Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78992
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭鐘金zh_TW
dc.contributor.advisorChung-Chin Kuoen
dc.contributor.author吳凰慈zh_TW
dc.contributor.authorHuang-Tzu Wuen
dc.date.accessioned2021-07-11T15:34:51Z-
dc.date.available2024-02-28-
dc.date.copyright2018-10-09-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citationAldrich RW, Stevens CF (1987) Voltage-dependent gating of single sodium channels from mammalian neuroblastoma cells. J Neurosci 7:418-431.
Aldrich RW, Corey DP, Stevens CF (1983) A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature 306:436-441.
Armstrong CM, Bezanilla F (1977) Inactivation of the sodium channel. II. Gating current experiments. The Journal of general physiology 70:567-590.
Arroyo S (2007) Rufinamide. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 4:155-162.
Backx PH, Yue DT, Lawrence JH, Marban E, Tomaselli GF (1992) Molecular localization of an ion-binding site within the pore of mammalian sodium channels. Science (New York, NY) 257:248-251.
Balser JR, Nuss HB, Chiamvimonvat N, Perez-Garcia MT, Marban E, Tomaselli GF (1996) External pore residue mediates slow inactivation in mu 1 rat skeletal muscle sodium channels. J Physiol 494 ( Pt 2):431-442.
Bean BP (1984) Nitrendipine block of cardiac calcium channels: high-affinity binding to the inactivated state. Proceedings of the National Academy of Sciences of the United States of America 81:6388-6392.
Capes DL, Goldschen-Ohm MP, Arcisio-Miranda M, Bezanilla F, Chanda B (2013) Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels. The Journal of general physiology 142:101-112.
Catterall WA, Goldin AL, Waxman SG (2005) International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacological reviews 57:397-409.
Chahine M, O'Leary ME (2014) Regulation/modulation of sensory neuron sodium channels. Handb Exp Pharmacol 221:111-135.
Chen LQ, Santarelli V, Horn R, Kallen RG (1996) A unique role for the S4 segment of domain 4 in the inactivation of sodium channels. The Journal of general physiology 108:549-556.
Cormier JW, Rivolta I, Tateyama M, Yang AS, Kass RS (2002) Secondary structure of the human cardiac Na+ channel C terminus: evidence for a role of helical structures in modulation of channel inactivation. The Journal of biological chemistry 277:9233-9241.
Courtney KR, Etter EF (1983) Modulated anticonvulsant block of sodium channels in nerve and muscle. European journal of pharmacology 88:1-9.
Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, Karbani G, Jafri H, Mannan J, Raashid Y, Al-Gazali L, Hamamy H, Valente EM, Gorman S, Williams R, McHale DP, Wood JN, Gribble FM, Woods CG (2006) An SCN9A channelopathy causes congenital inability to experience pain. Nature 444:894-898.
Dib-Hajj SD, Cummins TR, Black JA, Waxman SG (2007) From genes to pain: Na v 1.7 and human pain disorders. Trends in neurosciences 30:555-563.
Errington AC, Stohr T, Heers C, Lees G (2008) The investigational anticonvulsant lacosamide selectively enhances slow inactivation of voltage-gated sodium channels. Mol Pharmacol 73:157-169.
Errington AC, Coyne L, Stohr T, Selve N, Lees G (2006) Seeking a mechanism of action for the novel anticonvulsant lacosamide. Neuropharmacology 50:1016-1029.
Featherstone DE, Richmond JE, Ruben PC (1996) Interaction between fast and slow inactivation in Skm1 sodium channels. Biophys J 71:3098-3109.
Goldin AL (2001) Resurgence of sodium channel research. Annual review of physiology 63:871-894.
Goldin AL, Barchi RL, Caldwell JH, Hofmann F, Howe JR, Hunter JC, Kallen RG, Mandel G, Meisler MH, Netter YB, Noda M, Tamkun MM, Waxman SG, Wood JN, Catterall WA (2000) Nomenclature of voltage-gated sodium channels. Neuron 28:365-368.
Grieco TM, Malhotra JD, Chen C, Isom LL, Raman IM (2005) Open-channel block by the cytoplasmic tail of sodium channel beta4 as a mechanism for resurgent sodium current. Neuron 45:233-244.
Hartshorne RP, Catterall WA (1984) The sodium channel from rat brain. Purification and subunit composition. The Journal of biological chemistry 259:1667-1675.
Hartshorne RP, Messner DJ, Coppersmith JC, Catterall WA (1982) The saxitoxin receptor of the sodium channel from rat brain. Evidence for two nonidentical beta subunits. The Journal of biological chemistry 257:13888-13891.
Heinemann SH, Terlau H, Stuhmer W, Imoto K, Numa S (1992) Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356:441-443.
Hille B (1977) Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. The Journal of general physiology 69:497-515.
Ho C, O'Leary ME (2011) Single-cell analysis of sodium channel expression in dorsal root ganglion neurons. Molecular and cellular neurosciences 46:159-166.
Huang CW, Lai HJ, Huang PY, Lee MJ, Kuo CC (2016) The Biophysical Basis Underlying Gating Changes in the p.V1316A Mutant Nav1.7 Channel and the Molecular Pathogenesis of Inherited Erythromelalgia. PLoS biology 14:e1002561.
Isom LL, Ragsdale DS, De Jongh KS, Westenbroek RE, Reber BF, Scheuer T, Catterall WA (1995) Structure and function of the beta 2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell 83:433-442.
Isom LL, De Jongh KS, Patton DE, Reber BF, Offord J, Charbonneau H, Walsh K, Goldin AL, Catterall WA (1992) Primary structure and functional expression of the beta 1 subunit of the rat brain sodium channel. Science (New York, NY) 256:839-842.
Jo S, Bean BP (2017) Lacosamide Inhibition of Nav1.7 Voltage-Gated Sodium Channels: Slow Binding to Fast-Inactivated States. Mol Pharmacol 91:277-286.
Kuo CC (1998) A common anticonvulsant binding site for phenytoin, carbamazepine, and lamotrigine in neuronal Na+ channels. Mol Pharmacol 54:712-721.
Kuo CC, Bean BP (1994) Slow binding of phenytoin to inactivated sodium channels in rat hippocampal neurons. Mol Pharmacol 46:716-725.
Lampert A, O'Reilly AO, Reeh P, Leffler A (2010) Sodium channelopathies and pain. Pflugers Archiv : European journal of physiology 460:249-263.
Lee PJ, Sunami A, Fozzard HA (2001) Cardiac-specific external paths for lidocaine, defined by isoform-specific residues, accelerate recovery from use-dependent block. Circulation research 89:1014-1021.
Lees G, Stohr T, Errington AC (2006) Stereoselective effects of the novel anticonvulsant lacosamide against 4-AP induced epileptiform activity in rat visual cortex in vitro. Neuropharmacology 50:98-110.
Lerche H, Peter W, Fleischhauer R, Pika-Hartlaub U, Malina T, Mitrovic N, Lehmann-Horn F (1997) Role in fast inactivation of the IV/S4-S5 loop of the human muscle Na+ channel probed by cysteine mutagenesis. J Physiol 505 ( Pt 2):345-352.
Mantegazza M, Yu FH, Catterall WA, Scheuer T (2001) Role of the C-terminal domain in inactivation of brain and cardiac sodium channels. Proceedings of the National Academy of Sciences of the United States of America 98:15348-15353.
McCollum IJ, Vilin YY, Spackman E, Fujimoto E, Ruben PC (2003) Negatively charged residues adjacent to IFM motif in the DIII-DIV linker of hNa(V)1.4 differentially affect slow inactivation. FEBS letters 552:163-169.
McPhee JC, Ragsdale DS, Scheuer T, Catterall WA (1994) A mutation in segment IVS6 disrupts fast inactivation of sodium channels. Proceedings of the National Academy of Sciences of the United States of America 91:12346-12350.
McPhee JC, Ragsdale DS, Scheuer T, Catterall WA (1995) A critical role for transmembrane segment IVS6 of the sodium channel alpha subunit in fast inactivation. The Journal of biological chemistry 270:12025-12034.
McPhee JC, Ragsdale DS, Scheuer T, Catterall WA (1998) A critical role for the S4-S5 intracellular loop in domain IV of the sodium channel alpha-subunit in fast inactivation. The Journal of biological chemistry 273:1121-1129.
Niespodziany I, Leclere N, Vandenplas C, Foerch P, Wolff C (2013) Comparative study of lacosamide and classical sodium channel blocking antiepileptic drugs on sodium channel slow inactivation. Journal of neuroscience research 91:436-443.
Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi H, Nakayama H, Kanaoka Y, Minamino N, et al. (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312:121-127.
O'Leary ME, Chahine M (2017) Mechanisms of Drug Binding to Voltage-Gated Sodium Channels. Handb Exp Pharmacol.
O'Reilly JP, Wang SY, Wang GK (2001) Residue-specific effects on slow inactivation at V787 in D2-S6 of Na(v)1.4 sodium channels. Biophys J 81:2100-2111.
Patlak J (1991) Molecular kinetics of voltage-dependent Na+ channels. Physiological reviews 71:1047-1080.
Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353-358.
Qu Y, Rogers J, Tanada T, Scheuer T, Catterall WA (1995) Molecular determinants of drug access to the receptor site for antiarrhythmic drugs in the cardiac Na+ channel. Proceedings of the National Academy of Sciences of the United States of America 92:11839-11843.
Ragsdale DS, McPhee JC, Scheuer T, Catterall WA (1994) Molecular determinants of state-dependent block of Na+ channels by local anesthetics. Science (New York, NY) 265:1724-1728.
Ragsdale DS, McPhee JC, Scheuer T, Catterall WA (1996) Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proceedings of the National Academy of Sciences of the United States of America 93:9270-9275.
Raman IM, Bean BP (2001) Inactivation and recovery of sodium currents in cerebellar Purkinje neurons: evidence for two mechanisms. Biophys J 80:729-737.
Raman IM, Sprunger LK, Meisler MH, Bean BP (1997) Altered subthreshold sodium currents and disrupted firing patterns in Purkinje neurons of Scn8a mutant mice. Neuron 19:881-891.
Rudy B (1978) Slow inactivation of the sodium conductance in squid giant axons. Pronase resistance. J Physiol 283:1-21.
Sandtner W, Szendroedi J, Zarrabi T, Zebedin E, Hilber K, Glaaser I, Fozzard HA, Dudley SC, Todt H (2004) Lidocaine: a foot in the door of the inner vestibule prevents ultra-slow inactivation of a voltage-gated sodium channel. Mol Pharmacol 66:648-657.
Satin J, Kyle JW, Chen M, Bell P, Cribbs LL, Fozzard HA, Rogart RB (1992) A mutant of TTX-resistant cardiac sodium channels with TTX-sensitive properties. Science (New York, NY) 256:1202-1205.
Sheets MF, Kyle JW, Kallen RG, Hanck DA (1999) The Na channel voltage sensor associated with inactivation is localized to the external charged residues of domain IV, S4. Biophys J 77:747-757.
Sheets PL, Heers C, Stoehr T, Cummins TR (2008) Differential block of sensory neuronal voltage-gated sodium channels by lacosamide [(2R)-2-(acetylamino)-N-benzyl-3-methoxypropanamide], lidocaine, and carbamazepine. The Journal of pharmacology and experimental therapeutics 326:89-99.
Silva JR, Goldstein SA (2013) Voltage-sensor movements describe slow inactivation of voltage-gated sodium channels I: wild-type skeletal muscle Na(V)1.4. The Journal of general physiology 141:309-321.
Sun YM, Favre I, Schild L, Moczydlowski E (1997) On the structural basis for size-selective permeation of organic cations through the voltage-gated sodium channel. Effect of alanine mutations at the DEKA locus on selectivity, inhibition by Ca2+ and H+, and molecular sieving. The Journal of general physiology 110:693-715.
Szendroedi J, Sandtner W, Zarrabi T, Zebedin E, Hilber K, Dudley SC, Jr., Fozzard HA, Todt H (2007) Speeding the recovery from ultraslow inactivation of voltage-gated Na+ channels by metal ion binding to the selectivity filter: a foot-on-the-door? Biophys J 93:4209-4224.
Townsend C, Horn R (1997) Effect of alkali metal cations on slow inactivation of cardiac Na+ channels. The Journal of general physiology 110:23-33.
Tsang SY, Tsushima RG, Tomaselli GF, Li RA, Backx PH (2005) A multifunctional aromatic residue in the external pore vestibule of Na+ channels contributes to the local anesthetic receptor. Mol Pharmacol 67:424-434.
Vassilev PM, Scheuer T, Catterall WA (1988) Identification of an intracellular peptide segment involved in sodium channel inactivation. Science (New York, NY) 241:1658-1661.
Vedantham V, Cannon SC (2000) Rapid and slow voltage-dependent conformational changes in segment IVS6 of voltage-gated Na(+) channels. Biophys J 78:2943-2958.
Vilin YY, Ruben PC (2001) Slow inactivation in voltage-gated sodium channels: molecular substrates and contributions to channelopathies. Cell biochemistry and biophysics 35:171-190.
Wang GK (1988) Cocaine-induced closures of single batrachotoxin-activated Na+ channels in planar lipid bilayers. The Journal of general physiology 92:747-765.
Watanabe E, Fujikawa A, Matsunaga H, Yasoshima Y, Sako N, Yamamoto T, Saegusa C, Noda M (2000) Nav2/NaG channel is involved in control of salt-intake behavior in the CNS. J Neurosci 20:7743-7751.
West JW, Patton DE, Scheuer T, Wang Y, Goldin AL, Catterall WA (1992) A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proceedings of the National Academy of Sciences of the United States of America 89:10910-10914.
Yang YC (2005) An Inactivation Stabilizer of the Na(+) Channel Acts as an Opportunistic Pore Blocker Modulated by External Na(+). 125:465-481.
Yarov-Yarovoy V, Brown J, Sharp EM, Clare JJ, Scheuer T, Catterall WA (2001) Molecular determinants of voltage-dependent gating and binding of pore-blocking drugs in transmembrane segment IIIS6 of the Na(+) channel alpha subunit. The Journal of biological chemistry 276:20-27.
Yarov-Yarovoy V, McPhee JC, Idsvoog D, Pate C, Scheuer T, Catterall WA (2002) Role of amino acid residues in transmembrane segments IS6 and IIS6 of the Na+ channel alpha subunit in voltage-dependent gating and drug block. The Journal of biological chemistry 277:35393-35401.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78992-
dc.description.abstract電壓控制型鈉離子通道對於誘發神經的興奮與動作電位的傳導,占有重要的地位。當腦部的神經興奮產生異常時,便會造成神經性疾病,例如癲癇的產生等等。而癲癇患者的治療方式,主要以給予抗電壓控制型鈉離子通道的藥物為主,像是carbamazepine, phenytoin 以及lamotrigine等典型的抗癲癇藥物,在過去的研究中,已被證實會與鈉離子通道的快速不活化態 (inactivation state)緩慢結合,並且相對於休息態的鈉離子通道,與快速不活化態有較高的親和力。另外,在過去的研究中,也發現到lacosamide (LCM),此種較為新型的抗癲癇藥物,對於鈉離子通道作用有別於過去的典型藥物,並被提出可能會選擇性的結合到鈉離子通道的慢速不活化態。rufinamide (RFM)在臨床上主要用來治療LGS疾病與癲癇,而過去的研究主要著重在臨床以及動物實驗的研究上,較少提及此藥物對於鈉離子通道的分子作用機制。本篇論文利用多種實驗方法探討LCM與RFM兩種藥物主要是結合在鈉離子通道的快速不活化態抑或是作用於慢速不活化態。首先,LCM抑制鈉電流具有濃度依賴性與電壓依賴性,並且不同電壓下的抑制效果可由一對一結合曲線描繪,並且得到LCM對於不活化態之鈉離子通道的直觀解離常數(KI)為約150 μM。由LCM對鈉離子通道的結合速率常數與脫離速率常數所得的KI值可得到相似的結果,約140 μM。在不同濃度的LCM對電壓依賴不活化曲線中,得到KI值為約125 μM。因此可得LCM對於不活化態之鈉離子通道的親和力為125-150 μM,大於對休息態之鈉離子通道約50-60倍。另外,在比較給予長時間-80 mV或-10 mV的去極化後,LCM對鈉離子通道相較於控制組對前者有較慢回復至休息態之趨勢,對後者則無,表示LCM主要是對鈉離子通道的快速不活化態作用,而非慢速不活化態。同樣的,我們也對RFM以相同的實驗去驗證,得到RFM對於不活化態鈉離子通道的親和力為30-180 μM,大於對休息態的鈉離子通道約60-360倍。由此可得LCM與RFM對於鈉離子通道的快速不活化態具有相近的結合力,並且具有電壓依賴性。而在結合速率方面,RFM對於鈉離子通道之結合速率常數約為10300 M-1s-1,大於LCM對於鈉離子通道之結合速率約20倍。這些結果顯示,LCM與RFM皆是對於電壓依賴型鈉離子通道的不活化態作用,並且有相近的親和力,但RFM較LCM對於鈉離子通道之結合速率快非常多。因此,RFM相較LCM對於抑制鈉離子通道或許會有更快發生的效果。zh_TW
dc.description.abstractVoltage-gated sodium channels play an important role in the genesis of action potential, and the cellular excitability. Epileptic seizure is a prototypical neurological disorder, characterized by abnormal neuronal excitability. Currently, quite a few anticonvulsants in clinical practice are targeted on voltage-gated sodium channels, such as carbamazepine, phenytoin and lamotrigine. These “classic’ anticonvulsants have been shown to bind to the fast-inactivated state rather than resting state of the Na+ channel. On the other hand, a newer anticonvulsant, lacosamide (LCM), was suggested to selectively bound to the slow-inactivated state of channel. Moreover, the other newer anticonvulsant, rufinamide (RFM), is used to treat Lennox-Gastaut syndrome in clinical practice. Because the molecular mechanisms of action of LCM and RFM have remained unclear, we used different experimental protocols to investigate the actions of LCM and RFM on the Na+ channel. LCM dose-dependently inhibited more Na+ currents at more depolarized holding potentials. The inhibitory effect could be described by one-to-one binding curves at various holding potentials, which yielded an apparent dissociation constant of ~150 μM for LCM binding to the inactivated channels (KI). A similar value of KI (~140 μM) was derived from the unbinding and binding rate constants. In addition, a KI of ~125 μM was also derived from the LCM concentration-dependent shift of the inactivation curve. Therefore, the affinity of LCM to inactivated Na+ channels was 125-150 μM, at least 50-60 times stronger than LCM binding to the resting channels. On the other hand, the recovery of LCM-bound inactivated Na+ channels was slower than normal (drug-free) after a prolonged depolarization for 18 sec at -80 mV but not at -10 mV, which indicates that LCM chiefly binds to the fast-inactivated state rather than the slow inactivated state. Similar investigations on RFM revealed that the dissociation constant of RFM binding to the fast inactivated Na+ channels is also around 30-180 μM, much stronger than binding to the resting state by 60-360 times. The macroscopic binding rate constant of RFM (10300 M-1s-1), however, is evidently faster than that of LCM (500 M-1s-1). In conclusion, these results indicate that LCM and RFM have significant effects on the fast-inactivated state of sodium channels, and similar affinity, but the binding rate of RFM is faster much more than LCM.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:34:51Z (GMT). No. of bitstreams: 1
ntu-107-R04441008-1.pdf: 4421199 bytes, checksum: df79429f83858d0f81f0c4266038574b (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 I
中文摘要 II
Abstract IV
目錄 VI
圖次 VIII


第一章 導論 1
1.1 電壓依賴型鈉離子通道 1
1.1.1 結構與功能 1
1.1.2 鈉離子通道的不活化反應 3
1.1.3 鈉離子通道之慢速不活化反應 4
1.1.4 電壓依賴型鈉離子通道種類 6
1.1.5 電壓依賴型鈉離子通道功能異常之相關疾病 7
1.2 回返性鈉離子電流(Resurgent sodium current) 7
1.3 藥物與電壓依賴型鈉離子通道 8
1.3.1 Lacosamide與鈉離子通道 9
1.3.2 Rufinamide與鈉離子通道 10
第二章 材料與方法 12
2.1 游離神經細胞的製備 12
2.2 細胞培養 13
2.3 轉染 13
2.4 玻璃電極製備 13
2.5 加藥管之製備 14
2.6 藥物製備 14
2.7 游離神經全細胞電生理紀錄 15
2.8 培養細胞之全細胞電生理紀錄 15
2.8.1 標準紀錄流程 15
2.8.2 河豚毒素敏感性鈉電流的獲得 16
2.9 數據分析 17
第三章 結果 18
3.1 Lacosamide (LCM)與rufinamide (RFM)對於電壓依賴性鈉電流的抑制效果隨著固定電壓的增加而增強 18
3.2 Lacosamide與rufinamide會改變鈉離子通道的快速不活化曲線的中點 20
3.3 藉由不活化曲線的位移得到lacosamide與rufinamide對於不活化態鈉離子通道的親和力 20
3.4 LCM與RFM為結合至鈉離子通道的快速不活化態 21
3.5 LCM與RFM各別對於Nav1.7通道的回返性電流皆有抑制效果 23
第四章 討論 25
4.1 Lacosamide與rufinamide對於鈉離子通道的行為模式 (model) 25
4.2 Lacosamide (LCM)對於不同狀態鈉離子通道的親和力 25
4.3 Rufinamide (RFM)對於不同狀態鈉離子通道的親和力 27
4.4 LCM與RFM為結合至鈉離子通道的快速不活化態 28
4.5 Lacosamide與rufinamide的比較 29
參考資料 61
-
dc.language.isozh_TW-
dc.title抗癲癇藥物lacosamide與rufinamide對於電壓依賴型鈉離子通道之作用zh_TW
dc.titleThe effects of anticonvulsants lacosamide and rufinamide to voltage-gated sodium channelsen
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡明正;楊雅晴;黃榮棋zh_TW
dc.contributor.oralexamcommitteeMing-Cheng Tsai;Ya-Chin Yang;Rong-Chi Huangen
dc.subject.keyword抗癲癇藥物,電壓依賴型鈉離子通道,zh_TW
dc.subject.keywordlacosamide,rufinamide,en
dc.relation.page66-
dc.identifier.doi10.6342/NTU201803427-
dc.rights.note未授權-
dc.date.accepted2018-08-15-
dc.contributor.author-college醫學院-
dc.contributor.author-dept生理學研究所-
dc.date.embargo-lift2023-10-09-
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-106-2.pdf
  目前未授權公開取用
4.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved