infrared spectroscopy data. Neurophotonics, 2017. 4(2): p. 021105.
[17] Zhu, T., et al. Optimal wavelength combinations for resolving in-vivo changes of haemoglobin and cytochrome-c-oxidase concentrations with NIRS. in Biomedical Optics. 2012. Optical Society of America.
[18] Arifler, D., et al., Optimal wavelength combinations for near-infrared spectroscopic monitoring of changes in brain tissue hemoglobin and cytochrome c oxidase concentrations. Biomed Opt Express, 2015. 6(3): p. 933-47.
[19] Delpy, D.T., et al., Estimation of optical pathlength through tissue from direct time of flight measurement. Physics in Medicine & Biology, 1988. 33(12): p. 1433.
[20] Bale, G., C.E. Elwell, and I. Tachtsidis, From Jobsis to the present day: a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase. J Biomed Opt, 2016. 21(9): p. 091307.
[21] Metropolis, N. and S. Ulam, The monte carlo method. Journal of the American statistical association, 1949. 44(247): p. 335-341.
[22] Prahl, S.A. A Monte Carlo model of light propagation in tissue. in Dosimetry of laser radiation in medicine and biology. 1989. International Society for Optics and Photonics.
[23] Henyey, L.G. and J.L. Greenstein, Diffuse radiation in the galaxy. The Astrophysical Journal, 1941. 93: p. 70-83.
[24] Zhong, X., X. Wen, and D. Zhu, Lookup-table-based inverse model for human skin reflectance spectroscopy: two-layered Monte Carlo simulations and experiments. Optics express, 2014. 22(2): p. 1852-1864.
[25] Hennessy, R.J., et al., Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy. Journal of biomedical optics, 2013. 18(3): p. 037003.
[26] Martinsen, P., et al., Accelerating Monte Carlo simulations with an NVIDIA® graphics processor. Computer Physics Communications, 2009. 180(10): p. 1983-1989.
[27] Fang, Q. and D.A. Boas, Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Optics express, 2009. 17(22): p. 20178-20190.
[28] Zhu, C. and Q. Liu. Review of Monte Carlo modeling of light transport in tissues. 2013. SPIE.
[29] Kienle, A. and M.S. Patterson, Determination of the optical properties of turbid media from a single Monte Carlo simulation. Physics in Medicine & Biology, 1996. 41(10): p. 2221.
[30] Pifferi, A., et al., Real-time method for fitting time-resolved reflectance and transmittance measurements with a Monte Carlo model. Applied optics, 1998. 37(13): p. 2774-2780.
[31] Alerstam, E., S. Andersson-Engels, and T. Svensson. White Monte Carlo for time-resolved photon migration. 2008. SPIE.
[32] Yamashita, Y., A. Maki, and H. Koizumi, Wavelength dependence of the precision of noninvasive optical measurement of oxy‐, deoxy‐, and total‐hemoglobin concentration. Medical physics, 2001. 28(6): p. 1108-1114.
[33] Strangman, G., M.A. Franceschini, and D.A. Boas, Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters. NeuroImage, 2003. 18(4): p. 865-879.
[34] Firbank, M., et al., Measurement of the optical properties of the skull in the wavelength range 650-950 nm. Physics in Medicine & Biology, 1993. 38(4): p. 503.
[35] Simpson, C.R., et al., Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Physics in Medicine & Biology, 1998. 43(9): p. 2465.
[36] Liu, Y., et al., Monte Carlo and phantom study in the brain edema models. Journal of Innovative Optical Health Sciences, 2017. 10(03): p. 1650050.
[37] Tachtsidis, I., et al., Measurement of frontal lobe functional activation and related systemic effects: a near-infrared spectroscopy investigation, in Oxygen Transport to Tissue XXIX. 2008, Springer. p. 397-403.
[38] Phan, P., et al., Multi-channel multi-distance broadband near-infrared spectroscopy system to measure the spatial response of cellular oxygen metabolism and tissue oxygenation. Biomedical optics express, 2016. 7(11): p. 4424-4440.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79007-
dc.description.abstract功能性近紅外線光譜技術(fNIR, Functional near-infrared spectroscopy)是近年來新興的非侵入式大腦功能性影像方法,除了具有造價低、時間解析度高的優點外,還可在開放空間中使用。隨著其發展,除了常見的定量帶氧血紅素及去氧血紅素濃度變化外,有些研究開始偵測細胞色素C氧化酶的氧化還原狀態。由於後者的濃度變化相對於前兩者低很多,使用寬頻系統量測可獲得較佳的靈敏度以及抗雜訊能力。然而寬頻系統具有較高的複雜度且較為笨重,故本研究試著找出在近紅外光譜技術中,要如何選擇使用的波長數量以及組合,以少數幾個波長的光源以及能量偵測,取代寬頻光源與光譜的偵測,達到僅犧牲些許精準度而大幅降低系統成本及提高其可攜性。本研究透過分析模擬資料以及人體大腦量測分析,並使用較為精準的逆向white monte carlo法,取代常見的modified beer lambert law方法,從漫反射光譜萃取大腦中帶氧血紅素、去氧血紅素以及細胞色素C氧化酶的濃度變化。再以基因演算法找出在3~15個波長下的最佳波長組合,以及其對應的誤差。結果得到隨著使用的波長數量增加,定量濃度變化的誤差在7個波長時為5.2%,與使用寬頻(43個波長)得到4.81 %的誤差已非常接近。因此若要以最少波長數量取代全波長的量測,7個波長數量會是較佳的選項。有了上述的結果,往後使用功能性近紅外線光譜技術量測細胞色素C氧化酶,便可以少數波長組合得到與寬頻接近的結果。zh_TW
dc.description.abstractFunctional near-infrared spectroscopy (fNIR) is a novel non-invasive brain functional imagin. Recently, in addition to quantifying changes in oxy and deoxy-hemoglobin concentration, some studies have begun to measure changes in the redox state of cytochrome C oxidase (CCO). Information regarding changes in CCO concentration has great potential for clinically measuring the metabolic response of the brain. Since changes in the concentration of CCO during brain activation is often much lower than that of hemoglobin, a broadband system is necessary to overcome noise and obtain better sensitivity. However, broadband systems are highly complex and cumbersome. Therefore, this study attempts to identify a method to choose the number of wavelengths and combinations used in near-infrared spectroscopy. Replacing broadband with a few discrete wavelengths can minimize system cost and increase portability with only a small sacrifice in accuracy. This study analyzes simulated as well as in vivo human brain measurement data and, by employing the more accurate inverse white monte carlo method to replace the common modified beer lambert law method, extract the oxy and deoxy-hemoglobin along with CCO concentration changes from diffuse reflectance spectroscopic measurments. Genetic algorithm is used to find the optimal wavelength combination from a range of 3~15 wavelengths and calculate its corresponding error. Results show that using only seven wavelengths achieved an root-mean-square error of 5.2% in estimated concentration chages of oxCCO, oxy- and deoxy-hemoglobin, which is close to the error of 4.8% using the full spectrum of 43 wavelengths. Therefore, 7 wavelengths is an optimal number of wavelengths to replace full wavelength measurement with only minimal losses in accuracy.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:36:04Z (GMT). No. of bitstreams: 1
ntu-107-R05945005-1.pdf: 2096891 bytes, checksum: cb7bdde67b5e597fd31dfa803bf23780 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iii
ABSTRACT iv
目錄 v
圖目錄 vii
表目錄 ix
Chapter 1 緒論 1
Chapter 2 文獻探討與理論介紹 3
2.1 波長最佳選擇文獻探討 3
2.2 技術理論介紹 5
2.2.1 功能性近紅外光譜技術 5
2.2.2 蒙地卡羅演算法 8
Chapter 3 研究方法 13
3.1 蒙地卡羅模擬分析 13
3.1.1 組織模型 14
3.1.2 逆向White Monte Carlo 17
3.1.3 以基因演算法尋找最佳波長組合 19
3.2 人體大腦實驗 22
3.2.1 光學系統 22
3.2.2 量測實驗流程 24
Chapter 4 結果與討論 26
4.1 蒙地卡羅模擬分析結果 26
4.1.1 逆向WMC與Modified Beer-Lambert Law比較 26
4.1.2 以基因演算法尋找最佳波長組合結果 27
4.2 人體大腦實驗結果 37
Chapter 5 結論與未來展望 39
參考文獻 40
dc.language.isozh-TW
dc.title以逆向白蒙地卡羅法分析模擬資料及人體大腦實驗尋找功能性近紅外線光譜技術之最佳化波長組合zh_TW
dc.titleUsing Inverse White Monte Carlo for Simulation Data and Human Brain Experiment to Find the Optimal Wavelength Combinations in Functional Near Infrared Spectroscopyen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳右穎(You-Yin Chen),盧家鋒(Chia-Feng Lu)
dc.subject.keyword功能性近紅外線光譜技術,大腦,細胞色素C氧化?,白蒙地卡羅法,波長選擇,zh_TW
dc.subject.keywordFunctional near-infrared spectroscopy,Brain,Cytochrome C oxidase,White monte carlo,Wavelength selection,en
dc.relation.page42
dc.identifier.doi10.6342/NTU201801341
dc.rights.note有償授權
dc.date.accepted2018-08-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
dc.date.embargo-lift2023-08-21-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-R05945005-1.pdf
  目前未授權公開取用
2.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved