請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78995完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳奕君(I-Chun Chen) | |
| dc.contributor.author | Min-Hsuan Lu | en |
| dc.contributor.author | 呂旻軒 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:35:05Z | - |
| dc.date.available | 2025-08-18 | |
| dc.date.copyright | 2020-08-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.citation | [1] L. J. Edgar, 'Method and apparatus for controlling electric currents,' ed: Google Patents, 1930. [2] L. J. Edgar, 'Amplifier for electric currents,' ed: Google Patents, 1932. [3] L. J. Edgar, 'Device for controlling electric current,' ed: Google Patents, 1933. [4] P. K. Weimer, 'The TFT a new thin-film transistor,' Proc. IRE, vol. 50, no. 6, pp. 1462-1469, 1962, doi:10.1109/JRPROC.1962.288190. [5] P. Le Comber, W. Spear, and A. Ghaith, 'Amorphous-silicon field-effect device and possible application,' Electronics Letters, vol. 15, no. 6, pp. 179-181, 1979, doi:10.1049/el:19790126, doi:10.1016/j.tsf.2011.07.018. [6] J. S. Park, W.-J. Maeng, H.-S. Kim, and J.-S. Park, 'Review of recent developments in amorphous oxide semiconductor thin-film transistor devices,' Thin Solid Films, vol. 520, no. 6, pp. 1679-1693, 2012. [7] C.-W. Ou, Dhananjay, Z. -Y. Ho, Y. -C. Chuang, S. -S. Cheng, M. -C. Wu, K. -C. Ho, C. -W. Chu, 'Anomalous p-channel amorphous oxide transistors based on tin oxide and their complementary circuits,' Appl. Phys. Lett., vol. 92, no. 12, p. 122113, 2008, doi:10.1063/1.2898217. [8] Dhananjay, C.-W. Ou, Z. -Y. Ho, Y. -C. Chuang, S. -S. Cheng, M. -C. Wu, K. -C. Ho, C. -W. Chu, S. -W. Lee, 'Complementary inverter circuits based on p-Sn O 2 and n-In 2 O 3 thin film transistors,' Appl. Phys. Lett., vol. 92, no. 23, p. 232103, 2008. [9] K. Nomura, T. Kamiya, and H. Hosono, 'Ambipolar oxide thin‐film transistor,' Adv. Mater., vol. 23, no. 30, pp. 3431-3434, 2011, doi:10.1063/1.2936275. [10] I.-C. Chiu, Y.-S. Li, M.-S. Tu, and I.-C. Cheng, 'Complementary oxide–semiconductor-based circuits with n-channel ZnO and p-channel SnO thin-film transistors,' IEEE Electron Device Letters, vol. 35, no. 12, pp. 1263-1265, 2014, doi:10.1109/LED.2014.2364578. [11] J. Zhang, J. Yang, Y. Li, J. Wilson, X. Ma, Q. Xin, A. Song, 'High performance complementary circuits based on p-SnO and n-IGZO thin-film transistors,' Materials, vol. 10, no. 3, p. 319, 2017, doi: 10.3390/ma10030319.. [12] J. Yang, Y. Wang, Y. Li, Y. Yuan, Z. Hu, P. Ma, L. Zhou, Q. Wang, A. Song, Q. Xin, 'Highly optimized complementary inverters based on p-SnO and n-InGaZnO with high uniformity,' IEEE Electron Device Letters, vol. 39, no. 4, pp. 516-519, 2018, doi:10.1109/LED.2018.2809796, doi:10.1021/nn400852r. [13] J. A. Caraveo-Frescas, P. K. Nayak, H. A. Al-Jawhari, D. B. Granato, U. Schwingenschlögl, and H. N. Alshareef, 'Record mobility in transparent p-type tin monoxide films and devices by phase engineering,' ACS nano, vol. 7, no. 6, pp. 5160-5167, 2013, doi:10.1016/j.tsf.2014.07.062. [14] S. Chen, C. Wen, T. Kuo, W. Peng, and H. Lin, 'Characterization and properties of NiO films produced by rf magnetron sputtering with oxygen ion source assistance,' Thin Solid Films, vol. 572, pp. 51-55, 2014, 10.1016/j.tsf.2014.07.062. [15] C.-W. Lin, W.-C. Chung, Z.-D. Zhang, and M.-C. Hsu, 'P-channel transparent thin-film transistor using physical-vapor-deposited NiO layer,' Jpn. J. Appl. Phys., vol. 57, no. 1S, p. 01AE01, 2017, doi:10.7567/JJAP.57.01AE01. [16] D. Yaung, YK Fang, KC Hwang, KY Lee, KH Wu, JJ Ho, CY Chen, YJ Wang, MS Liang, JY Lee, 'Narrow width effects of bottom-gate polysilicon thin film transistors,' IEEE Electron Device Letters, vol. 19, no. 11, pp. 429-431, 1998, doi:10.1109/55.728902. [17] J. A. Caraveo-Frescas and H. N. Alshareef, 'Transparent p-type SnO nanowires with unprecedented hole mobility among oxide semiconductors,' Appl. Phys. Lett., vol. 103, no. 22, p. 222103, 2013, doi:10.1063/1.4833541. [18] S. Lee, Y. Chen, J. Kim, H. M. Kim, and J. Jang, 'Transparent AMOLED display driven by split oxide TFT backplane,' Journal of the Society for Information Display, vol. 26, no. 3, pp. 164-168, 2018, doi:10.1002/jsid.646. [19] M.-H. Wu, H.-C. Lin, and P.-W. Li, 'Submicrometer p-type SnO thin-film transistors fabricated by film profile engineering method,' IEEE Trans. Electron Devices, vol. 66, no. 4, pp. 1766-1771, 2019 , doi:10.1109/TED.2019.2897813. [20] E. Fortunato, P. Barquinha, and R. Martins, 'Oxide semiconductor thin‐film transistors: a review of recent advances,' Adv. Mater., vol. 24, no. 22, pp. 2945-2986, 2012, doi:10.1002/adma.201103228. [21] A. Suresh, 'Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors, Non-volatile Memory and Circuits for Transparent Electronics,', Ph.D. Thesis, 2010. [22] Z. Wang, P. K. Nayak, J. A. Caraveo‐Frescas, and H. N. Alshareef, 'Recent developments in p‐type oxide semiconductor materials and devices,' Adv. Mater., vol. 28, no. 20, pp. 3831-3892, 2016, doi:10.1002/adma.201503080. [23] 蔣宇皓, '應用紅外線快速昇溫製程於氧化亞錫薄膜與氧化亞錫二極體之研究,' 應用力學研究所, 國立臺灣大學, 應用力學研究所, 國立臺灣大學, 2015年, doi:10.6342/ntu.2015.02676.. [24] Y. Ogo, Hidenori Hiramatsu, Kenji Nomura, Hiroshi Yanagi, Toshio Kamiya, Masahiro Hirano, Hideo Hosono, 'P-channel thin-film transistor using p-type oxide semiconductor, SnO,' Appl. Phys. Lett., vol. 93, no. 3, p. 032113, 2008, doi:10.1063/1.2964197. [25] P.-C. Chen, Y.-C. Chiu, G.-L. Liou, Z.-W. Zheng, C.-H. Cheng, and Y.-H. Wu, 'Performance enhancements in p-type Al-doped tin-oxide thin film transistors by using fluorine plasma treatment,' IEEE Electron Device Letters, vol. 38, no. 2, pp. 210-212, 2016, doi:10.1109/LED.2016.2646378. [26] H.-N. Lee, H.-J. Kim, and C.-K. Kim, 'P-channel tin monoxide thin film transistor fabricated by vacuum thermal evaporation,' Jpn. J. Appl. Phys., vol. 49, no. 2R, p. 020202, 2010, doi:10.1143/JJAP.49.020202. [27] H. Yabuta, Nobuyuki Kaji, Ryo Hayashi, Hideya Kumomi, Kenji Nomura, Toshio Kamiya, Masahiro Hirano, Hideo Hosono, 'Sputtering formation of p-type SnO thin-film transistors on glass toward oxide complimentary circuits,' Appl. Phys. Lett., vol. 97, no. 7, p. 072111, 2010, doi:10.1063/1.3478213. [28] L. Y. Liang, Z. M. Liu, H. T. Cao, Z. Yu, Y. Y. Shi, A. H. Chen, H. Z. Zhang, Y. Q. Fang, X. L. Sun, 'Phase and optical characterizations of annealed SnO thin films and their p-type TFT application,' J. Electrochem. Soc., vol. 157, no. 6, p. H598, 2010, doi:10.1149/1.3385390. [29] E. Fortunato, R. Barros, P. Barquinha, V. Figueiredo, S. -H. K. Park, C. -S. Hwang, R. Martins, 'Transparent p-type SnOx thin film transistors produced by reactive rf magnetron sputtering followed by low temperature annealing,' Appl. Phys. Lett., vol. 97, no. 5, p. 052105, 2010, doi:10.1063/1.3469939. [30] K. Okamura, B. Nasr, R. A. Brand, and H. Hahn, 'Solution-processed oxide semiconductor SnO in p-channel thin-film transistors,' J. Mater. Chem., vol. 22, no. 11, pp. 4607-4610, 2012, doi:10.1039/C2JM16426D. [31] L. Y. Liang, Z. M. Liu, H. T. Cao, W. Y. Xu, X. L. Sun, H. Luo, and K. Cang, 'The structural, optical and electrical properties of Y-doped SnO thin films and their p-type TFT application,' J. Phys. D: Appl. Phys., vol. 45, no. 8, p. 085101, 2012, doi:10.1088/0022-3727. [32] P.-C. Hsu, W.-C. Chen, Y.-T. Tsai, Y.-C. Kung, C.-H. Chang, C.-J. Hsu, C.-C. Wu, and H.-H. Hsieh, 'Fabrication of p-type SnO thin-film transistors by sputtering with practical metal electrodes,' Jpn. J. Appl. Phys., vol. 52, no. 5S1, p. 05DC07, 2013, doi:10.7567/JJAP.52.05DC07. [33] I.-C. Chiu and I.-C. Cheng, 'Gate-bias stress stability of p-type SnO thin-film transistors fabricated by RF-sputtering,' IEEE electron device letters, vol. 35, no. 1, pp. 90-92, 2013, doi:10.1109/LED.2013.2291896. [34] Y.-J. Han, Y.-J. Choi, I.-T. Cho, S. H. Jin, J.-H. Lee, and H.-I. Kwon, 'Improvement of long-term durability and bias stress stability in p-type SnO thin-film transistors using a SU-8 passivation layer,' IEEE Electron Device Letters, vol. 35, no. 12, pp. 1260-1262, 2014, doi:10.1109/LED.2014.2363879. [35] Y.-J. Han, Y.-J. Choi, C.-Y. Jeong, D. Lee, S.-H. Song, and H.-I. Kwon, 'Environment-dependent bias stress stability of p-type SnO thin-film transistors,' IEEE Electron Device Letters, vol. 36, no. 5, pp. 466-468, 2015, doi:10.1109/LED.2015.2409854. [36] C.-Y. Jeong, D. Lee, Y.-J. Han, Y.-J. Choi, and H.-I. Kwon, 'Subgap states in p-channel tin monoxide thin-film transistors from temperature-dependent field-effect characteristics,' Semicond. Sci. Technol., vol. 30, no. 8, p. 085004, 2015, doi:10.1088/0268-1242. [37] Y.-S. Li, J.-C. He, S.-M. Hsu, C.-C. Lee, D.-Y. Su, F.-Y. Tsai, and I.-C. Cheng, 'Flexible complementary oxide–semiconductor-based circuits employing n-channel ZnO and p-channel SnO thin-film transistors,' IEEE Electron Device Letters, vol. 37, no. 1, pp. 46-49, 2015, doi:10.1109/LED.2015.2501843. [38] J.-H. Lee, Y.-J. Choi, C.-Y. Jeong, C.-W. Lee, and H.-I. Kwon, 'Temperature-dependent electrical instability of p-type SnO thin-film transistors,' Journal of Vacuum Science Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 34, no. 4, p. 041210, 2016, doi:10.1116/1.4949558. [39] C.-W. Zhong, H.-C. Lin, J.-R. Tsai, K.-C. Liu, and T.-Y. Huang, 'Impact of gate dielectrics and oxygen annealing on tin-oxide thin-film transistors,' Jpn. J. Appl. Phys., vol. 55, no. 4S, p. 04EG02, 2016, doi:10.7567/JJAP.55.04EG02. [40] J.-H. Lee, Y.-J. Choi, C.-Y. Jeong, D.-K. Jung, S. Ham, and H.-I. Kwon, 'Electrical instability of p-channel SnO thin-film transistors under light illumination,' IEEE Electron Device Letters, vol. 37, no. 3, pp. 295-298, 2016, doi:10.1109/LED.2016.2516578. [41] S. H. Kim, I.-H. Baek, D. H. Kim, J. J. Pyeon, T.-M. Chung, S.-H. Baek, J.-S. Kim, J. H. Han, and S. K. Kim, 'Fabrication of high-performance p-type thin film transistors using atomic-layer-deposited SnO films,' Journal of Materials Chemistry C, vol. 5, no. 12, pp. 3139-3145, 2017, doi:10.1039/C6TC04750E. [42] P.-C. Chen, Y.-C. Chiu, Z.-W. Zheng, M.-H. Lin, C.-H. Cheng, G.-L. Liou, H.-H. Hsu, and H.-l. Kao, 'Fast low-temperature plasma process for the application of flexible tin-oxide-channel thin film transistors,' IEEE Transactions on Nanotechnology, vol. 16, no. 5, pp. 876-879, 2017, doi:10.1109/TNANO.2017.2719946. [43] H.-J. Kim, C.-Y. Jeong, S.-D. Bae, J.-H. Lee, and H.-I. Kwon, 'Charge transport mechanism in p-channel tin monoxide thin-film transistors,' IEEE Electron Device Letters, vol. 38, no. 4, pp. 473-476, 2017, doi:10.1109/LED.2017.2672730. [44] M. Hung, J. Genoe, P. Heremans, and S. Steudel, 'Off-current reduction in p-type SnO thin film transistors,' Appl. Phys. Lett., vol. 112, no. 26, p. 263502, 2018, doi:10.1063/1.5037306. [45] H.-Y. Jeong, S.-H. Kwon, H.-J. Joo, M.-G. Shin, H.-S. Jeong, D.-H. Kim, and H.-I. Kwon, 'Radiation-tolerant p-Type SnO thin-film transistors,' IEEE Electron Device Letters, vol. 40, no. 7, pp. 1124-1127, 2019, doi:10.1109/LED.2019.2914252. [46] Y. Chen, G. Liou, H. Hsu, P. Chen, Z. Zheng, Y. Wu, C. Cheng, C. Liu, and L. Chung, 'Low-voltage metal-oxide thin film transistors using p-type tin-oxide semiconductors,' Journal of nanoscience and nanotechnology, vol. 19, no. 9, pp. 5619-5623, 2019, doi:10.1166/jnn.2019.16563. [47] H.-J. Joo, M.-G. Shin, S.-H. Kwon, H.-Y. Jeong, H.-S. Jeong, D.-H. Kim, X. Jin, S.-H. Song, and H.-I. Kwon, 'High-gain complementary inverter based on corbino p-type tin monoxide and n-Type indium-gallium-zinc oxide thin-film transistors,' IEEE Electron Device Letters, vol. 40, no. 10, pp. 1642-1645, 2019, doi:10.1109/LED.2019.2936887. [48] H.-J. Joo, M.-G. Shin, H.-S. Jung, H.-S. Cha, D. Nam, and H.-I. Kwon, 'Oxide thin-film transistor-based vertically stacked complementary inverter for logic and photo-sensor operations,' Materials, vol. 12, no. 23, p. 3815, 2019, doi:10.3390/ma12233815. [49] S. Yim, T. Kim, B. Yoo, H. Xu, Y. Youn, S. Han, and J. K. Jeong, 'Lanthanum doping enabling high drain current modulation in a p-type tin monoxide thin-film transistor,' ACS Applied Materials Interfaces, vol. 11, no. 50, pp. 47025-47036, 2019, doi:10.1021/acsami.9b14462. [50] S.-M. Hsu, J.-C. He, Y.-S. Li, D.-Y. Su, F.-Y. Tsai, and I.-C. Cheng, 'Effect of mechanical strain on electrical performance of flexible p-type SnO thin-film transistors,' IEEE Trans. Electron Devices, vol. 66, no. 12, pp. 5183-5186, 2019, doi:10.1109/TED.2019.2945189. [51] A. W. Lee, D. Le, K. Matsuzaki, and K. Nomura, 'Hydrogen-defect termination in SnO for p-channel TFTs,' ACS Applied Electronic Materials, vol. 2, no. 4, pp. 1162-1168, 2020, doi:10.1021/acsaelm.0c00149. [52] H. Shimotani, H. Suzuki, K. Ueno, M. Kawasaki, and Y. Iwasa, 'P-type field-effect transistor of NiO with electric double-layer gating,' Appl. Phys. Lett., vol. 92, no. 24, p. 242107, 2008, doi:10.1063/1.2939006. [53] S. Takami, R. Hayakawa, Y. Wakayama, and T. Chikyow, 'Continuous hydrothermal synthesis of nickel oxide nanoplates and their use as nanoinks for p-type channel material in a bottom-gate field-effect transistor,' Nanotechnology, vol. 21, no. 13, p. 134009, 2010, doi:10.1088/0957-4484. [54] J. Jiang, X. Wang, Q. Zhang, J. Li, and X. Zhang, 'Thermal oxidation of Ni films for p-type thin-film transistors,' Physical Chemistry Chemical Physics, vol. 15, no. 18, pp. 6875-6878, 2013, doi:10.1039/C3CP50197C. [55] Y. Chen, Y. Sun, X. Dai, B. Zhang, Z. Ye, M. Wang, and H. Wu, 'Tunable electrical properties of NiO thin films and p-type thin-film transistors,' Thin Solid Films, vol. 592, pp. 195-199, 2015, doi:10.1016/j.tsf.2015.09.025. [56] J. Yang, B. Wang, Y. Zhang, X. Ding, and J. Zhang, 'Low-temperature combustion synthesis and UV treatment processed p-type Li: NiOx active semiconductors for high-performance electronics,' Journal of Materials Chemistry C, vol. 6, no. 46, pp. 12584-12591, 2018, doi:10.1039/C8TC04594A. [57] W. Xu, J. Zhang, Y. Li, L. Zhang, L. Chen, D. Zhu, P. Cao, W. Liu, S. Han, and X. Liu, 'p-Type transparent amorphous oxide thin-film transistors using low-temperature solution-processed nickel oxide,' J. Alloys Compd., vol. 806, pp. 40-51, 2019, doi:10.1016/j.jallcom.2019.07.108. [58] H.-W. Zan, T.-C. Chang, P.-S. Shih, D.-Z. Peng, T.-Y. Huang, and C.-Y. Chang, 'Analysis of narrow width effects in polycrystalline silicon thin film transistors,' Jpn. J. Appl. Phys., vol. 42, no. 1R, p. 28, 2003, doi:10.1143/JJAP.42.28. [59] N. Yamauchi, J.-J. Hajjar, R. Reif, K. Nakazawa, and K. Tanaka, 'Characteristics of narrow-channel polysilicon thin-film transistors,' IEEE Trans. Electron Devices, vol. 38, no. 8, pp. 1967-1968, 1991,doi:10.1109/16.119042. [60] S.-H. Choi and M.-K. Han, 'Effect of channel widths on negative shift of threshold voltage, including stress-induced hump phenomenon in InGaZnO thin-film transistors under high-gate and drain bias stress,' Appl. Phys. Lett., vol. 100, no. 4, p. 043503, 2012, doi:10.1063/1.3679109. [61] T.-K. Kang and Y.-Y. Yang, 'Poly-Si nanowire TFT with raised source/drain and nitride spacer,' IEEE Trans. Electron Devices, vol. 60, no. 7, pp. 2415-2418, 2013, doi:10.1109/TED.2013.2262075. [62] H.-H. Hu and K.-M. Wang, 'Effects of channel width on high-frequency characteristics of trigate poly-Si thin-film transistors fabricated by microwave annealing,' IEEE Trans. Electron Devices, vol. 62, no. 9, pp. 2883-2887, 2015, doi:10.1109/TED.2015.2456235. [63] L. Liu, R. Liang, B. Shan, J. Xu, and J. Wang, 'Technology demonstration of a novel poly-Si nanowire thin film transistor,' Chinese Physics B, vol. 25, no. 11, p. 118504, 2016,doi:: 10.1088/1674-1056/25/11/118504. [64] I.-C. Chiu, 'P-type Tin Monoxide Thin-Film Transistors and Their Application in Complementary Metal-Oxide-Semiconductor (CMOS) Circuit,' PH.D. Thesis, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 2014. [65] T. Chao, Introduction to semiconductor manufacturing technology. SPIE PRESS, pp. 367-490, 2001. [66] A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, 'Electron beam lithography in nanoscale fabrication: recent development,' IEEE Transactions on electronics packaging manufacturing, vol. 26, no. 2, pp. 141-149, 2003, doi:10.1109/TEPM.2003.817714. [67] M.-S. Tu, 'An Investigation of the Performance and Stability of P-Type Tin Monoxide Thin-Film Transistors,' Master Thesis, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 2014. [68] E. N. Kaufmann, Characterization of Materials, vol. 2, pp. 688-698, 2003, doi:10.1002/0471266965. [69] F. Werner, 'Hall measurements on low-mobility thin films,' J. Appl. Phys., vol. 122, no. 13, p. 135306, 2017, doi:10.1063/1.4990470. [70] B. Fultz and J. M. Howe, Transmission electron microscopy and diffractometry of materials. Springer Science Business Media, 2012, doi:10.1007/978-3-642-29761-8. [71] C.-E. Yang, 'P-channel SnNiOx Thin-Flim Transistors,' Master Thesis, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, pp. 57-78, 2020, doi:10.6342/NTU202000791. [72] A. Ahadi and Q. Sun, 'Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction,' Acta Mater., vol. 90, pp. 272-281, 2015, doi:10.1016/j.actamat.2015.02.024. [73] X. Liu, D. Zhang, Y. Zhang, and X. Dai, 'Preparation and characterization of p-type semiconducting tin oxide thin film gas sensors,' J. Appl. Phys., vol. 107, no. 6, p. 064309, 2010, doi:10.1063/1.3354092. [74] T. Mizuno, T. Kobori, Y. Saitoh, S. Sawada, and T. Tanaka, 'Gate-fringing field effects on high performance in high dielectric LDD spacer MOSFETs,' IEEE Trans. Electron Devices, vol. 39, no. 4, pp. 982-989, 1992, doi:10.1109/16.127491. [75] H. Luo, L. Liang, and H. Cao, 'Carrier trapping anisotropy in ambipolar SnO thin-film transistors,' Solid·State Electron., vol. 129, pp. 88-92, 2017, doi:10.1016/j.sse.2017.01.001. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78995 | - |
| dc.description.abstract | 本研究以射頻磁控濺鍍系統共濺鍍沉積p型SnNiOx主動層,並分別以黃光顯影以及電子束顯影定義微米線寬通道以及次微米線寬通道,成功製備p型SnNiOx次微米線寬薄膜電晶體。研究主題主要分成三項:次微米線寬效應 (窄線寬效應)、主動層退火溫度最佳化以及閘極偏壓穩定性測試。 次微米線寬效應部分調整通道長寬比由0.4微米/20微米到40微米/20微米。當線寬縮小時,薄膜電晶體能展現更高的載子遷移率。此現象可能是因為當以含氟電漿進行蝕刻製程時,會產生金屬-氟鍵結、減少介面能態,因此,當線寬縮小時,通道邊緣比例相對較大,受到氟電漿效應影響更明顯,從而得到更高的載子遷移率。 另一方面,本研究也對主動層退火溫度的製程進行最佳化,退火溫度調整範圍由185℃到245℃。當退火溫度為185℃,薄膜電晶體有很高的通道電流但無法操作,推測原因為主動層的不完全氧化和過量的金屬含量。當退火溫度為205℃元件開始具有場效特性,而當到達225℃時,可以有高達14 cm2V-1s-1的載子遷移率,推測是因為退火225℃後能使晶相及金屬成分含量達到最適值。而當退火溫度上升到245℃,由於主動層過度氧化,載子遷移率出現衰退的現象。 最後對前退溫度225℃、長寬比0.4微米/20微米和40微米/20微米的薄膜電晶體閘極偏壓穩定性測試。對微米線寬通道薄膜電晶體,施加負閘極偏壓後,有-0.6 V的臨界電壓偏移,意味負閘極偏壓引起的電洞侷阱效應是較小的;施加正閘極偏壓後,有高達1.4 V的臨界電壓偏移,推測是因為主動層和主動層/絕緣層介面的載子侷阱效應。另一方面,對次微米線寬通道薄膜電晶體,施加負、正閘極偏壓後,分別有-1.2 V、2.0 V的臨界電壓偏移。相對於微米線寬通道薄膜電晶體有稍微大的臨界電壓偏移,推測是因為次微米線寬通道薄膜電晶體沒有受到鈍化層保護的通道邊緣比例較大,因此較容易受到環境水氧影響,造成較大臨界電壓偏移。 | zh_TW |
| dc.description.abstract | In this research, p-type SnNiOx Thin-film transistors (TFTs) with submicron-channel widths have been fabricated. The active layer SnNiOx was deposited by rf magnetron sputtering and defined by e-beam lithography. The characterization of SnNiOx TFTs were divided into three sections:Effects of submicron channel width (narrow channel effect), Optimization of active layer annealing temperature, and Gate bias stability test for the optimal samples. In order to study the effects of submicron channel width, the channel geometry of SnNiOx active layer was defined to be W/L = 0.4 μm/20 μm, 0.6 μm/20 μm, 1.0 μm/20 μm, 3.0 μm/20 μm, 40 μm/20 μm. An enhancement in mobility could be obtained as channel width decreases, which might be due to the larger specific fringe surface area of the narrow channel. Due to the ability of the metal-F bond formation by F plasma during CF4 etching to decrease the interface state density, the narrow channel width TFTs with larger specific fringe surface area had better mobility. On the other hand, the optimization of annealing temperature was also investigated. The annealing temperature of the SnNiOx active layer was tuned from 185℃ to 245℃. For an annealing temperature of 185℃, the TFTs showed quite a high source-to-drain current but no modulation, which might be caused by insufficient oxidation of the active layer and the presence of excess metal content. For the annealing temperature of 205℃, the TFT started to be able to modulate. When the annealing temperature reached 225℃, the TFT reached the best mobility of 14 cm2V-1s-1, which might represent the best crystal phase as well as the appropriate residual metal amount. If the temperature went as high as 245℃, the mobility would degrade, which might be due to the over oxidation of the active layer Finally, the gate-bias stress stability of TFTs with channel dimensions of W/L = 40 μm/20 μm and W/L = 0.4 μm/20 μm were studied and compared. For the micron channel width TFTs, the ΔVth for negative gate bias stress was as small as -0.6 V, which implied that the negative gate bias stress induced hole trapping was negligible; on the other hand, the large ΔVth of 1.4 V for positive gate bias stress might be caused by the charge trapping in the SnNiOx/HfO2 interface and SnNiOx channel layer. For submicron channel width TFTs, the ΔVth for negative and positive gate bias stress were -1.2 and 2.0 V, respectively. The slightly larger ΔVth might be due to the fringe of the channel that was not covered by the SiNx passivation layer, and the proportion of fringe of the submicron channel TFTs that were larger than that of the micron channel TFTs; therefore, becoming easier targets for oxygen and moisture in the environment. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:35:05Z (GMT). No. of bitstreams: 1 U0001-1808202011524100.pdf: 4633666 bytes, checksum: 8006c1a9de91ea9e4b8da76055ac9aae (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENTS I 中文摘要 II ABSTRACT IV TABLE OF CONTENT VI LIST OF ABBREVIATIONS IX LIST OF FIGURES XIII LIST OF TABLES XVII CHAPTER 1 Introduction 1 1.1 Research Background 1 1.2 Research Motivation 3 1.3 Thesis Organization 5 CHAPTER 2 Theoretical Basis And Literature Review 7 2.1 Introduction to Thin-film Transistors (TFTs) 7 2.2 Development of P-type Metal Oxide TFTs 8 2.2.1 Review of P-type Metal Oxides 8 2.2.2 SnO-based TFTs 11 2.2.3 NiO-based TFTs 16 2.3 Narrow Width Effect of TFTs 19 CHAPTER 3 Experimental Procedure 23 3.1 Thin Film Deposition Technique 23 3.1.1 RF Magnetron Sputtering Deposition 23 3.1.2 Atomic Layer Deposition (ALD) 26 3.1.3 E-beam Evaporation 28 3.1.4 Plasma Enhanced Chemical Vapor Deposition (PECVD) 29 3.2 Lithography Process 30 3.2.1 Photo-lithography Process 30 3.2.2 E-beam Lithography Process 32 3.3 Etching Process 34 3.4 Fabrication Procedure of Metal-insulator-metal (MIM) Structure 35 3.5 Fabrication Procedure of SnNiOx TFTs 37 3.6 Analyses and Measurements 40 3.6.1 Grazing Incident X-ray Diffractometer (GIXRD) 40 3.6.2 UV-visible Spectrometer 41 3.6.3 Hall Measurement 42 3.6.4 Transmission Electron Microscope (TEM) 44 3.6.5 Capacitance-voltage Measurement 45 3.6.6 Characterization of TFTs 46 CHAPTER 4 Results and Discussion 49 4.1 GIXRD Analysis of SnNiOx Thin films 49 4.2 Optical Properties of SnNiOx Thin Films 51 4.3 Hall Measurement of SnNiOx Thin Films 54 4.4 TEM of SnNiOx TFTs 55 4.5 Capacitance-voltage Measurement of HfO2 Dielectric Layer 58 4.6 Characteristics of P-type SnNiOx TFTs 59 4.6.1 Effects of submicron channel width 59 4.6.2 Optimization of active layer annealing temperature 62 4.6.3 Gate bias stability test for the optimal samples 65 CHAPTER 5 Conclusion and Future Works 69 5.1 Conclusion 69 5.2 Future Works 70 APPENDICES 71 A.1 Optical properties of SnNiOx Thin films 71 A.2 P-Type SnO Thin-Film Transistors with Submicron-Channel Widths 72 A.3 Channel Widths Characterization and Correction of mobility 77 REFERENCES 79 | |
| dc.language.iso | en | |
| dc.subject | 電子束微影 | zh_TW |
| dc.subject | p型金屬氧化物 | zh_TW |
| dc.subject | 氧化亞錫 | zh_TW |
| dc.subject | 鎳摻雜 | zh_TW |
| dc.subject | 薄膜電晶體 | zh_TW |
| dc.subject | 射頻磁控濺鍍 | zh_TW |
| dc.subject | 窄線寬效應 | zh_TW |
| dc.subject | narrow channel effect | en |
| dc.subject | p-type metal oxides | en |
| dc.subject | thin-film transistor | en |
| dc.subject | tin monoxide | en |
| dc.subject | Ni-doped | en |
| dc.subject | e-beam lithography | en |
| dc.subject | rf magnetron sputtering | en |
| dc.title | 次微米線寬P-型錫鎳氧化物薄膜電晶體之研究 | zh_TW |
| dc.title | P-Type SnNiOx Thin-Film Transistors with Submicron-Channel Widths | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳建彰(Jian-Zhang Chen),吳育任(Yuh-Renn Wu),徐振哲(Cheng-Che Hsu) | |
| dc.subject.keyword | p型金屬氧化物,薄膜電晶體,氧化亞錫,鎳摻雜,電子束微影,射頻磁控濺鍍,窄線寬效應, | zh_TW |
| dc.subject.keyword | p-type metal oxides,thin-film transistor,tin monoxide,Ni-doped,e-beam lithography,rf magnetron sputtering,narrow channel effect, | en |
| dc.relation.page | 85 | |
| dc.identifier.doi | 10.6342/NTU202003943 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-18 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1808202011524100.pdf 未授權公開取用 | 4.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
