Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79006
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何孟樵(Meng-Chiao Ho)
dc.contributor.authorTing-Jhen Linen
dc.contributor.author林廷真zh_TW
dc.date.accessioned2021-07-11T15:35:59Z-
dc.date.available2025-08-18
dc.date.copyright2020-08-28
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.citation[1] FAO. (2019) Agriculture and climate change – Challenges and opportunities at the global and local Level – Collaboration on Climate-Smart Agriculture.
[2] Bin Rahman, A. R., and Zhang, J. (2016) Flood and drought tolerance in rice: opposite but may coexist, Food and Energy Security 5, 76-88.
[3] Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., and Kanae, S. (2013) Global flood risk under climate change, Nature Climate Change 3, 816.
[4] Huke, R. E. (1982) Rice area by type of culture: South, Southeast, and East Asia, Int. Rice Res. Inst.
[5] Voesenek, L. A., and Bailey-Serres, J. (2015) Flood adaptive traits and processes: an overview, New Phytol 206, 57-73.
[6] Tamang, B. G., and Fukao, T. (2015) Plant adaptation to multiple stresses during submergence and following desubmergence, International journal of molecular sciences 16, 30164-30180.
[7] Phukan, U. J., Mishra, S., and Shukla, R. K. (2016) Waterlogging and submergence stress: affects and acclimation, Critical reviews in biotechnology 36, 956-966.
[8] Voesenek, L., and Bailey-Serres, J. (2013) Flooding tolerance: O2 sensing and survival strategies, Current Opinion in Plant Biology 16, 647-653.
[9] Fukao, T., Yeung, E., and Bailey-Serres, J. (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice, The Plant Cell 23, 412-427.
[10] Voesenek, L., and Sasidharan, R. (2013) Ethylene–and oxygen signalling–drive plant survival during flooding, Plant Biology 15, 426-435.
[11] Kreuzwieser, J., Fürniss, S., and Rennenberg, H. (2002) Impact of waterlogging on the N‐metabolism of flood tolerant and non‐tolerant tree species, Plant, Cell Environment 25, 1039-1049.
[12] Bailey-Serres, J., and Voesenek, L. (2008) Flooding stress: acclimations and genetic diversity, Annu. Rev. Plant Biol. 59, 313-339.
[13] Bailey-Serres, J., and Voesenek, L. A. (2010) Life in the balance: a signaling network controlling survival of flooding, Current opinion in plant biology 13, 489-494.
[14] van Veen, H., Akman, M., Jamar, D. C., Vreugdenhil, D., Kooiker, M., van Tienderen, P., Voesenek, L. A., Schranz, M. E., and Sasidharan, R. (2014) Group VII E thylene R esponse F actor diversification and regulation in four species from flood‐prone environments, Plant, Cell Environment 37, 2421-2432.
[15] Hattori, Y., Nagai, K., Furukawa, S., Song, X.-J., Kawano, R., Sakakibara, H., Wu, J., Matsumoto, T., Yoshimura, A., and Kitano, H. (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water, Nature 460, 1026.
[16] Pucciariello, C., and Perata, P. (2012) How plants sense low oxygen, Plant signaling behavior 7, 813-816.
[17] Nakano, T., Suzuki, K., Fujimura, T., and Shinshi, H. (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice, Plant physiology 140, 411-432.
[18] Gibbs, D. J., Lee, S. C., Isa, N. M., Gramuglia, S., Fukao, T., Bassel, G. W., Correia, C. S., Corbineau, F., Theodoulou, F. L., and Bailey-Serres, J. (2011) Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants, Nature 479, 415-418.
[19] Bailey-Serres, J., Fukao, T., Gibbs, D. J., Holdsworth, M. J., Lee, S. C., Licausi, F., Perata, P., Voesenek, L. A., and van Dongen, J. T. (2012) Making sense of low oxygen sensing, Trends in plant science 17, 129-138.
[20] Hinz, M., Wilson, I. W., Yang, J., Buerstenbinder, K., Llewellyn, D., Dennis, E. S., Sauter, M., and Dolferus, R. (2010) Arabidopsis RAP2. 2: an ethylene response transcription factor that is important for hypoxia survival, Plant Physiology 153, 757-772.
[21] Lin, C.-C., Chao, Y.-T., Chen, W.-C., Ho, H.-Y., Chou, M.-Y., Li, Y.-R., Wu, Y.-L., Yang, H.-A., Hsieh, H., and Lin, C.-S. (2019) Regulatory cascade involving transcriptional and N-end rule pathways in rice under submergence, Proceedings of the National Academy of Sciences 116, 3300-3309.
[22] Gibbs, D. J., Bacardit, J., Bachmair, A., and Holdsworth, M. J. (2014) The eukaryotic N-end rule pathway: conserved mechanisms and diverse functions, Trends in Cell Biology 24, 603-611.
[23] Licausi, F., Pucciariello, C., and Perata, P. (2013) New Role for an Old Rule: N‐end Rule‐Mediated Degradation of Ethylene Responsive Factor Proteins Governs Low Oxygen Response in Plants F, Journal of integrative plant biology 55, 31-39.
[24] Moon, J., Parry, G., and Estelle, M. (2004) The ubiquitin-proteasome pathway and plant development, The Plant Cell 16, 3181-3195.
[25] Deshaies, R. J., and Joazeiro, C. A. (2009) RING domain E3 ubiquitin ligases, Annual review of biochemistry 78.
[26] Nguyen, K. T., Mun, S.-H., Lee, C.-S., and Hwang, C.-S. (2018) Control of protein degradation by N-terminal acetylation and the N-end rule pathway, Experimental molecular medicine 50, 1-8.
[27] Eldeeb, M., and Fahlman, R. (2016) The-N-end rule: The beginning determines the end, Protein and peptide letters 23, 343-348.
[28] Varshavsky, A. (2011) The N‐end rule pathway and regulation by proteolysis, Protein science 20, 1298-1345.
[29] Tasaki, T., and Kwon, Y. T. (2007) The mammalian N-end rule pathway: new insights into its components and physiological roles, Trends in biochemical sciences 32, 520-528.
[30] Schrader, E. K., Harstad, K. G., and Matouschek, A. (2009) Targeting proteins for degradation, Nature chemical biology 5, 815.
[31] Varshavsky, A. (1997) The N‐end rule pathway of protein degradation, Genes to cells 2, 13-28.
[32] Frottin, F., Martinez, A., Peynot, P., Mitra, S., Holz, R. C., Giglione, C., and Meinnel, T. (2006) The proteomics of N-terminal methionine cleavage, Molecular Cellular Proteomics 5, 2336-2349.
[33] Driessen, H., De Jong, W., Tesser, G., and Bloemendal, H. (1985) The mechanism of N-terminal acetylation of protein, Critical Reviews in Biochemistry 18, 281-325.
[34] Hwang, C.-S., Shemorry, A., and Varshavsky, A. (2010) N-terminal acetylation of cellular proteins creates specific degradation signals, Science 327, 973-977.
[35] Kim, H.-K., Kim, R.-R., Oh, J.-H., Cho, H., Varshavsky, A., and Hwang, C.-S. (2014) The N-terminal methionine of cellular proteins as a degradation signal, Cell 156, 158-169.
[36] Graciet, E., and Wellmer, F. (2010) The plant N-end rule pathway: structure and functions, Trends in plant science 15, 447-453.
[37] Hu, R.-G., Sheng, J., Qi, X., Xu, Z., Takahashi, T. T., and Varshavsky, A. (2005) The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators, Nature 437, 981-986.
[38] Sriram, S. M., Kim, B. Y., and Kwon, Y. T. (2011) The N-end rule pathway: emerging functions and molecular principles of substrate recognition, Nature reviews Molecular cell biology 12, 735-747.
[39] Dohmen, R. J., Madura, K., Bartel, B., and Varshavsky, A. (1991) The N-end rule is mediated by the UBC2 (RAD6) ubiquitin-conjugating enzyme, Proceedings of the National Academy of Sciences 88, 7351-7355.
[40] Tasaki, T., Mulder, L. C., Iwamatsu, A., Lee, M. J., Davydov, I. V., Varshavsky, A., Muesing, M., and Kwon, Y. T. (2005) A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons, Molecular and cellular biology 25, 7120-7136.
[41] Potuschak, T., Stary, S., Schlögelhofer, P., Becker, F., Nejinskaia, V., and Bachmair, A. (1998) PRT1 of Arabidopsis thaliana encodes a component of the plant N-end rule pathway, Proceedings of the National Academy of Sciences USA 95, 7904-7908.
[42] Garzón, M., Eifler, K., Faust, A., Scheel, H., Hofmann, K., Koncz, C., Yephremov, A., and Bachmair, A. (2007) PRT6/At5g02310 encodes an Arabidopsis ubiquitin ligase of the N‐end rule pathway with arginine specificity and is not the CER3 locus, FEBS letters 581, 3189-3196.
[43] Dissmeyer, N. (2019) Conditional protein function via N-degron pathway–mediated proteostasis in stress physiology, Annual review of plant biology 70, 83-117.
[44] Matta-Camacho, E., Kozlov, G., Li, F. F., and Gehring, K. (2010) Structural basis of substrate recognition and specificity in the N-end rule pathway, Nature structural molecular biology 17, 1182.
[45] Tasaki, T., Sohr, R., Xia, Z., Hellweg, R., Hörtnagl, H., Varshavsky, A., and Kwon, Y. T. (2007) Biochemical and genetic studies of UBR3, a ubiquitin ligase with a function in olfactory and other sensory systems, Journal of Biological Chemistry 282, 18510-18520.
[46] Choi, W. S., Jeong, B.-C., Joo, Y. J., Lee, M.-R., Kim, J., Eck, M. J., and Song, H. K. (2010) Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases, Nature structural molecular biology 17, 1175-1181.
[47] Tasaki, T., Zakrzewska, A., Dudgeon, D. D., Jiang, Y., Lazo, J. S., and Kwon, Y. T. (2009) The substrate recognition domains of the N-end rule pathway, Journal of Biological Chemistry 284, 1884-1895.
[48] Stary, S., Yin, X.-j., Potuschak, T., Schlögelhofer, P., Nizhynska, V., and Bachmair, A. (2003) PRT1 of Arabidopsis is a ubiquitin protein ligase of the plant N-end rule pathway with specificity for aromatic amino-terminal residues, Plant physiology 133, 1360-1366.
[49] Antoni, R., Rodriguez, L., Gonzalez-Guzman, M., Pizzio, G. A., and Rodriguez, P. L. (2011) News on ABA transport, protein degradation, and ABFs/WRKYs in ABA signaling, Current opinion in plant biology 14, 547-553.
[50] Luft, J. R., Newman, J., and Snell, E. H. (2014) Crystallization screening: the influence of history on current practice, Acta Crystallographica Section F 70, 835-853.
[51] Juarez-Martinez, G. (2012) Macromolecular Crystallization Using Nano-volumes, Encyclopedia of Nanotechnology, 1235-1248.
[52] Luft, J. R., Wolfley, J. R., and Snell, E. H. (2011) What’s in a drop? Correlating observations and outcomes to guide macromolecular crystallization experiments, Crystal growth design 11, 651-663.
[53] Otwinowski, Z., and Minor, W. (1997) [20] Processing of X-ray diffraction data collected in oscillation mode, In Methods in enzymology, pp 307-326, Elsevier.
[54] Afonine, P. V., Grosse-Kunstleve, R. W., Echols, N., Headd, J. J., Moriarty, N. W., Mustyakimov, M., Terwilliger, T. C., Urzhumtsev, A., Zwart, P. H., and Adams, P. D. (2012) Towards automated crystallographic structure refinement with phenix. refine, Acta Crystallographica Section D: Biological Crystallography 68, 352-367.
[55] 林汶宣. (2018) 植物蛋白水解酶6與受質特異性之生物物理與結構特性研究, 生化科學研究所, 國立臺灣大學.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79006-
dc.description.abstract氣候變化帶來了許多自然災害,例如洪水和乾旱,已經威脅到植物的生存和農作物的生產。為了抵禦洪水,植物體內有一群屬於第七群乙烯反應因子 (Group VII ethylene response factors, ERF-VIIs) 的蛋白質,可以幫助植物對抗淹水逆境。在淹水(缺氧)期間,ERF-VIIs可以促進植物生長,使植物到達水面進行氧氣交換(逃逸策略),也可以停止生長以保留能量直到洪水退去(靜止策略)。ERF-VIIs N端特異性保守序列的氨基酸MCGG為N端降解子(N-degrons),在有氧環境下會被N端規則途徑( N-end rule pathway )的酵素識別並修飾成Arg-CysO2-Gly-Gly。它最終將被蛋白水解酶6 (Proteolysis 6, PRT6) 的泛素識別區域 (Ubiquitin-recognin domain, UBR domain)識別並降解,ERF-VIIs的Cys需要被氧化,才能讓植物體內知道自己處於常氧狀態,是在植物體內特有的反應。先前研究已知在酵母菌及人類的UBR domain對不同的N-degrons的辨認性的差異。根據序列比對,我們發現植物UBR domain和其他物種的UBR domain在精氨酸R15及R17等序列有高度的保守性,但還不清楚UBR domain是如何辨識其CysO2受質專一性。綜合上述,我們想要探討植物的PRT6 UBR domain是否對CysO2有專一性,及驗證當中不同N-degrons之特異性是否與其他物種有不同之處,因此純化蛋白進行結晶,也用等溫滴定量熱法 (Isothermal titration calorimetry, iTC) 和表面電漿共振(Surface plasmon resonance, SPR)的實驗方式來揭示CysO2受質的辨認機制。最後,希望可以根據我們的研究設計PRT6 UBR domain結構域的抑製劑,防止植物ERF-VIIs在淹水前被N-end rule pathway降解,以增加植物的存活率及農作物產量。zh_TW
dc.description.abstractThe recent climatic changes bring a lot of nature hazards such as floods and droughts that have threatened the survival of plants and the production of agricultural crops. To resist flood, plants possess a group of proteins belonging to the Group VII ethylene response factors (ERF-VIIs) to activate downstream responses. During submergence (hypoxia), the ERF-VIIs either enhance the growth so plant can reach water surface for oxygen exchange (escape strategy) or stop the growth to preserve all energy until water recession (quiescence strategy). To prevent flood responses by ERF-VIIs during normoxia condition, ERF-VIIs are degraded by N-end rule pathway of targeted proteolysis in which oxidization plays a critical role. The amino acids MCGG (N-degrons) of N-terminal specific conserved sequence of ERF-VIIs is recognized and modified by the N-end rule pathway-specific enzymes into Arg-CysO2-Gly-Gly. It will finally be recognized and degraded by UBR domain of proteolytic enzyme 6 (PROTEOLYSIS 6, PRT6). N-end rule is highly conserved in eukaryotes and previous structural studies have revealed the substrate specificity mechanism of human and yeast UBR domain. According to structure comparison and sequence alignment, we found that the plant PRT6 UBR domain contains two highly conserved arginine residues at position 15 and 17 and a special loop that may be involved in oxidizing Cys recognition.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:35:59Z (GMT). No. of bitstreams: 1
U0001-1808202010570000.pdf: 6989026 bytes, checksum: 4c8ef8c18a095f9bf9aff9ac6a844c32 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents
口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
Index of tables vii
Index of figures viii
Chapter 1 Introduction 1
1.1 Floods and loss in rice 1
1.2 Strategy of submergence tolerant 2
1.3 The Group VII Ethylene Response Factors (ERF-VIIs) 3
1.4 The N-end rule pathway 4
1.4.1 The N-recognin E3 ligase and N-degron 4
1.4.2 Two branches N-end rule pathway of the eukaryotic cells 6
1.4.3 N-end rule pathway in yeast 7
1.4.4 N-end rule pathway in mammals 8
1.4.5 N-end rule pathway in plants 8
1.5 The structure of UBR domain of ubiquitin E3 ligase 9
1.6 Specific aims 12
Chapter 2 Materials and methods 14
2.1 Materials 14
2.1.1 Bacterial strains 14
2.1.2 Molecular cloning related 14
2.1.3 Chemicals and reagents 14
2.1.4 Instruments and equipments 16
2.1.5 Protein purification machine and column 17
2.1.6 Centrifuge 17
2.1.7 Peptide 18
2.2 Methods 18
2.2.1 Plasmid constructs 18
2.2.2 Expression of recombinant OsPRT6 UBR domain proteins 19
2.2.3 Protein purification 20
2.2.4 SDS-PAGE analysis 22
2.2.5 Crystallization 22
2.2.6 Buffer screening 24
2.2.7 Binding assay 26
Chapter 3 Results and discussions 31
3.1 Results 31
3.1.1 Protein expression and purification 31
3.1.2 Protein crystallization 33
3.1.3 Crystal structure of OsPRT6 UBR domain 34
3.1.4 Buffer screening for protein stability 36
3.1.5 Peptide binding studies 37
3.2 Discussion 40
3.2.1 UBR domain structure significance 40
3.2.2 UBR domain binding specificity 42
Chapter 4 Conclusion and perspective 44
Chapter 5 Tables and figure 46
5.1 Tables 46
5.2 Figures 67
Chapter 6 References 115
dc.language.isoen
dc.subjectUBR domainzh_TW
dc.subjectN-degronszh_TW
dc.subjectPRT6zh_TW
dc.subject蛋白質結構zh_TW
dc.subjectN-degronsen
dc.subjectPRT6en
dc.subjectUBR domainen
dc.subjectProtein structureen
dc.title稻米蛋白水解酶6泛素識別區域之結構與生物物理特性研究zh_TW
dc.titleStructural and Biophysical Characterization of UBR domain of Rice Proteolysis 6en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee梁博煌(Po-Huang Liang),鄭貽生(Yi-Sheng Cheng),葉國楨(Kuo-Chen Yeh)
dc.subject.keywordN-degrons,PRT6,UBR domain,蛋白質結構,zh_TW
dc.subject.keywordN-degrons,PRT6,UBR domain,Protein structure,en
dc.relation.page119
dc.identifier.doi10.6342/NTU202003930
dc.rights.note有償授權
dc.date.accepted2020-08-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
dc.date.embargo-lift2025-08-18-
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
U0001-1808202010570000.pdf
  未授權公開取用
6.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved