請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78991
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉貞佑 | zh_TW |
dc.contributor.author | 英壬豪 | zh_TW |
dc.contributor.author | Jen-Hao Ying | en |
dc.date.accessioned | 2021-07-11T15:34:46Z | - |
dc.date.available | 2024-02-28 | - |
dc.date.copyright | 2018-10-09 | - |
dc.date.issued | 2018 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 1. Tsai MJ, Kuo PL, Ko YC. The association between phthalate exposure and asthma. Kaohsiung J Med Sci2012 Jul;28(7 Suppl):S28-36.
2. Frederiksen H, Skakkebaek NE, Andersson AM. Metabolism of phthalates in humans. Mol Nutr Food Res2007 Jul;51(7):899-911. 3. Heudorf U, Mersch-Sundermann V, Angerer J. Phthalates: toxicology and exposure. Int J Hyg Environ Health2007 Oct;210(5):623-34. 4. Huang PC, Kuo PL, Chou YY, Lin SJ, Lee CC. Association between prenatal exposure to phthalates and the health of newborns. Environ Int2009 Jan;35(1):14-20. 5. Shea KM. Pediatric Exposure and Potential Toxicity of Phthalate Plasticizers. American Academy of Pediatrics2003;111(6):1467-74. 6. Lehmann KP, Phillips S, Sar M, Foster PM, Gaido KW. Dose-dependent alterations in gene expression and testosterone synthesis in the fetal testes of male rats exposed to di (n-butyl) phthalate. Toxicol Sci2004 Sep;81(1):60-8. 7. Tyl RW, Myers CB, Marr MC, Fail PA, Seely JC, Brine DR, et al. Reproductive toxicity evaluation of dietary butyl benzyl phthalate (BBP) in rats. Reprod Toxicol2004 Mar-Apr;18(2):241-64. 8. Ashley-Martin J, Dodds L, Levy AR, Platt RW, Marshall JS, Arbuckle TE. Prenatal exposure to phthalates, bisphenol A and perfluoroalkyl substances and cord blood levels of IgE, TSLP and IL-33. Environ Res2015 Jul;140:360-8. 9. Swan SH, Main KM, Liu F, Stewart SL, Kruse RL, Calafat AM, et al. Decrease in Anogenital Distance among Male Infants with Prenatal Phthalate Exposure. Environmental Health Perspectives2005;113(8):1056-61. 10. Swan SH, Sathyanarayana S, Barrett ES, Janssen S, Liu F, Nguyen RH, et al. First trimester phthalate exposure and anogenital distance in newborns. Hum Reprod2015 Apr;30(4):963-72. 11. Latini G, De Felice C, Presta G, Del Vecchio A, Paris I, Ruggieri F, et al. In Utero Exposure to Di-(2-ethylhexyl)phthalate and Duration of Human Pregnancy. Environmental Health Perspectives2003;111(14):1783-5. 12. Ferguson KK, McElrath TF, Meeker JD. Environmental phthalate exposure and preterm birth. JAMA Pediatr2014 Jan;168(1):61-7. 13. Jurewicz J, Hanke W. Exposure to phthalates: reproductive outcome and children health. A review of epidemiological studies. Int J Occup Med Environ Health2011 Jun;24(2):115-41. 14. Kuo CH, Hsieh CC, Kuo HF, Huang MY, Yang SN, Chen LC, et al. Phthalates suppress type I interferon in human plasmacytoid dendritic cells via epigenetic regulation. Allergy2013 Jul;68(7):870-9. 15. Guo J, Han B, Qin L, Li B, You H, Yang J, et al. Pulmonary toxicity and adjuvant effect of di-(2-exylhexyl) phthalate in ovalbumin-immunized BALB/c mice. PLoS One2012;7(6):e39008. 16. Braun JM, Sathyanarayana S, Hauser R. Phthalate exposure and children's health. Curr Opin Pediatr2013 Apr;25(2):247-54. 17. Kabesch M. Epigenetics in asthma and allergy. Curr Opin Allergy Clin Immunol2014 Feb;14(1):62-8. 18. Capell BC, Berger SL. Genome-wide epigenetics. J Invest Dermatol2013 Jun;133(6):e9. 19. Inbar-Feigenberg M, Choufani S, Butcher DT, Roifman M, Weksberg R. Basic concepts of epigenetics. Fertil Steril2013 Mar 01;99(3):607-15. 20. Cortessis VK, Thomas DC, Levine AJ, Breton CV, Mack TM, Siegmund KD, et al. Environmental epigenetics: prospects for studying epigenetic mediation of exposure-response relationships. Hum Genet2012 Oct;131(10):1565-89. 21. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proceedings of the National Academy of Sciences of the United States of America2008;105(44):17046-9. 22. Hughes LA, van den Brandt PA, de Bruine AP, Wouters KA, Hulsmans S, Spiertz A, et al. Early life exposure to famine and colorectal cancer risk: a role for epigenetic mechanisms. PLoS One2009 Nov 23;4(11):e7951. 23. Stein AD, Kahn HS, Rundle A, Zybert PA, K. vdP-dB, Lumey LH. Anthropometric measures in middle age after exposure to famine during gestation: evidence from the Dutch famine. Am J Clin Nutr2007;85:869-76. 24. Lumey L, Stein AD, Kahn HS, Romijn J. Lipid profiles in middle-aged men and women after famine exposure during gestation: the Dutch Hunger Winter Families Study. American Journal of Clinical Nutrition2009;89(6):1737-43. 25. Wang IJ, Karmaus WJ, Chen SL, Holloway JW, Ewart S. Effects of phthalate exposure on asthma may be mediated through alterations in DNA methylation. Clin Epigenetics2015;7:27. 26. Meeker JD, Hu H, Cantonwine DE, Lamadrid-Figueroa H, Calafat AM, Ettinger AS, et al. Urinary phthalate metabolites in relation to preterm birth in Mexico city. Environ Health Perspect2009 Oct;117(10):1587-92. 27. Zhao Y, Shi HJ, Xie CM, Chen J, Laue H, Zhang YH. Prenatal phthalate exposure, infant growth, and global DNA methylation of human placenta. Environ Mol Mutagen2015 Apr;56(3):286-92. 28. Baccarelli A, Bollati V. Epigenetics and environmental chemicals. Current Opinion in Pediatrics2009;21(2):243-51. 29. Fournier T, Tsatsaris V, Handschuh K, Evain-Brion D. PPARs and the placenta. Placenta2007 Feb-Mar;28(2-3):65-76. 30. Zandbergen F, Plutzky J. PPARalpha in atherosclerosis and inflammation. Biochim Biophys Acta2007 Aug;1771(8):972-82. 31. Brune B, Courtial N, Dehne N, Syed SN, Weigert A. Macrophage NOS2 in Tumor Leukocytes. Antioxid Redox Signal2016 Aug 10. 32. Murphy SP, Tayade C, Ashkar AA, Hatta K, Zhang J, Croy BA. Interferon gamma in successful pregnancies. Biol Reprod2009 May;80(5):848-59. 33. Lin Y-H. Influence of Prenatal Exposure to Phthalates and Phenols on DNA Methylation in Inflammatory Genes 2015. 34. Tang ML, Kemp AS, Thorburn J, Hill DJ. Reduced interferon-gamma secretion in neonates and subsequent atopy. Lancet1994;344:983-5. 35. Soh J, Donnelly R, Kotenko S, Mariano T, Cook J, Wang N, et al. Identification and sequence of an accessory factor required for activation of the human interferon gamma receptor. Cell1994;76(5):793-802. 36. Islam T, Breton C, Salam MT, McConnell R, Wenten M, Gauderman WJ, et al. Role of inducible nitric oxide synthase in asthma risk and lung function growth during adolescence. Thorax2010 Feb;65(2):139-45. 37. Staumont-Salle D, Abboud G, Brenuchon C, Kanda A, Roumier T, Lavogiez C, et al. Peroxisome proliferator-activated receptor alpha regulates skin inflammation and humoral response in atopic dermatitis. J Allergy Clin Immunol2008 Apr;121(4):962-8 e6. 38. Hurst CH, Waxman DJ. Activation of PPARalpha and PPARgamma by environmental phthalate monoesters. Toxicol Sci2003 Aug;74(2):297-308. 39. Shin IS, Lee MY, Cho ES, Choi EY, Son HY, Lee KY. Effects of maternal exposure to di(2-ethylhexyl)phthalate (DEHP) during pregnancy on susceptibility to neonatal asthma. Toxicol Appl Pharmacol2014 Feb 1;274(3):402-7. 40. Kimura H. Histone modifications for human epigenome analysis. J Hum Genet2013 Jul;58(7):439-45. 41. Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol2005 Nov;6(11):838-49. 42. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res2011 Mar;21(3):381-95. 43. Doerks T, Copley RR, Schultz J, Ponting CP, Bork P. Systematic identification of novel protein domain families associated with nuclear functions. Genome Res2002 Jan;12(1):47-56. 44. Burton GJ, Fowden AL. The placenta: a multifaceted, transient organ. Philos Trans R Soc Lond B Biol Sci2015 Mar 05;370(1663):20140066. 45. Nelissen EC, van Montfoort AP, Dumoulin JC, Evers JL. Epigenetics and the placenta. Hum Reprod Update2011 May-Jun;17(3):397-417. 46. Hsieh CJ, Hsieh WS, Su YN, Liao HF, Jeng SF, Taso FM, et al. The Taiwan Birth Panel Study: a prospective cohort study for environmentally- related child health. BMC Res Notes2011;4:291. 47. Weng TI, Chen MH, Lien GW, Chen PS, Lin JC, Fang CC, et al. Effects of Gender on the Association of Urinary Phthalate Metabolites with Thyroid Hormones in Children: A Prospective Cohort Study in Taiwan. Int J Environ Res Public Health2017 Jan 29;14(2). 48. Wang IJ, Lin CC, Lin YJ, Hsieh WS, Chen PC. Early life phthalate exposure and atopic disorders in children: a prospective birth cohort study. Environ Int2014 Jan;62:48-54. 49. Liu C, Wang C, Chuang H, Ou C, Hsu T, Yang K. Prediction of elevated cord blood IgE levels by maternal IgE levels, and the neonate's gender and gestational age. Chang Gung Med J 2003;26:561-9. 50. Wang IJ, Guo YL, Weng HJ, Hsieh WS, Chuang YL, Lin SJ, et al. Environmental risk factors for early infantile atopic dermatitis. Pediatr Allergy Immunol2007 Aug;18(5):441-7. 51. Megan MM, Rifas-Shiman. SL, Rich-Edwards. JW, Kleinman. KP, Carlos A. Camargo J, Gold. DR, et al. Perinatal predictors of atopic dermatitis occurring in the first six months of life. Pediatrics2004;113:468-74. 52. Kimber I, Dearman RJ. An assessment of the ability of phthalates to influence immune and allergic responses. Toxicology2010 May 27;271(3):73-82. 53. Gascon M, Casas M, Morales E, Valvi D, Ballesteros-Gomez A, Luque N, et al. Prenatal exposure to bisphenol A and phthalates and childhood respiratory tract infections and allergy. J Allergy Clin Immunol2015 Feb;135(2):370-8. 54. Jahreis S, Trump S, Bauer M, Bauer T, Thurmann L, Feltens R, et al. Maternal phthalate exposure promotes allergic airway inflammation over 2 generations through epigenetic modifications. J Allergy Clin Immunol2017 Apr 06. 55. Yanagisawa R, Takano H, Inoue K, Koike E, Sadakane K, Ichinose T. Effects of maternal exposure to di-(2-ethylhexyl) phthalate during fetal and/or neonatal periods on atopic dermatitis in male offspring. Environ Health Perspect2008 Sep;116(9):1136-41. 56. Hoppin JA, Jaramillo R, London SJ, Bertelsen RJ, Salo PM, Sandler DP, et al. Phthalate exposure and allergy in the U.S. population: results from NHANES 2005-2006. Environ Health Perspect2013 Oct;121(10):1129-34. 57. Adibi JJ, Whyatt RM, Williams PL, Calafat AM, Camann D, Herrick R, et al. Characterization of phthalate exposure among pregnant women assessed by repeat air and urine samples. Environ Health Perspect2008 Apr;116(4):467-73. 58. Hayashi Y, Y. I, T. N. Effects of exposure to Di(2-ethylhexyl)phthalate during fetal period on next generation. Nihon Eiseigaku Zasshi2014;69(2):86-91. 59. Montrose L, Padmanabhan V, Goodrich JM, Domino SE, Treadwell MC, Meeker JD, et al. Maternal levels of endocrine disrupting chemicals in the first trimester of pregnancy are associated with infant cord blood DNA methylation. Epigenetics2018;13(3):301-9. 60. Posnack NG, Swift LM, Kay MW, Lee NH, Sarvazyan N. Phthalate exposure changes the metabolic profile of cardiac muscle cells. Environ Health Perspect2012 Sep;120(9):1243-51. 61. Moral R, Wang R, Russo IH, Mailo DA, Lamartiniere CA, Russo J. The plasticizer butyl benzyl phthalate induces genomic changes in rat mammary gland after neonatal/prepubertal exposure. BMC Genomics2007 Dec 6;8:453. 62. Hirai S, Naito M, Kuramasu M, Ogawa Y, Terayama H, Qu N, et al. Low-dose exposure to di-(2-ethylhexyl) phthalate (DEHP) increases susceptibility to testicular autoimmunity in mice. Reprod Biol2015 Sep;15(3):163-71. 63. Pei X, Duan Z, Ma M, Zhang Y, Guo L. Role of Ca/CaN/NFAT signaling in IL-4 expression by splenic lymphocytes exposed to phthalate (2-ethylhexyl) ester in spleen lymphocytes. Mol Biol Rep2014;41(4):2129-42. 64. Woerly G, Honda K, Loyens M, Papin JP, Auwerx J, Staels B, et al. Peroxisome proliferator-activated receptors alpha and gamma down-regulate allergic inflammation and eosinophil activation. J Exp Med2003 Aug 4;198(3):411-21. 65. Dubrac S, Schmuth M. PPAR-alpha in cutaneous inflammation. Dermatoendocrinol2011 Jan;3(1):23-6. 66. Lima C, Souza VMO, Faquim-Mauro EL, Hoshida MS, Bevilacqua E, Macedo MS, et al. Modulation of the Induction of Lung and Airway Allergy in the Offspring of IFN- -Treated Mother Mice. The Journal of Immunology2005;175(6):3554-9. 67. Breckler LA, Hale J, Taylor A, Dunstan JA, Thornton CA, Prescott SL. Pregnancy IFN-gamma responses to foetal alloantigens are altered by maternal allergy and gravidity status. Allergy2008 Nov;63(11):1473-80. 68. Pfefferle PI, Sel S, Ege MJ, Buchele G, Blumer N, Krauss-Etschmann S, et al. Cord blood allergen-specific IgE is associated with reduced IFN-gamma production by cord blood cells: the Protection against Allergy-Study in Rural Environments (PASTURE) Study. J Allergy Clin Immunol2008 Oct;122(4):711-6. 69. Roos AB, Mori M, Gronneberg R, Osterlund C, Claesson HE, Wahlstrom J, et al. Elevated exhaled nitric oxide in allergen-provoked asthma is associated with airway epithelial iNOS. PLoS One2014;9(2):e90018. 70. Koarai A, Ichinose M, Sugiura H, Yamagata S, Hattori T, Shirato K. Allergic airway hyperresponsiveness and eosinophil infiltration is reduced by a selective iNOS inhibitor, 1400W, in mice. Pulm Pharmacol Ther2000;13(6):267-75. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78991 | - |
dc.description.abstract | 背景及目的: 嬰兒和孩童一直以來都被視為易感受族群,無論是對於環境中的暴露物或是罹患疾病的風險,本研究的重點將放在母親懷孕期間,環境中鄰苯二甲酸酯類的暴露與胎盤中發炎相關基因的組蛋白修飾間之關聯性,並且進一步延伸到孩童罹患過敏相關疾病的風險。其中鄰苯二甲酸酯類包括鄰苯二甲酸二(2-乙基己基)酯 (DEHP)、鄰苯二甲酸二乙酯 (DEP)、鄰苯二甲酸二丁酯 (DBP)及鄰苯二甲酸丁苯甲酯 (BBzP)。過去流行病學研究指出,產前暴露不同種之鄰苯二甲酸酯類在導致孩童日後罹患過敏相關疾病風險提高上,都有發現一致的結果。而近年來,表觀遺傳學一直被視為一種潛在的調控機制,參與了整個致病過程,故本研究的目的為探討發炎相關基因之組蛋白修飾與產前暴露鄰苯二甲酸酯類間之關聯性探討。
方法: 本研究對象為2004年4月至2005年1月期間參與臺灣出生世代長期追蹤研究的母親與嬰兒配對。使用染色質免疫沉澱法來分析胎盤中過氧化物酶體增殖物活化受體α 、誘導型一氧化氮合成酶和干擾素γ 上之組蛋白修飾程度。再與第三孕期尿液中鄰苯二甲酸酯類代謝物、臍帶血中IgE、懷孕中之生活習慣和2歲孩童過敏反應,進行簡單線性迴歸和多重線性迴歸模式討論。 結果: 懷孕中使用塑膠袋盛裝熱食及孕婦尿液中MEHP有顯著的正相關(β = 0.54, p = 0.037)。PPARα組蛋白修飾程度和尿液MEHP濃度在簡單迴歸模式中發現快達到顯著相關(p=0.07)。然而,在iNOS、IFN-γ組蛋白修飾程度和MBP、MEHP及MBP中卻沒有發現顯著的相關性。兩歲孩童有無罹患氣喘和iNOS組蛋白修飾程度有顯著的正相關(crude OR, 3.28, 95%CI 1.0-10.8; adjusted OR, 4.62, 95%CI 1.01-20.94)。將發炎相關基因組蛋白修飾程度分為四組後,發現PPARα組蛋白修飾程度(>75%)和兩歲是否罹患異位性皮膚炎有顯著的正相關(OR, 1.69)。另外在環境因子中,懷孕時是否使用塑膠袋盛裝熱食、是否使用保養品或化妝品和懷孕前是否有吸菸等三個變項在四組IFN-γ組蛋白修飾程度中發現顯著差異且發現臍帶血中可丁尼濃度在四組IFN-γ組蛋白修飾程度中發現顯著差異。 結論: 本研究指出,產前暴露鄰苯二甲酸酯類和發炎相關基因的組蛋白修飾沒有顯著地相關,而可能的原因為目標片段的H3K4me3程度不足以發現顯著關聯性。本研究結果可以配合之前發炎相關基因甲基化的研究,進一步釐清表觀遺傳學是如何影響產前暴露鄰苯二甲酸酯類及孩童過敏反應間之作用機制。 | zh_TW |
dc.description.abstract | Background/Aim: Phthalate esters (phthalates) could penetrate the placenta and expose fetuses through cord blood. Epidemiological investigations found out there were potent and consistent evidences that phthalates exposure could increase the risk of allergy and asthma on fetuses and children. In recent years, epigenetics have been described as a potential mediator between environmental exposures and diseases, especially the histone modification. The aim of the study was to investigate the association between histone modifications of inflammatory genes and allergic responses.
Methods: A total of 486 mother-infant paired was recruited from April 2004 to January 2005 from Taiwan Birth Panel Study (TBPS), the cord blood IgE, phthalate metabolites concentration in maternal urine were measured, and placenta samples were collected. Cord blood IgE was used as a predictor of childhood allergic disorders. The levels of histone H3 at lysine 4 residue trimethylation (H3K4me3) on inflammatory genes were measured from placenta by using chromatin immunoprecipitation (ChIP). One hundred and fifty-six mother-infant pairs were included in the analyses, due to the availability of placenta samples and phthalate metabolites measurements. Results: A positive relationship was found between using plastic bags to contain hot foods during pregnancy and MEHP in maternal urine (β = 0.54, p = 0.037). The association of PPARα and MEP in crude model was of borderline significance (p=0.07). However, there was no significant linear associations were observed between MEP, MBP, MEHP, MBzP and H3K4me3 levels of PPARα, iNOS, and IFN-γ. The asthma at age 2 was significantly associated with the H3K4me3 level of iNOS (crude OR, 3.28,95%CI 1.0-10.8; adjusted OR, 4.62, 95%CI 1.01-20.94). H3K4me3 levels (>75%) of PPARα were significantly associated with AD at age2 (OR, 1.69) and environmental factors, including using plastic bags to contain hot foods, using cosmetics, and prenatal ETS exposure were all significantly different within four groups of H3K4me3 level of IFN-γ. Furthermore, cotinine in cord blood was significantly different in four groups of H3K4me3 level of IFN-γ. Conclusions: Our data suggested that prenatal phthalate exposures were not associated with histone modification of inflammatory genes and it might due to the insufficient H3K4me3 levels in PCR amplification region. With the previous DNA methylation study, we were capable to get a comprehensive view of how epigenetics influence the pathway of prenatal phthalate exposures and allergic responses. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:34:46Z (GMT). No. of bitstreams: 1 ntu-107-R05844009-1.pdf: 1630812 bytes, checksum: ac6a3af92e6ba9b938cc54a4632a6450 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iv Contents vi List of Tables viii Chapter 1. Introduction 1 1.1 Phthalate Esters (Phthalates) 1 1.1.1 Phthalate Esters and Children/Fetuses Health Outcome 2 1.2 Epigenetics 3 1.2.1 Epigenetics and Health Outcome 4 1.2.2 Epigenetics and Phthalate Esters 5 1.3 Inflammatory Genes and Children/Fetuses Health Outcome 5 1.3.1 Inflammatory Genes and Phthalate Esters 6 1.4 Histone Modification 7 1.5 Placenta 8 1.6 Study Objective 9 Chapter 2. Materials and Methods 11 2.1 Study Population 11 2.2 Analysis of Phthalate Esters 12 2.3 Analysis of IgE Antibody 12 2.4 Measurement of Histone Modification 13 2.4.1 Chromatin Immunoprecipitation (ChIP) 13 2.4.2 Real-time Quantitative PCR assay 15 2.5 Statistical Analysis 15 Chapter 3. Results 17 Chapter 4. Discussion 20 4.1 Phthalates and Allergic Responses 20 4.2 Phthalates and Inflammatory genes 22 4.3 Inflammatory genes and Allergic Responses 24 4.4 Public Health Meaning 25 4.5 Strengths 26 4.6 Limitations 27 Chapter 5. Conclusions 28 References 29 Appendix 53 List of Tables Table 1. Basic demographics of study subjects between participants and non-participants by using t test, chi-square test, and fisher’s exact test 35 Table 2. Phthalate metabolites concentration in maternal urine 38 Table 3. The relationship of living habits during pregnancy and phthalate metabolites in maternal urine 39 Table 4. Distribution of H3K4me3 levels of inflammatory genes 40 Table 5. Regression model for H3K4me3 levels of inflammatory genes according to phthalate metabolites in maternal urine 41 Table 6. The statistical results of H3K4me3 levels of inflammatory genes and birth outcomes by using Wilcoxon rank sum test 43 Table 7. Regression model for H3K4me3 levels of inflammatory genes according to maternal blood IgE concentration 44 Table 8. Regression model for H3K4me3 levels of inflammatory genes according to cord blood IgE concentration 45 Table 9. Association between allergic responses at age 2 and H3K4me3 levels of inflammatory 46 Table 10. Association of exposure measurements and birth outcomes across quartiles of H3K4me3 levels of inflammatory genes 47 List of Figure Figure 1. Study Framework 10 | - |
dc.language.iso | en | - |
dc.title | 產前鄰苯二甲酸酯類暴露與發炎相關基因組蛋白修飾間之相關性探討 | zh_TW |
dc.title | Histone Modifications of Inflammatory Genes In Relation to Prenatal Phthalates Exposures | en |
dc.type | Thesis | - |
dc.date.schoolyear | 106-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳保中;陳美蓮;黃憲松 | zh_TW |
dc.contributor.oralexamcommittee | ;; | en |
dc.subject.keyword | 產前暴露,鄰苯二甲酸酯類,過敏反應,表觀遺傳學,發炎相關基因,組蛋白修飾, | zh_TW |
dc.subject.keyword | prenatal exposure,phthalate esters,allergic responses,epigenetics,inflammatory genes,histone modification,ChIP, | en |
dc.relation.page | 62 | - |
dc.identifier.doi | 10.6342/NTU201803464 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2018-08-15 | - |
dc.contributor.author-college | 公共衛生學院 | - |
dc.contributor.author-dept | 環境衛生研究所 | - |
dc.date.embargo-lift | 2023-10-09 | - |
顯示於系所單位: | 環境衛生研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-2.pdf 目前未授權公開取用 | 1.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。