Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78990
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor俞松良zh_TW
dc.contributor.advisorSung-Liang Yuen
dc.contributor.author王恩瑋zh_TW
dc.contributor.authorEn-Wei Wangen
dc.date.accessioned2021-07-11T15:34:41Z-
dc.date.available2024-02-28-
dc.date.copyright2018-10-11-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citationReferences
1. Wightman, B., I. Ha, and G. Ruvkun, Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 1993. 75(5): p. 855-62.
2. Davis-Dusenbery, B.N. and A. Hata, Mechanisms of control of microRNA biogenesis. J Biochem, 2010. 148(4): p. 381-92.
3. Kapinas, K. and A.M. Delany, MicroRNA biogenesis and regulation of bone remodeling. Arthritis Res Ther, 2011. 13(3): p. 220.
4. Bartel, D.P., MicroRNAs: target recognition and regulatory functions. Cell, 2009. 136(2): p. 215-33.
5. van Rooij, E. and E.N. Olson, MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov, 2012. 11(11): p. 860-72.
6. Maudet, C., M. Mano, and A. Eulalio, MicroRNAs in the interaction between host and bacterial pathogens. FEBS Lett, 2014. 588(22): p. 4140-7.
7. Randow, F., J.D. MacMicking, and L.C. James, Cellular self-defense: how cell-autonomous immunity protects against pathogens. Science, 2013. 340(6133): p. 701-6.
8. Navarro, L., et al., A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science, 2006. 312(5772): p. 436-9.
9. Navarro, L., et al., Suppression of the microRNA pathway by bacterial effector proteins. Science, 2008. 321(5891): p. 964-7.
10. Lindsay, M.A., microRNAs and the immune response. Trends Immunol, 2008. 29(7): p. 343-51.
11. Monk, C.E., G. Hutvagner, and J.S. Arthur, Regulation of miRNA transcription in macrophages in response to Candida albicans. PLoS One, 2010. 5(10): p. e13669.
12. Nathans, R., et al., Cellular microRNA and P bodies modulate host-HIV-1 interactions. Mol Cell, 2009. 34(6): p. 696-709.
13. Valdez, Y., R.B. Ferreira, and B.B. Finlay, Molecular mechanisms of Salmonella virulence and host resistance. Curr Top Microbiol Immunol, 2009. 337: p. 93-127.
14. Monack, D.M., et al., Salmonella exploits caspase-1 to colonize Peyer's patches in a murine typhoid model. J Exp Med, 2000. 192(2): p. 249-58.
15. Monack, D.M., A. Mueller, and S. Falkow, Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat Rev Microbiol, 2004. 2(9): p. 747-65.
16. McGhie, E.J., et al., Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol, 2009. 12(1): p. 117-24.
17. Que, F., S. Wu, and R. Huang, Salmonella pathogenicity island 1(SPI-1) at work. Curr Microbiol, 2013. 66(6): p. 582-7.
18. Haraga, A., M.B. Ohlson, and S.I. Miller, Salmonellae interplay with host cells. Nat Rev Microbiol, 2008. 6(1): p. 53-66.
19. Francis, C.L., M.N. Starnbach, and S. Falkow, Morphological and cytoskeletal changes in epithelial cells occur immediately upon interaction with Salmonella typhimurium grown under low-oxygen conditions. Mol Microbiol, 1992. 6(21): p. 3077-87.
20. Baumler, A.J., R.M. Tsolis, and F. Heffron, Contribution of fimbrial operons to attachment to and invasion of epithelial cell lines by Salmonella typhimurium. Infect Immun, 1996. 64(5): p. 1862-5.
21. Galan, J.E. and H. Wolf-Watz, Protein delivery into eukaryotic cells by type III secretion machines. Nature, 2006. 444(7119): p. 567-73.
22. Hicks, S.W. and J.E. Galan, Exploitation of eukaryotic subcellular targeting mechanisms by bacterial effectors. Nat Rev Microbiol, 2013. 11(5): p. 316-26.
23. Ashida, H., et al., Bacteria and host interactions in the gut epithelial barrier. Nat Chem Biol, 2012. 8(1): p. 36-45.
24. Kim, M., et al., Bacterial interactions with the host epithelium. Cell Host Microbe, 2010. 8(1): p. 20-35.
25. de Jong, H.K., et al., Host-pathogen interaction in invasive Salmonellosis. PLoS Pathog, 2012. 8(10): p. e1002933.
26. Sabbagh, S.C., et al., So similar, yet so different: uncovering distinctive features in the genomes of Salmonella enterica serovars Typhimurium and Typhi. FEMS Microbiol Lett, 2010. 305(1): p. 1-13.
27. Lahiri, A., et al., Visiting the cell biology of Salmonella infection. Microbes Infect, 2010. 12(11): p. 809-18.
28. Haneda, T., et al., Genome-wide identification of novel genomic islands that contribute to Salmonella virulence in mouse systemic infection. FEMS Microbiol Lett, 2009. 297(2): p. 241-9.
29. Mallo, G.V., et al., SopB promotes phosphatidylinositol 3-phosphate formation on Salmonella vacuoles by recruiting Rab5 and Vps34. J Cell Biol, 2008. 182(4): p. 741-52.
30. Lebensohn, A.M. and M.W. Kirschner, Activation of the WAVE complex by coincident signals controls actin assembly. Mol Cell, 2009. 36(3): p. 512-24.
31. Humphreys, D., et al., Arf6 coordinates actin assembly through the WAVE complex, a mechanism usurped by Salmonella to invade host cells. Proc Natl Acad Sci U S A, 2013. 110(42): p. 16880-5.
32. LaRock, D.L., A. Chaudhary, and S.I. Miller, Salmonellae interactions with host processes. Nat Rev Microbiol, 2015. 13(4): p. 191-205.
33. Gilbreath, J.J., et al., Change is good: variations in common biological mechanisms in the epsilonproteobacterial genera Campylobacter and Helicobacter. Microbiol Mol Biol Rev, 2011. 75(1): p. 84-132.
34. Mitra, K., D. Zhou, and J.E. Galan, Biophysical characterization of SipA, an actin-binding protein from Salmonella enterica. FEBS Lett, 2000. 482(1-2): p. 81-4.
35. Fu, Y. and J.E. Galan, A salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature, 1999. 401(6750): p. 293-7.
36. Bakowski, M.A., V. Braun, and J.H. Brumell, Salmonella-containing vacuoles: directing traffic and nesting to grow. Traffic, 2008. 9(12): p. 2022-31.
37. Wiedemann, A., et al., Interactions of Salmonella with animals and plants. Front Microbiol, 2014. 5: p. 791.
38. Malik-Kale, P., et al., Salmonella - at home in the host cell. Front Microbiol, 2011. 2: p. 125.
39. Steele-Mortimer, O., The Salmonella-containing vacuole: moving with the times. Curr Opin Microbiol, 2008. 11(1): p. 38-45.
40. Halici, S., et al., Functional analysis of the Salmonella pathogenicity island 2-mediated inhibition of antigen presentation in dendritic cells. Infect Immun, 2008. 76(11): p. 4924-33.
41. Ramsden, A.E., D.W. Holden, and L.J. Mota, Membrane dynamics and spatial distribution of Salmonella-containing vacuoles. Trends Microbiol, 2007. 15(11): p. 516-24.
42. Schroeder, N., L.J. Mota, and S. Meresse, Salmonella-induced tubular networks. Trends Microbiol, 2011. 19(6): p. 268-77.
43. R. Botelho, G.C.C., N. Kataoka, and C. M. Wells, Impact of Salmonella entericaType III Secretion SystemEffectors on the Eukaryotic Host Cell. ISRN Cell Biology, 2012: p. 36.
44. Brumell, J.H., et al., Characterization of Salmonella-induced filaments (Sifs) reveals a delayed interaction between Salmonella-containing vacuoles and late endocytic compartments. Traffic, 2001. 2(9): p. 643-53.
45. Bujny, M.V., et al., Sorting nexin-1 defines an early phase of Salmonella-containing vacuole-remodeling during Salmonella infection. J Cell Sci, 2008. 121(Pt 12): p. 2027-36.
46. Ramos-Morales, F., Impact of Salmonella enterica Type III Secretion System Effectors on the Eukaryotic Host Cell. ISRN Cell Biology, 2012: p. 36.
47. Szeto, J., et al., Salmonella-containing vacuoles display centrifugal movement associated with cell-to-cell transfer in epithelial cells. Infect Immun, 2009. 77(3): p. 996-1007.
48. Knuff, K. and B.B. Finlay, What the SIF Is Happening-The Role of Intracellular Salmonella-Induced Filaments. Front Cell Infect Microbiol, 2017. 7: p. 335.
49. Bakowski, M.A., et al., The phosphoinositide phosphatase SopB manipulates membrane surface charge and trafficking of the Salmonella-containing vacuole. Cell Host Microbe, 2010. 7(6): p. 453-62.
50. Haglund, C.M. and M.D. Welch, Pathogens and polymers: microbe-host interactions illuminate the cytoskeleton. J Cell Biol, 2011. 195(1): p. 7-17.
51. McEwan, D.G., et al., PLEKHM1 regulates Salmonella-containing vacuole biogenesis and infection. Cell Host Microbe, 2015. 17(1): p. 58-71.
52. Liss, V. and M. Hensel, Take the tube: remodelling of the endosomal system by intracellular Salmonella enterica. Cell Microbiol, 2015. 17(5): p. 639-47.
53. Weber, M.M. and R. Faris, Subversion of the Endocytic and Secretory Pathways by Bacterial Effector Proteins. Front Cell Dev Biol, 2018. 6: p. 1.
54. Mota, L.J., et al., SCAMP3 is a component of the Salmonella-induced tubular network and reveals an interaction between bacterial effectors and post-Golgi trafficking. Cell Microbiol, 2009. 11(8): p. 1236-53.
55. Schroeder, N., et al., The virulence protein SopD2 regulates membrane dynamics of Salmonella-containing vacuoles. PLoS Pathog, 2010. 6(7): p. e1001002.
56. Krieger, V., et al., Reorganization of the endosomal system in Salmonella-infected cells: the ultrastructure of Salmonella-induced tubular compartments. PLoS Pathog, 2014. 10(9): p. e1004374.
57. Galan, J.E., Common themes in the design and function of bacterial effectors. Cell Host Microbe, 2009. 5(6): p. 571-9.
58. Schulte, L.N., et al., Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family. EMBO J, 2011. 30(10): p. 1977-89.
59. Eulalio, A., L. Schulte, and J. Vogel, The mammalian microRNA response to bacterial infections. RNA Biol, 2012. 9(6): p. 742-50.
60. Maudet, C., et al., Functional high-throughput screening identifies the miR-15 microRNA family as cellular restriction factors for Salmonella infection. Nat Commun, 2014. 5: p. 4718.
61. Zhao, Y., J.P. Gorvel, and S. Meresse, Effector proteins support the asymmetric apportioning of Salmonella during cytokinesis. Virulence, 2016. 7(6): p. 669-78.
62. Hoeke, L., et al., Intestinal Salmonella typhimurium Infection Leads to miR-29a Induced Caveolin 2 Regulation. PLoS One, 2013. 8(6): p. e67300.
63. Sharbati, S., et al., Quantification and accurate normalisation of small RNAs through new custom RT-qPCR arrays demonstrates Salmonella-induced microRNAs in human monocytes. BMC Genomics, 2012. 13: p. 23.
64. Quinn, E.M., et al., MicroRNA-146a is upregulated by and negatively regulates TLR2 signaling. PLoS One, 2013. 8(4): p. e62232.
65. Ordas, A., et al., MicroRNA-146 function in the innate immune transcriptome response of zebrafish embryos to Salmonella typhimurium infection. BMC Genomics, 2013. 14: p. 696.
66. Radomski, N., et al., Xenophagic pathways and their bacterial subversion in cellular self-defense - pialphanutaualpha rhoepsiloniota - everything is in flux. Int J Med Microbiol, 2017.
67. Bauckman, K.A., N. Owusu-Boaitey, and I.U. Mysorekar, Selective autophagy: xenophagy. Methods, 2015. 75: p. 120-7.
68. Scheidel, J., et al., In Silico Knockout Studies of Xenophagic Capturing of Salmonella. PLoS Comput Biol, 2016. 12(12): p. e1005200.
69. Alix, E., S. Mukherjee, and C.R. Roy, Subversion of membrane transport pathways by vacuolar pathogens. J Cell Biol, 2011. 195(6): p. 943-52.
70. Randow, F. and C. Munz, Autophagy in the regulation of pathogen replication and adaptive immunity. Trends Immunol, 2012. 33(10): p. 475-87.
71. Levine, B., N. Mizushima, and H.W. Virgin, Autophagy in immunity and inflammation. Nature, 2011. 469(7330): p. 323-35.
72. Deretic, V. and B. Levine, Autophagy, immunity, and microbial adaptations. Cell Host Microbe, 2009. 5(6): p. 527-49.
73. Mizushima, N. and M. Komatsu, Autophagy: renovation of cells and tissues. Cell, 2011. 147(4): p. 728-41.
74. Xiao, G., Autophagy and NF-kappaB: fight for fate. Cytokine Growth Factor Rev, 2007. 18(3-4): p. 233-43.
75. Levine, B. and D.J. Klionsky, Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell, 2004. 6(4): p. 463-77.
76. Kabeya, Y., et al., LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 2000. 19(21): p. 5720-8.
77. Suzuki, K., et al., The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J, 2001. 20(21): p. 5971-81.
78. Mizushima, N., et al., Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci, 2003. 116(Pt 9): p. 1679-88.
79. Abeliovich, H., et al., Dissection of autophagosome biogenesis into distinct nucleation and expansion steps. J Cell Biol, 2000. 151(5): p. 1025-34.
80. Kuroyanagi, H., et al., Human ULK1, a novel serine/threonine kinase related to UNC-51 kinase of Caenorhabditis elegans: cDNA cloning, expression, and chromosomal assignment. Genomics, 1998. 51(1): p. 76-85.
81. Young, A.R., et al., Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci, 2006. 119(Pt 18): p. 3888-900.
82. Okazaki, N., et al., Interaction of the Unc-51-like kinase and microtubule-associated protein light chain 3 related proteins in the brain: possible role of vesicular transport in axonal elongation. Brain Res Mol Brain Res, 2000. 85(1-2): p. 1-12.
83. Cemma, M. and J.H. Brumell, Interactions of pathogenic bacteria with autophagy systems. Curr Biol, 2012. 22(13): p. R540-5.
84. Gutierrez, M.G., et al., Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell, 2004. 119(6): p. 753-66.
85. Alonso, S., et al., Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proc Natl Acad Sci U S A, 2007. 104(14): p. 6031-6.
86. Birmingham, C.L., et al., Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J Biol Chem, 2006. 281(16): p. 11374-83.
87. Zheng, Y.T., et al., The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol, 2009. 183(9): p. 5909-16.
88. Kageyama, S., et al., The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against Salmonella. Mol Biol Cell, 2011. 22(13): p. 2290-300.
89. Dupont, N., et al., Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe, 2009. 6(2): p. 137-49.
90. Cemma, M., P.K. Kim, and J.H. Brumell, The ubiquitin-binding adaptor proteins p62/SQSTM1 and NDP52 are recruited independently to bacteria-associated microdomains to target Salmonella to the autophagy pathway. Autophagy, 2011. 7(3): p. 341-5.
91. Stolz, A., A. Ernst, and I. Dikic, Cargo recognition and trafficking in selective autophagy. Nat Cell Biol, 2014. 16(6): p. 495-501.
92. von Muhlinen, N., et al., LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy. Mol Cell, 2012. 48(3): p. 329-42.
93. Thurston, T.L., et al., Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature, 2012. 482(7385): p. 414-8.
94. Shahnazari, S., et al., A diacylglycerol-dependent signaling pathway contributes to regulation of antibacterial autophagy. Cell Host Microbe, 2010. 8(2): p. 137-46.
95. Sanjuan, M.A., et al., Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature, 2007. 450(7173): p. 1253-7.
96. Huang, J., et al., Activation of antibacterial autophagy by NADPH oxidases. Proc Natl Acad Sci U S A, 2009. 106(15): p. 6226-31.
97. Travassos, L.H., et al., Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol, 2010. 11(1): p. 55-62.
98. Hayashi-Nishino, M., et al., A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol, 2009. 11(12): p. 1433-7.
99. Choi, A.M., S.W. Ryter, and B. Levine, Autophagy in human health and disease. N Engl J Med, 2013. 368(19): p. 1845-6.
100. Dorn, B.R., W.A. Dunn, Jr., and A. Progulske-Fox, Bacterial interactions with the autophagic pathway. Cell Microbiol, 2002. 4(1): p. 1-10.
101. Rubinsztein, D.C., P. Codogno, and B. Levine, Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov, 2012. 11(9): p. 709-30.
102. Rich, K.A., C. Burkett, and P. Webster, Cytoplasmic bacteria can be targets for autophagy. Cell Microbiol, 2003. 5(7): p. 455-68.
103. Birmingham, C.L., D.E. Higgins, and J.H. Brumell, Avoiding death by autophagy: interactions of Listeria monocytogenes with the macrophage autophagy system. Autophagy, 2008. 4(3): p. 368-71.
104. Fabri, M., et al., Vitamin D is required for IFN-gamma-mediated antimicrobial activity of human macrophages. Sci Transl Med, 2011. 3(104): p. 104ra102.
105. Benjamin, J.L., et al., Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host Microbe, 2013. 13(6): p. 723-34.
106. Frankel, L.B. and A.H. Lund, MicroRNA regulation of autophagy. Carcinogenesis, 2012. 33(11): p. 2018-25.
107. Fu, L.L., et al., MicroRNA-modulated autophagic signaling networks in cancer. Int J Biochem Cell Biol, 2012. 44(5): p. 733-6.
108. Zhu, H., et al., Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy, 2009. 5(6): p. 816-23.
109. Tang, B., et al., Compromised autophagy by MIR30B benefits the intracellular survival of Helicobacter pylori. Autophagy, 2012. 8(7): p. 1045-57.
110. Wang, J., et al., MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb. PLoS Pathog, 2013. 9(10): p. e1003697.
111. Gagnon, M., et al., Comparison of the Caco-2, HT-29 and the mucus-secreting HT29-MTX intestinal cell models to investigate Salmonella adhesion and invasion. J Microbiol Methods, 2013. 94(3): p. 274-9.
112. Voznica, J., et al., Identifying parameters of host cell vulnerability during Salmonella infection by quantitative image analysis and modeling. Infect Immun, 2017.
113. Chassin, C., et al., miR-146a mediates protective innate immune tolerance in the neonate intestine. Cell Host Microbe, 2010. 8(4): p. 358-68.
114. Sathyanarayanan, A., K.S. Chandrasekaran, and D. Karunagaran, microRNA-146a inhibits proliferation, migration and invasion of human cervical and colorectal cancer cells. Biochem Biophys Res Commun, 2016. 480(4): p. 528-533.
115. Ma, W., et al., miR-146a and miR-146b promote proliferation, migration and invasion of follicular thyroid carcinoma via inhibition of ST8SIA4. Oncotarget, 2017. 8(17): p. 28028-28041.
116. Kuntz, S., S. Rudloff, and C. Kunz, Oligosaccharides from human milk influence growth-related characteristics of intestinally transformed and non-transformed intestinal cells. Br J Nutr, 2008. 99(3): p. 462-71.
117. Miller, R.A., et al., The Typhoid Toxin Produced by the Nontyphoidal Salmonella enterica Serotype Javiana Is Required for Induction of a DNA Damage Response In Vitro and Systemic Spread In Vivo. MBio, 2018. 9(2).
118. Wang, L., et al., A ten-microRNA signature identified from a genome-wide microRNA expression profiling in human epithelial ovarian cancer. PLoS One, 2014. 9(5): p. e96472.
119. Liu, Z., et al., Reproducibility of quantitative real-time PCR assay in microRNA expression profiling and comparison with microarray analysis in narcolepsy. Springerplus, 2015. 4: p. 812.
120. Sun, L., et al., Oncological miR-182-3p, a Novel Smooth Muscle Cell Phenotype Modulator, Evidences From Model Rats and Patients. Arterioscler Thromb Vasc Biol, 2016. 36(7): p. 1386-97.
121. Zheng, Y., et al., miR-376a suppresses proliferation and induces apoptosis in hepatocellular carcinoma. FEBS Lett, 2012. 586(16): p. 2396-403.
122. Testa, U., et al., miR-146 and miR-155: Two Key Modulators of Immune Response and Tumor Development. Noncoding RNA, 2017. 3(3).
123. Li, L., X.P. Chen, and Y.J. Li, MicroRNA-146a and human disease. Scand J Immunol, 2010. 71(4): p. 227-31.
124. Nahid, M.A., M. Satoh, and E.K. Chan, MicroRNA in TLR signaling and endotoxin tolerance. Cell Mol Immunol, 2011. 8(5): p. 388-403.
125. Montagner, S., et al., The role of miRNAs in mast cells and other innate immune cells. Immunol Rev, 2013. 253(1): p. 12-24.
126. Rusca, N. and S. Monticelli, MiR-146a in Immunity and Disease. Mol Biol Int, 2011. 2011: p. 437301.
127. Nahid, M.A., et al., miR-146a is critical for endotoxin-induced tolerance: IMPLICATION IN INNATE IMMUNITY. J Biol Chem, 2009. 284(50): p. 34590-9.
128. Trocoli, A. and M. Djavaheri-Mergny, The complex interplay between autophagy and NF-kappaB signaling pathways in cancer cells. Am J Cancer Res, 2011. 1(5): p. 629-49.
129. Henry, T., et al., The Salmonella effector protein PipB2 is a linker for kinesin-1. Proc Natl Acad Sci U S A, 2006. 103(36): p. 13497-502.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78990-
dc.description.abstract微核醣核酸(microRNAs)是21-24nt長度的non-coding RNA,可以調節其他基因的表現。研究指出當病原菌感染宿主時,宿主微核醣核酸可以調控發炎或產生抗病原菌感染的免疫反應來抵禦病原菌。因此微核醣核酸在宿主防禦病原菌上有著重要的角色。沙門氏菌(Salmonella)是革蘭氏陰性菌且可生長於宿主細胞內。沙門氏菌可感染吞噬細胞與非吞噬細胞,當沙門氏菌存活於非吞噬細胞內則可再感染鄰近之細胞,若存活於吞噬細胞內可透過血液或淋巴擴散於全身而造成全身性的感染。然而胞內菌在感染宿主腸道上皮細胞時,宿主微核醣核酸的表現或調控關係仍然未知。
實驗使用人類腸道癌症上皮細胞(HT29)感染鼠傷寒沙門氏菌(Salmonella typhimurium)來探討宿主微核醣核酸之表現與病原菌之關係。利用TLDA array分析在沙門氏菌感染後4小時,宿主微核醣核酸之表現量。TLDA分析後發現宿主細胞之miR-146a在沙門氏菌感後其表現量會增加。為了進一步研究宿主miR-146a在沙門氏菌感染時所扮演的角色,使用miR-146a過表現的細胞株(HT29與HIEC,人類腸道正常上皮細胞)感染沙門氏菌並且觀察其細胞內細菌生長(intracellular growth)之情形。實驗結果顯示在大量表現miR-146a的細胞株其細胞內之細菌生長數目明顯比對照組少。同時,也利用antagomir抑制內源性miR-146a的表現,結果也發現細胞內之細菌數與對照組間無明顯差異。另一方面,利用西方墨點分析也看到miR-146a會促進autophagy之產生。
以上實驗結果得知,宿主miR-146a的表現,會抑制沙門氏菌在宿主細胞內的生長與複製,此抑制作用是透過autophagy的方式來清除細胞內的細菌。
zh_TW
dc.description.abstractMicroRNA (miRNA) is a large family of short, non-coding RNAs, which have been discovered playing essential roles in many cellular processes. In mammalian, bacteria have been found to regulate miRNAs during infection progression. Salmonella could invade the non-phagocytic cells and then survive. Salmonella may cause systemic diseases via blood dissemination in infected patients. The intestinal epithelial is the first line of host anti-bacterial defense. Here, we found Salmonella typhimurium infection upregulates the miR-146a expression in human colon cancer epithelial cells, HT29, at 4 hours post infection by TLDA array assay. We further investigate the role of miR-146a in Salmonella infection. We used the colony formation assay to measure the intracellular bacterial numbers post infection in HT29 cells and human intestinal epithelial cells, HIEC. Our results found the enforced expression of miR-146a was restricting Salmonella intracellular replication after Salmonella infection. In contrast, neutralizing miR-146a by specific antagomiR restored Salmonella intracellular replication ability in Salmonella-infected cells. Furthermore, we found the enforced expression of miR-146a increased autophagy. The intracellular bacterial growth results suggest that miR-146a might have a role in Salmonella intracellular survival through xenophagy, was able to clean cytosolic pathogens.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:34:41Z (GMT). No. of bitstreams: 1
ntu-107-D99424004-1.pdf: 5830784 bytes, checksum: af95cce8cfa9ff1fded08eeef39c91f6 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsContents
Acknowledgement……………………………………………………………………… i
中文摘要………………………………………………………………………………ii
Abstract………………………………………………………………………………iii
Contents…………………………………………………………………………………v
1 Introduction ……………………………………………………………………1
1.1 microRNA……………………………………………………………………1
1.2 Host microRNAs respond to pathogen infection…………………………2
1.3 Pathogenesis of Salmonella…………………………………………………4
1.4 Host microRNA response to Salmonella infection…………………………15
1.5 Autophagy…………………………………………………………………16
1.6 Objectives…………………………………………………………………25
2 Materials and Methods…………………………………………………………26
2.1 Cell culture and transfection………………………………………………26
2.2 Bacterial Strains and growth conditions……………………………………26
2.3 Bacterial infection…………………………………………………………..27
2.4 Enumeration of intracellular bacteria………………………………………27
2.5 Cell viability assay………………………………………………………….28
2.6 RNA isolation………………………………………………………………28
2.7 Microarray analysis of miRNA expression…………………………………28
2.8 Quantification of miRNAs by qRT-PCR……………………………………29
2.9 Real-time RT-PCR…………………………………………………………30
2.10 Construction of miRNA expression plasmids………………………………30
2.11 Establishment of stably miRNA-expressing cell line………………………30
2.12 MTT cell viability assay……………………………………………………32
2.13 MiR-146a mimic and antagomiR-146a transfection……………………32
2.14 Western blot………………………………………………………………33
2.15 Flow cytometric analysis…………………………………………………33
2.16 NGS analysis of genes expression…………………………………………33
2.17 Statistical analysis…………………………………………………………34
3 Results……………………………………………………………………………35
3.1 Optimization of the Salmonella infection condition in HT29 cell…………35
3.2 Identification of differentially expressed miRNAs during Salmonella infection……………………………………………………………………36
3.3 Investigating the functions of miR-146a, miR-182*, miR-222*, miR-323-3P and miR-376a in Salmonella infection…………………………………….37
3.4 The induction of miR-146a affects the intracellular replication of Salmonella………………………………………………………………38
3.5 MiR-146a affects Salmonella intracellular replication in human intestinal epithelial cells……………………………………………………………39
3.6 AntagomiR-146a eliminates the increase of intracellular replication ability induced by Salmonella infection……………………………………………41
3.7 MiR-146a contributes to Salmonella infection-induced autophagy…42
4 Discussion……………………………………………………………………….43
5 Figures……………………………………………………………………………48
Figure 1. Salmonella infection HT-29 induces host cell apoptosis………………48
Figure 2. miRNAs expression after Salmonella infection………………………50
Figure 3. Establishing the miRNA expressing cell lines………………………53
Figure 4. The miR-146a inhibits Salmonella intracellular replication in HT29 cells……………………………………………………………………54
Figure 5. MiR-146a inhibits Salmonella intracellular replication in HIEC-6 cells…………………………………………………………………56
Figure 6. AntagomiR-146a increases Salmonella intracellular replication in HIEC-6 cells…………………58
Figure 7. MiR-146a promotes autophagy in HT-29 and HIEC-6 cells.….……………………………………………………………59
Figure 8. A model of miR-146a regulatory pathway in Salmonella infection…………………………………………………………61
6 Table. ……………………………………………………………………………63
Table 1. Construction primers list………………………………………………63
7 References………………………………………………………………………65
-
dc.language.isoen-
dc.title宿主微核醣核酸miR-146a抑制沙門氏菌在宿主細胞內的生長與複製zh_TW
dc.titleThe host miR-146a inhibits Salmonella intracellular replicationen
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee賴信志;廖淑貞;顏伯勳;蘇剛毅;沈林琥;華國泰zh_TW
dc.contributor.oralexamcommitteeHsin-Chih Lai;Shwu-Jen Liaw;;Kang-Yi Su;Sher Singh;en
dc.subject.keyword沙門氏菌,微核醣核酸,腸道上皮細胞,胞內繁殖,宿主-病原體交互作用,異源吞噬,zh_TW
dc.subject.keywordSalmonella,microRNA,intestinal epithelial cells,intracellular replication,host-pathogen interaction,xenophagy,en
dc.relation.page80-
dc.identifier.doi10.6342/NTU201802818-
dc.rights.note未授權-
dc.date.accepted2018-08-15-
dc.contributor.author-college醫學院-
dc.contributor.author-dept醫學檢驗暨生物技術學研究所-
dc.date.embargo-lift2023-10-11-
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-106-2.pdf
  目前未授權公開取用
5.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved