請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78998
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張明富 | zh_TW |
dc.contributor.author | 許耕豪 | zh_TW |
dc.contributor.author | Keng-Hao Hsu | en |
dc.date.accessioned | 2021-07-11T15:35:19Z | - |
dc.date.available | 2024-02-28 | - |
dc.date.copyright | 2018-10-09 | - |
dc.date.issued | 2018 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 1. Huang C, Jiang JY, Chang SC, Tsay YG, Chen MR, Chang MF. 2013. Nuclear export signal-interacting protein forms complexes with lamin A/C-Nups to mediate the CRM1-independent nuclear export of large hepatitis delta antigen. J Virol 87:1596-1604.
2. Rutsch F, Gailus S, Miousse IR, Suormala T, Sagne C, Toliat MR, Nurnberg G, Wittkampf T, Buers I, Sharifi A, Stucki M, Becker C, Baumgartner M, Robenek H, Marquardt T, Hohne W, Gasnier B, Rosenblatt DS, Fowler B, Nurnberg P. 2009. Identification of a putative lysosomal cobalamin exporter altered in the cblF defect of vitamin B12 metabolism. Nat Genet 41:234-239. 3. Beedholm-Ebsen R, van de Wetering K, Hardlei T, Nexo E, Borst P, Moestrup SK. 2010. Identification of multidrug resistance protein 1 (MRP1/ABCC1) as a molecular gate for cellular export of cobalamin. Blood 115:1632-1639. 4. Coelho D, Kim JC, Miousse IR, Fung S, du Moulin M, Buers I, Suormala T, Burda P, Frapolli M, Stucki M, Nurnberg P, Thiele H, Robenek H, Hohne W, Longo N, Pasquali M, Mengel E, Watkins D, Shoubridge EA, Majewski J, Rosenblatt DS, Fowler B, Rutsch F, Baumgartner MR. 2012. Mutations in ABCD4 cause a new inborn error of vitamin B12 metabolism. Nat Genet 44:1152-1155. 5. Deme JC, Hancock MA, Xia X, Shintre CA, Plesa M, Kim JC, Carpenter EP, Rosenblatt DS, Coulton JW. 2014. Purification and interaction analyses of two human lysosomal vitamin B12 transporters: LMBD1 and ABCD4. Mol Membr Biol 31:250-261. 6. Kawaguchi K, Okamoto T, Morita M, Imanaka T. 2016. Translocation of the ABC transporter ABCD4 from the endoplasmic reticulum to lysosomes requires the escort protein LMBD1. Sci Rep 6:30183. 7. Tseng LT, Lin CL, Tzen KY, Chang SC, Chang MF. 2013. LMBD1 protein serves as a specific adaptor for insulin receptor internalization. J Biol Chem 288:32424-32432. 8. Pan KH. 2017. The C-terminal domain of LMBD1 protein is critical for the insulin receptor signaling. NTU. 9. Buers I, Pennekamp P, Nitschke Y, Lowe C, Skryabin BV, Rutsch F. 2016. Lmbrd1 expression is essential for the initiation of gastrulation. J Cell Mol Med 20:1523-1533. 10. Hsu WT. 2010. Functional analysis of LMBRD1 in neuronal differentiation. NTU. 11. Li YP. 2005. Biochemical characterization of NESI protein involved in the nuclear export pathway. NTU. 12. Chiu YL. 2007. Functional analysis of the putative actin-binding domain of NESI protein. NTU. 13. Miyamoto Y, Yamauchi J. 2010. Cellular signaling of Dock family proteins in neural function. Cell Signal 22:175-182. 14. Lin YH. 2016. The mechanism of LMBD1 protein Involved in neurnal spine formation. NTU. 15. Lin CY. 2014. Roles of LMBD1 protein in retinoic acid-induced dentritic spine formation. NTU. 16. Chang YT. 2017. LMBD1 protein regulates dopamine uptake through interacting with dopamine transporter and autoreceptor D2. NTU. 17. Wang YH, Chang SC, Huang C, Li YP, Lee CH, Chang MF. 2005. Novel nuclear export signal-interacting protein, NESI, critical for the assembly of hepatitis delta virus. J Virol 79:8113-8120. 18. Tseng LT, Lin CL, Pan KH, Tzen KY, Su MJ, Tsai CT, Li YH, Li PC, Chiang FT, Chang SC, Chang MF. 2018. Single allele Lmbrd1 knockout results in cardiac hypertrophy. J Formos Med Assoc 117:471-479. 19. Liu PF. 2016. The role of Lmbrd1 gene involved in myogenesis. NTU. 20. Hatada I, Namihira M, Morita S, Kimura M, Horii T, Nakashima K. 2008. Astrocyte-specific genes are generally demethylated in neural precursor cells prior to astrocytic differentiation. PLoS One 3:e3189. 21. Takumi Takizawa KN, Masakazu Namihira, Wataru Ochiai, Atsumi Uemura, Makoto Yanagisawa, Naoyuki Fujita, Mitsuyoshi Nakao,, Taga aT. 2001. DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev Cell 1:749-758. 22. Ballas N, Lioy DT, Grunseich C, Mandel G. 2009. Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat Neurosci 12:311-317. 23. Allis BDSCD. 2000. The language of covalent histone modifications. Nature 403:41-45. 24. Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G. 2005. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121:645-657. 25. da Silva JS, Dotti CG. 2002. Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci 3:694-704. 26. Sohail Ahmed HG, Chen Sok Lam, Anuradha Poonepalli, Srinivas Ramasamy, Yvonne Tay, Muly Tham and Yuan Hong Yu. 2009. Transcription factors and neural stem cell self-renewal, growth and differentiation. Cell Adhesion & Migration 4:412-424. 27. Clagett-Dame M PL. 1997. Retinoid-regulated gene expression in neural development. Crit Rev Eukaryot Gene Expr 7:299-342. 28. Balmer JE, Blomhoff R. 2002. Gene expression regulation by retinoic acid. J Lipid Res 43:1773-1808. 29. Clagett-Dame M, McNeill EM, Muley PD. 2006. Role of all-trans retinoic acid in neurite outgrowth and axonal elongation. J Neurobiol 66:739-756. 30. L. WUARIN NSaJDV. 1990. Retinoids increase perinatal spinal cord neuronal survival and astroglial differentiation. Int J Devl Neurosci 8:317-326. 31. Huber AB, Kolodkin AL, Ginty DD, Cloutier JF. 2003. Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu Rev Neurosci 26:509-563. 32. Cuende J, Moreno S, Bolanos JP, Almeida A. 2008. Retinoic acid downregulates Rae1 leading to APC(Cdh1) activation and neuroblastoma SH-SY5Y differentiation. Oncogene 27:3339-3344. 33. Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL. 2008. The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease. J Neurosci 28:14341-14346. 34. Smirnova L, Grafe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG. 2005. Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21:1469-1477. 35. Krichevsky AM, Sonntag KC, Isacson O, Kosik KS. 2006. Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24:857-864. 36. Arimura N, Kaibuchi K. 2007. Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci 8:194-205. 37. Forster JI, Koglsberger S, Trefois C, Boyd O, Baumuratov AS, Buck L, Balling R, Antony PM. 2016. Characterization of differentiated SH-SY5Y as neuronal screening model reveals increased oxidative vulnerability. J Biomol Screen 21:496-509. 38. Matus A. 1988. Microtubule-associated proteins: Their potential role in determining neuronal morphology. Neurosci 11:29-44. 39. Suzuki S, Namiki J, Shibata S, Mastuzaki Y, Okano H. 2010. The neural stem/progenitor cell marker nestin is expressed in proliferative endothelial cells, but not in mature vasculature. J Histochem Cytochem 58:721-730. 40. von Bohlen Und Halbach O. 2007. Immunohistological markers for staging neurogenesis in adult hippocampus. Cell Tissue Res 329:409-420. 41. International Human Genome Sequencing C. 2004. Finishing the euchromatic sequence of the human genome. Nature 431:931. 42. Lu J LW, Jiang C, Keller EB. 1994. Start Site Selectionby Spl in the TATA-less Human Ha-ras Promoter. J Biol Chem 269:5391-5402. 43. Tsunoda T TT. 1999. Estimating transcription factor bindability on DNA. Bioinformatics 15:622-630. 44. Domènec Farré RR, Mario Huerta, José E. Adsuara, Llorenç Roselló, M. Mar Albà, and Xavier Messeguer. 2003. Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res 31:3651-3653. 45. Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, Bessy A, Cheneby J, Kulkarni SR, Tan G, Baranasic D, Arenillas DJ, Sandelin A, Vandepoele K, Lenhard B, Ballester B, Wasserman WW, Parcy F, Mathelier A. 2018. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res 46:D260-D266. 46. Malik D, Kaul D. 2015. KLF4 Genome: A double edged sword. J Solid Tumors 5:49-64. 47. McDonald OG, Wamhoff BR, Hoofnagle MH, Owens GK. 2006. Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. J Clin Invest 116:36-48. 48. van Battum EY, Verhagen MG, Vangoor VR, Fujita Y, Derijck A, O'Duibhir E, Giuliani G, de Gunst T, Adolfs Y, Lelieveld D, Egan D, Schaapveld RQJ, Yamashita T, Pasterkamp RJ. 2018. An image-based miRNA screen identifies miRNA-135s as regulators of CNS axon growth and regeneration by targeting Kruppel-like factor 4. J Neurosci 38:613-630. 49. Ghaleb AM, Yang VW. 2017. Krüppel-like factor 4 (KLF4): What we currently know. Gene 611:27-37. 50. Pearson JC, Lemons D, McGinnis W. 2005. Modulating Hox gene functions during animal body patterning. Nat Rev Genet 6:893-904. 51. Jiang T, Hou CC, She ZY, Yang WX. 2013. The SOX gene family: function and regulation in testis determination and male fertility maintenance. Mol Biol Rep 40:2187-2194. 52. Findlay VJ, LaRue AC, Turner DP, Watson PM, Watson DK. 2013. Understanding the role of ETS-mediated gene regulation in complex biological processes. Adv Cancer Res 119:1-61. 53. Junxuan Lu WL, Cheng Jiang, and ElizabethB. Keller. 1994. Start Site Selectionby Spl in the TATA-less Human Ha-ras Promoter. J Biol Chem 269:5391-5402. 54. Dieudonne FX, O'Connor PB, Gubler-Jaquier P, Yasrebi H, Conne B, Nikolaev S, Antonarakis S, Baranov PV, Curran J. 2015. The effect of heterogeneous Transcription Start Sites (TSS) on the translatome: implications for the mammalian cellular phenotype. BMC Genomics 16:986. 55. Zheng B, Han M, Wen JK. 2010. Role of Kruppel-like factor 4 in phenotypic switching and proliferation of vascular smooth muscle cells. IUBMB Life 62:132-139. 56. Lorenzo F Sempere SF, Ian Pitha-Rowe, Eric Moss, Ethan Dmitrovsky and Victor Ambros. 2004. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5:R13. 57. Nedaeinia R SM, Avan A, Kazemi M, Nabinejad A, Ferns GA, Ghayour-Mobarhan M, Salehi R. 2017. Inhibition of microRNA-21 via locked nucleic acid-anti-miR suppressed metastatic features of colorectal cancer cells through modulation of programmed cell death 4. Tumor Biology 39. 58. Chen C, Tan R, Wong L, Fekete R, Halsey J. 2011. Quantitation of microRNAs by real-time RT-qPCR. Methods Mol Biol 687:113-134 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78998 | - |
dc.description.abstract | LMBRD1基因主要編碼兩個已知功能之蛋白質LMBD1和NESI。LMBD1為一膜蛋白質,主要分布於細胞膜及溶酶體上,參與維生素B12從溶酶體至細胞質之運輸、胰島素受體的內吞作用、胚胎和神經發育及細胞骨架之調控。在Lmbrd1+/- 小鼠模式中,發現其在學習記憶上有所缺陷,並從腦組織切片配合免疫組織化學染色結果發現神經網絡較稀疏,且將海馬迴神經元分離培養時,發現神經突上之樹狀突脊顯著減少,推測為學習記憶缺陷之原因。從即時定量PCR及組織蛋白質分析結果,發現LMBD1在小鼠腦部有大量表達,並從VEGF誘導小鼠神經瘤細胞株N2A分化實驗中,發現LMBD1蛋白質表現會上升,並與肌動蛋白有共位現象,推測其在神經分化過程中參與調控細胞骨架之形成。本實驗欲探討以維生素A酸誘導人類神經瘤母細胞株SH-SY5Y的分化過程,是否LMBD1會受到調控,並探討其轉錄調控機制。結果顯示,在細胞分化前期LMBD1表現會有些微下降,而在分化兩天後顯著上升,且在分化過程中會分布於神經突中,並有區域聚集的現象,猜測可能與樹狀突脊生成有關。以cDNA 5’端快速擴增技術確認LMBD1之轉錄起始有多個位點,可能受3個GC box分別調控。利用構築帶有不同長度之LMBRD1啟動子的luciferase報導質體,分析神經分化前後啟動子活性變化,並以軟體進行轉錄因子預測,發現有3個KLF4可能結合的DNA序列,推測KLF4可能會作為轉錄抑制因子抑制LMBD1之表現。以染色體免疫沉澱及定點突變實驗證實KLF4會結合至LMBRD1(nt -936~ -525) 內之第2及第3預測位點。以西方墨點法及即時聚合酶連鎖反應分析發現在分化過程中,KLF4可能會受轉錄後修飾而抑制其表現,使結合至LMBRD1(nt -936~ -525)之能力下降而促進LMBD1之表現。
關鍵字: LMBRD1基因、維生素A酸、神經細胞分化、轉錄調控機制、轉錄起始位點。 | zh_TW |
dc.description.abstract | LMBRD1 gene is located on human chromosome 6 and encodes two known proteins, namely LMBD1 and NESI. LMBD1 is a membrane protein, which is mainly located at plasma membrane and lysosome. It regulates several biological functions, such as export of lysosomal vitamin B12, internalization of insulin receptor, embryonic and neural development, and actin polymerization. In Lmbrd1+/- mouse model, defects in behaviors were identified, such as learning memory. Immunohistochemistry staining showed sparse neural networks in the brain of the Lmbrd1+/- mice. In addition, primary neuron cells derived from the hippocampus of Lmbrd1+/- mice had less spine formation. This could be one of the reasons why Lmbrd1+/- mice have memory defects. Realtime PCR and immunoblot analysis of various mouse tissues revealed that brain had the highest expression level of LMBD1. when VEGF was used to induce differentiation of mouse neuroblastoma N2A cells, LMBD1 was up-regulated and was colocolized with actin in neurites. These results indicate that LMBD1 might regulate neural differentiation through cytockelatal organization. However, the mechanism involved in the regulation of LMBD1 expression during neural differentiation is still unclear. In this study, the transcriptional regulation of LMBD1 during retinoic acid (RA) induced differentiation of human neuroblastoma SH-SY5Y cells was investigated. The results showed an up-regulated expression of LMBD1 in the neurites of differentiated SH-SY5Y cells on the second day after RA treatment. In addition, multiple transcriptional initiation sites, possibly regulated through different GC-boxes, were identified by cDNA 5’ RACE amplication. In order to identify important cis-elements in the LMBRD1 promoter region, luciferase reporter plasmid carrying LMBRD1 gene 5’ upstream sequences from nucleotides -2357 to +1 [LMBRD1(nt -2357~ +1)] and a series deletion were constructed and analyzed for their promoter activities. The results showed that [LMBRD1(nt -1580~ -936)] and [LMBRD1(nt -936~ -525)] contain positive and negative regulatory elements, respectively. Since the expression level of LMBD1 was increased during neural differentiation, it is likely that the negative regulator associated with the [LMBRD1(nt -936~ -525)] was lost. By using software TFBIND, PROMO and JASPAR, transcription factors that have potential to bind to the region were examed. KLF4 was chosen as a candidate that down-regulates the expression of LMBRD1. Three potential binding sites of KLF4 were found. In chromatin precipitation and site-direct mutagenesis analysis, KLF4 was identified to bind to the predicted sites 2 and 3 in [LMBRD1(nt -936~ -525)] region. Overexpression and knockdown experiments, further confirmed that KLF4 can serve as a repressor that down-regulated the expression of LMBD1 during neural differentiation. Western blot and real time qPCR analysis indicated that KLF4 may be down-regulated by post-transcriptional mechanism, resulting in the up-regulation of LMBRD1 gene.
Key words: LMBRD1gene、retinoic acid、neural differentiation、transcriptional regulation、transcription initiation site。 | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:35:19Z (GMT). No. of bitstreams: 1 ntu-107-R05442004-1.pdf: 3312963 bytes, checksum: 14b71e3c7edd53d00d69bb6c2e0db804 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 1. 誌謝 2
2. 目次 3 3. 中文摘要 5 4. 英文摘要 7 5. 縮寫表 9 6. 緒論 11 一、 LMBRD1基因之相關研究 11 二、 Lmbrd1基因剔除小鼠研究 15 三、 神經分化 16 7. 研究主題 20 8. 材料來源 21 9. 實驗方法 28 一、 質體之構築 28 二、 勝任細胞 (Competent cells) 的製備 34 三、 細胞轉型 (Transformation) 35 四、 質體的小量製備 (Mini preparation of plasmid DNA) 35 五、 質體的中量製備 (Midi preparation of plasmid DNA) 36 六、 細胞株繼代培養 36 七、 SH-SY5Y細胞株分化 37 八、 細胞內RNA之收集 38 九、 反轉錄聚合酶反應 (Reverse transcription) 38 十、 即時聚合酶連鎖反應 (real-time PCR) 38 十一、DNA轉染 (DNA transfection) 39 十二、細胞內蛋白質之收集 39 十三、蛋白質定量 40 十四、正十二烷硫酸鈉-聚丙烯醯胺膠體電泳 (SDS-PAGE) 40 十五、西方墨點法 (Western blot analysis) 41 十六、免疫螢光染色 (Immunofluorescence staining assay) 42 十七、帶有shRNA之VSV-G pseudotyped lentivirus 生產及感染 43 十八、螢光素酶檢測法 (luciferase reporter assay) 43 十九、染色體免疫沈澱 (Chromatin Immunoprecipitation, ChIP) 44 二十、cDNA 5'端快速擴增技術 (5' rapid-amplification of cDNA ends) 45 二十一、統計分析 (Statistic analysis) 49 10. 實驗結果 50 一、 神經分化過程LMBD1表現量之變化 50 二、 LMBD1與NESI使用不同啟動子調控轉錄及蛋白質表現 51 三、 LMBRD1之啟動子在神經分化前後調控之差異 52 四、 預測可能參與之轉錄因子 53 五、 KLF4結合LMBRD1 (-936~ -525) 啟動子序列在分化前後之變化 53 六、 KLF4在神經分化過程表現下降 54 七、 KLF4作為轉錄抑制因子調控LMBRD1啟動子 54 八、 KLF4結合於MT2、MT3位點負調控LMBRD1啟動子之活性 55 11. 討論 56 一、 LMBRD1啟動子之分析 56 二、 LMBD1在神經分化過程可能參與之功能 58 三、 KLF4在分化過程之調控機制 58 12. 圖表 61 13. 附錄 78 14. 參考文獻 87 | - |
dc.language.iso | zh_TW | - |
dc.title | LMBRD1基因在神經分化過程中的轉錄調控 | zh_TW |
dc.title | The transcriptional regulation of LMBRD1 gene in neuron cell differentiation | en |
dc.type | Thesis | - |
dc.date.schoolyear | 106-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林敬哲;黃憲松;歐展言 | zh_TW |
dc.contributor.oralexamcommittee | ;; | en |
dc.subject.keyword | LMBRD1基因,維生素A酸,神經細胞分化,轉錄調控機制,轉錄起始位點, | zh_TW |
dc.subject.keyword | LMBRD1gene,retinoid acid,neural differentiation,transcriptional regulation,transcription initiation site, | en |
dc.relation.page | 91 | - |
dc.identifier.doi | 10.6342/NTU201803333 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2018-08-15 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 生物化學暨分子生物學研究所 | - |
dc.date.embargo-lift | 2023-10-09 | - |
顯示於系所單位: | 生物化學暨分子生物學科研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-2.pdf 目前未授權公開取用 | 3.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。