請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78980
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐立中 | zh_TW |
dc.contributor.advisor | Li-Chung Hsu | en |
dc.contributor.author | 林鼎翔 | zh_TW |
dc.contributor.author | Ting-Hsiang Lin | en |
dc.date.accessioned | 2021-07-11T15:33:56Z | - |
dc.date.available | 2024-07-31 | - |
dc.date.copyright | 2018-08-30 | - |
dc.date.issued | 2018 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 1. Kanneganti, T.D., The inflammasome: firing up innate immunity. Immunological Reviews, 2015. 265(1): p. 1-5.
2. Netea, M.G. and J.W. van der Meer, Immunodeficiency and genetic defects of pattern-recognition receptors. N Engl J Med, 2011. 364(1): p. 60-70. 3. Schroder, K. and J. Tschopp, The Inflammasomes. Cell, 2010. 140(6): p. 821-832. 4. Martinon, F., K. Burns, and J. Tschopp, The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell, 2002. 10(2): p. 417-26. 5. Lamkanfi, M. and V.M. Dixit, Mechanisms and Functions of Inflammasomes. Cell, 2014. 157(5): p. 1013-1022. 6. Broz, P. and V.M. Dixit, Inflammasomes: mechanism of assembly, regulation and signalling. Nature Reviews Immunology, 2016. 16(7): p. 407-420. 7. Nakanishi, K., et al., Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu. Cytokine & Growth Factor Reviews, 2001. 12(1): p. 53-72. 8. Dinarello, C.A., Immunological and Inflammatory Functions of the Interleukin-1 Family. Annual Review of Immunology, 2009. 27: p. 519-550. 9. Shaw, P.J., M.F. McDermott, and T.D. Kanneganti, Inflammasomes and autoimmunity. Trends in Molecular Medicine, 2011. 17(2): p. 57-64. 10. Kantono, M. and B.C. Guo, Inflammasomes and Cancer: The Dynamic Role of the Inflammasome in Tumor Development. Frontiers in Immunology, 2017. 8. 11. Guo, H.T., J.B. Callaway, and J.P.Y. Ting, Inflammasomes: mechanism of action, role in disease, and therapeutics. Nature Medicine, 2015. 21(7): p. 677-687. 12. Ozaki, E., M. Campbell, and S.L. Doyle, Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. Journal of Inflammation Research, 2015. 8: p. 15-27. 13. Menu, P. and J.E. Vince, The NLRP3 inflammasome in health and disease: the good, the bad and the ugly. Clinical and Experimental Immunology, 2011. 166(1): p. 1-15. 14. Latz, E., T.S. Xiao, and A. Stutz, Activation and regulation of the inflammasomes. Nat Rev Immunol, 2013. 13(6): p. 397-411. 15. Boyden, E.D. and W.F. Dietrich, Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nature Genetics, 2006. 38(2): p. 240-244. 16. Levinsohn, J.L., et al., Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLoS Pathog, 2012. 8(3): p. e1002638. 17. Ewald, S.E., J. Chavarria-Smith, and J.C. Boothroyd, NLRP1 Is an Inflammasome Sensor for Toxoplasma gondii. Infection and Immunity, 2014. 82(1): p. 460-468. 18. Jo, E.K., et al., Molecular mechanisms regulating NLRP3 inflammasome activation. Cellular & Molecular Immunology, 2016. 13(2): p. 148-159. 19. Miao, E.A., et al., Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol, 2006. 7(6): p. 569-75. 20. Miao, E.A., et al., Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(7): p. 3076-3080. 21. Zhao, Y., et al., The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature, 2011. 477(7366): p. 596-U257. 22. Muruve, D.A., et al., The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature, 2008. 452(7183): p. 103-U11. 23. Rathinam, V.A.K., et al., The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nature Immunology, 2010. 11(5): p. 395-403. 24. Fernandes-Alnemri, T., et al., The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nature Immunology, 2010. 11(5): p. 385-394. 25. Sauer, J.D., et al., Listeria monocytogenes Triggers AIM2-Mediated Pyroptosis upon Infrequent Bacteriolysis in the Macrophage Cytosol. Cell Host & Microbe, 2010. 7(5): p. 412-419. 26. Xu, H., et al., Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature, 2014. 513(7517): p. 237-+. 27. Kayagaki, N., et al., Non-canonical inflammasome activation targets caspase-11. Nature, 2011. 479(7371): p. 117-21. 28. Shi, J., et al., Inflammatory caspases are innate immune receptors for intracellular LPS. Nature, 2014. 514(7521): p. 187-92. 29. Kayagaki, N., et al., Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science, 2013. 341(6151): p. 1246-9. 30. Hagar, J.A., et al., Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science, 2013. 341(6151): p. 1250-3. 31. Broz, P., et al., Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature, 2012. 490(7419): p. 288-+. 32. Wlodarska, M., et al., NLRP6 Inflammasome Orchestrates the Colonic Host-Microbial Interface by Regulating Goblet Cell Mucus Secretion. Cell, 2014. 156(5): p. 1045-1059. 33. Elinav, E., et al., NLRP6 Inflammasome Regulates Colonic Microbial Ecology and Risk for Colitis. Cell, 2011. 145(5): p. 745-757. 34. Khare, S., et al., An NLRP7-Containing Inflammasome Mediates Recognition of Microbial Lipopeptides in Human Macrophages. Immunity, 2012. 36(3): p. 464-476. 35. Vladimer, G.I., et al., The NLRP12 Inflammasome Recognizes Yersinia pestis. Immunity, 2012. 37(1): p. 96-107. 36. Broz, P. and D.M. Monack, Newly described pattern recognition receptors team up against intracellular pathogens. Nature Reviews Immunology, 2013. 13(8): p. 551-565. 37. Yu, J.R. and K.S. Leslie, Cryopyrin-Associated Periodic Syndrome: An Update on Diagnosis and Treatment Response. Current Allergy and Asthma Reports, 2011. 11(1): p. 12-20. 38. Bauernfeind, F.G., et al., Cutting Edge: NF-kappa B Activating Pattern Recognition and Cytokine Receptors License NLRP3 Inflammasome Activation by Regulating NLRP3 Expression. Journal of Immunology, 2009. 183(2): p. 787-791. 39. Schroder, K., et al., Acute lipopolysaccharide priming boosts inflammasome activation independently of inflammasome sensor induction. Immunobiology, 2012. 217(12): p. 1325-9. 40. He, Y., H. Hara, and G. Nunez, Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem Sci, 2016. 41(12): p. 1012-1021. 41. Perregaux, D. and C.A. Gabel, Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem, 1994. 269(21): p. 15195-203. 42. Munoz-Planillo, R., et al., K+ Efflux Is the Common Trigger of NLRP3 Inflammasome Activation by Bacterial Toxins and Particulate Matter. Immunity, 2013. 38(6): p. 1142-1153. 43. Petrilli, V., et al., Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death and Differentiation, 2007. 14(9): p. 1583-1589. 44. Dostert, C., et al., Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science, 2008. 320(5876): p. 674-677. 45. van Bruggen, R., et al., Human NLRP3 inflammasome activation is Nox1-4 independent. Blood, 2010. 115(26): p. 5398-5400. 46. Hornung, V., et al., Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunology, 2008. 9(8): p. 847-856. 47. Brookes, P.S., et al., Calcium, ATP, and ROS: a mitochondrial love-hate triangle. American Journal of Physiology-Cell Physiology, 2004. 287(4): p. C817-C833. 48. Heid, M.E., et al., Mitochondrial Reactive Oxygen Species Induces NLRP3-Dependent Lysosomal Damage and Inflammasome Activation. Journal of Immunology, 2013. 191(10): p. 5230-5238. 49. Sorbara, M.T. and S.E. Girardin, Mitochondrial ROS fuel the inflammasome. Cell Research, 2011. 21(4): p. 558-560. 50. Zhou, R.B., et al., A role for mitochondria in NLRP3 inflammasome activation. Nature, 2011. 469(7329): p. 221-225. 51. Shimada, K., et al., Oxidized Mitochondrial DNA Activates the NLRP3 Inflammasome during Apoptosis. Immunity, 2012. 36(3): p. 401-414. 52. Iyer, S.S., et al., Mitochondrial Cardiolipin Is Required for Nlrp3 Inflammasome Activation. Immunity, 2013. 39(2): p. 311-323. 53. Sharp, F.A., et al., Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(3): p. 870-875. 54. Orlowski, G.M., et al., Multiple Cathepsins Promote Pro-IL-1 beta Synthesis and NLRP3-Mediated IL-1 beta Activation. Journal of Immunology, 2015. 195(4): p. 1685-1697. 55. Shenoy, A.R., et al., GBP5 Promotes NLRP3 Inflammasome Assembly and Immunity in Mammals. Science, 2012. 336(6080): p. 481-485. 56. Mitoma, H., et al., The DHX33 RNA Helicase Senses Cytosolic RNA and Activates the NLRP3 Inflammasome. Immunity, 2013. 39(1): p. 123-135. 57. Lu, B., et al., Novel role of PKR in inflammasome activation and HMGB1 release. Nature, 2012. 488(7413): p. 670-+. 58. Zhou, R.B., et al., Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nature Immunology, 2010. 11(2): p. 136-U51. 59. Subramanian, N., et al., The Adaptor MAVS Promotes NLRP3 Mitochondrial Localization and Inflammasome Activation. Cell, 2013. 153(2): p. 348-361. 60. Rodgers, M.A., et al., The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation. Journal of Experimental Medicine, 2014. 211(7): p. 1331-1345. 61. Vande Walle, L., et al., Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature, 2014. 512(7512): p. 69-+. 62. Huai, W.W., et al., Aryl hydrocarbon receptor negatively regulates NLRP3 inflammasome activity by inhibiting NLRP3 transcription. Nature Communications, 2014. 5. 63. Mao, K.R., et al., Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Cell Research, 2013. 23(2): p. 201-212. 64. He, Y., et al., 3,4-Methylenedioxy-beta-nitrostyrene Inhibits NLRP3 Inflammasome Activation by Blocking Assembly of the Inflammasome. Journal of Biological Chemistry, 2014. 289(2): p. 1142-1150. 65. Ito, S., Y. Hara, and T. Kubota, CARD8 is a negative regulator for NLRP3 inflammasome, but mutant NLRP3 in cryopyrin-associated periodic syndromes escapes the restriction. Arthritis Research & Therapy, 2014. 16(1). 66. Martin, B.N., et al., IKK alpha negatively regulates ASC-dependent inflammasome activation. Nature Communications, 2014. 5. 67. Giguere, P.M., et al., G Protein Signaling Modulator-3 Inhibits the Inflammasome Activity of NLRP3. Journal of Biological Chemistry, 2014. 289(48): p. 33245-33257. 68. Jin, J., et al., LRRFIP2 negatively regulates NLRP3 inflammasome activation in macrophages by promoting Flightless-I-mediated caspase-1 inhibition. Nature Communications, 2013. 4. 69. Jung, S.S., et al., Carbon monoxide negatively regulates NLRP3 inflammasome activation in macrophages. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2015. 308(10): p. L1058-L1067. 70. Chuang, S.Y., et al., TLR-induced PAI-2 expression suppresses IL-1beta processing via increasing autophagy and NLRP3 degradation. Proc Natl Acad Sci U S A, 2013. 110(40): p. 16079-84. 71. Linder, P. and E. Jankowsky, From unwinding to clamping - the DEAD box RNA helicase family. Nat Rev Mol Cell Biol, 2011. 12(8): p. 505-16. 72. Umate, P., N. Tuteja, and R. Tuteja, Genome-wide comprehensive analysis of human helicases. Commun Integr Biol, 2011. 4(1): p. 118-37. 73. Gorbalenya, A.E. and E.V. Koonin, Helicases - Amino-Acid-Sequence Comparisons and Structure-Function-Relationships. Current Opinion in Structural Biology, 1993. 3(3): p. 419-429. 74. Fairman-Williams, M.E., U.P. Guenther, and E. Jankowsky, SF1 and SF2 helicases: family matters. Curr Opin Struct Biol, 2010. 20(3): p. 313-24. 75. Singleton, M.R., M.S. Dillingham, and D.B. Wigley, Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem, 2007. 76: p. 23-50. 76. Caruthers, J.M. and D.B. McKay, Helicase structure and mechanism. Curr Opin Struct Biol, 2002. 12(1): p. 123-33. 77. Linder, P., et al., Birth of the D-E-A-D box. Nature, 1989. 337(6203): p. 121-2. 78. Jarmoskaite, I. and R. Russell, DEAD-box proteins as RNA helicases and chaperones. Wiley Interdiscip Rev RNA, 2011. 2(1): p. 135-52. 79. Cordin, O., et al., The DEAD-box protein family of RNA helicases. Gene, 2006. 367: p. 17-37. 80. Martin, R., et al., DExD/H-box RNA helicases in ribosome biogenesis. RNA Biol, 2013. 10(1): p. 4-18. 81. Shajani, Z., M.T. Sykes, and J.R. Williamson, Assembly of bacterial ribosomes. Annu Rev Biochem, 2011. 80: p. 501-26. 82. Fuller-Pace, F.V., DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res, 2006. 34(15): p. 4206-15. 83. Fuller-Pace, F.V. and S.M. Nicol, DEAD-BOX RNA HELICASES As TRANSCRIPTION COFACTORS. Rna Helicases, 2012. 511: p. 347-367. 84. Chang, T.H., et al., Functions of the DExD/H-box proteins in nuclear pre-mRNA splicing. Biochim Biophys Acta, 2013. 1829(8): p. 764-74. 85. Tran, E.J., et al., The DEAD-box protein Dbp5 controls mRNA export by triggering specific RNA:protein remodeling events. Mol Cell, 2007. 28(5): p. 850-9. 86. Weirich, C.S., et al., Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nat Cell Biol, 2006. 8(7): p. 668-76. 87. Rogers, G.W., Jr., A.A. Komar, and W.C. Merrick, eIF4A: the godfather of the DEAD box helicases. Prog Nucleic Acid Res Mol Biol, 2002. 72: p. 307-31. 88. Iost, I., M. Dreyfus, and P. Linder, Ded1p, a DEAD-box protein required for translation initiation in Saccharomyces cerevisiae, is an RNA helicase. J Biol Chem, 1999. 274(25): p. 17677-83. 89. Iost, I. and M. Dreyfus, DEAD-box RNA helicases in Escherichia coli. Nucleic Acids Res, 2006. 34(15): p. 4189-97. 90. Yoneyama, M., et al., The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nature Immunology, 2004. 5(7): p. 730-737. 91. Yoneyama, M., et al., Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. Journal of Immunology, 2005. 175(5): p. 2851-2858. 92. Loo, Y.M. and M. Gale, Jr., Immune signaling by RIG-I-like receptors. Immunity, 2011. 34(5): p. 680-92. 93. Kato, H., et al., Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature, 2006. 441(7089): p. 101-105. 94. Miyashita, M., et al., DDX60, a DEXD/H Box Helicase, Is a Novel Antiviral Factor Promoting RIG-I-Like Receptor-Mediated Signaling. Molecular and Cellular Biology, 2011. 31(18): p. 3802-3819. 95. Zhang, Z.Q., et al., The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nature Immunology, 2011. 12(10): p. 959-U62. 96. Zhang, Z.Q., et al., DDX1, DDX21, and DHX36 Helicases Form a Complex with the Adaptor Molecule TRIF to Sense dsRNA in Dendritic Cells. Immunity, 2011. 34(6): p. 866-878. 97. Li, J.N., et al., DDX19A Senses Viral RNA and Mediates NLRP3-Dependent Inflammasome Activation. Journal of Immunology, 2015. 195(12): p. 5732-5749. 98. Oshiumi, H., et al., DEAD/H BOX 3 (DDX3) helicase binds the RIG-I adaptor IPS-1 to up-regulate IFN-beta-inducing potential. Eur J Immunol, 2010. 40(4): p. 940-8. 99. Schroder, M., M. Baran, and A.G. Bowie, Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKK epsilon-mediated IRF activation. Embo Journal, 2008. 27(15): p. 2147-2157. 100. Soulat, D., et al., The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. Embo Journal, 2008. 27(15): p. 2135-2146. 101. Gu, L., et al., Human DEAD box helicase 3 couples IkappaB kinase epsilon to interferon regulatory factor 3 activation. Mol Cell Biol, 2013. 33(10): p. 2004-15. 102. https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=Q96GQ7. 103. Kellner, M., et al., DEAD-box helicase DDX27 regulates 3' end formation of ribosomal 47S RNA and stably associates with the PeBoW-complex. Exp Cell Res, 2015. 334(1): p. 146-59. 104. Wang, D., et al., Multiple genes identified as targets for 20q13.12-13.33 gain contributing to unfavorable clinical outcomes in patients with hepatocellular carcinoma. Hepatology International, 2015. 9(3): p. 438-446. 105. Tsukamoto, Y., et al., Expression of DDX27 contributes to colony-forming ability of gastric cancer cells and correlates with poor prognosis in gastric cancer. Am J Cancer Res, 2015. 5(10): p. 2998-3014. 106. Tang, J., et al., DEAD-box helicase 27 promotes colorectal cancer growth and metastasis and predicts poor survival in CRC patients. Oncogene, 2018. 107. Zhou, J., et al., An integrative approach identified genes associated with drug response in gastric cancer. Carcinogenesis, 2015. 36(4): p. 441-51. 108. Lai, Y.H., The role of a novel DEAD-box containing protein in NLRP3 inflammasome activation. Unpublished master thesis, 2014. 109. Hsu, S.W., The role of a novel DEAD-box protein in LPS-induced inflammation. Unpublished master thesis, 2012. 110. Vanaja, S.K., V.A. Rathinam, and K.A. Fitzgerald, Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol, 2015. 25(5): p. 308-15. 111. Yang, C.H., The role of PAI-2 in negative regulation of inflammasome. Unpublished master thesis, 2013. 112. Rathinam, V.A., S.K. Vanaja, and K.A. Fitzgerald, Regulation of inflammasome signaling. Nat Immunol, 2012. 13(4): p. 333-42. 113. O'Neill, L.A.J., D. Golenbock, and A.G. Bowie, The history of Toll-like receptors - redefining innate immunity. Nature Reviews Immunology, 2013. 13(6): p. 453-460. 114. http://www.mousephenotype.org/data/genes/MGI:2385884. 115. Hu, B., E. Elinav, and R.A. Flavell, Inflammasome-mediated suppression of inflammation-induced colorectal cancer progression is mediated by direct regulation of epithelial cell proliferation. Cell Cycle, 2011. 10(12): p. 1936-1939. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78980 | - |
dc.description.abstract | NLRP3發炎小體是由發炎體蛋白NLRP3、銜接蛋白ASC以及第一型半胱天冬酶(Caspase-1)所組裝而成的蛋白質複合體,於先天性免疫系統扮演重要的角色。當細胞受到感染或刺激而活化NLRP3發炎體,會促使第一型半胱天冬酶會產生蛋白酶的活性,進而催化第一型介白素β (IL-1β)以及第十八型介白素(IL-18)的成熟並啟動後續的發炎反應。同時第一型半胱天冬酶也具有引發細胞焦亡(pyroptosis)的能力。NLRP3發炎體的重要性在於幫助宿主抵禦外來物的侵犯,同時也可以維持組織的恆定性,然而當NLRP3發炎小體失去嚴謹的調控時,則導致自體發炎或自體免疫相關的疾病。因此,NLRP3發炎小體的調控相當重要,然而對於NLRP3發炎小體的分子調控機制至今尚未完全清楚。本實驗室先前的研究發現一個負向調控的蛋白質名為核糖核酸解旋酶27(DDX27),而其在先天性免疫中扮演的角色目前尚未有任何報導。我們研究發現,在人類巨噬細胞株THP-1以及小鼠巨噬細胞株J774a.1抑制DDX27蛋白表現並處理第二型或第四型類鐸受體的活化劑時,可以偵測到第一型半胱天冬酶和第一型介白素β的釋放有大量增加的情形,同時也可以觀察到DDX27蛋白出核的現象,並與發炎小體蛋白NLRP3做結合。除此之外,已知鉀離子的流動、粒線體產生的活性氧化物質以及溶小體的損傷等事件是活化NLRP3發炎小體的重要條件,而我們的結果顯示DDX27並不會影響上述現象來達到調控NLRP3發炎小體的活化。另外,為了研究DDX27在生理功能上的意義,我們欲利用DDX27剔除小鼠,但過程中我們發現無法取得DDX27完全剔除的小鼠,而在小鼠骨髓分化的巨噬細胞中,DDX27的缺陷也可以看到NLRP3發炎小體過度活化的情形。這些研究結果證實DDX27是NLRP3發炎小體活化的負向調控者,但並不是透過影響上述活化條件來抑制第一型半胱天冬酶和第一型介白素β的釋放。 | zh_TW |
dc.description.abstract | The NLRP3 inflammasome, an important component of innate immunity, is a multiple protein complex composed of NLRP3, ASC, and pro-caspase-1. Activation of the NLRP3 inflammasome induces caspase-1 activity, which results in the cleavage of pro-inflammatory cytokines, IL-1β and IL-18 into their bioactive forms, and induction of a type of inflammatory cell death, named pyroptosis. The NLRP3 inflammasome plays a crucial role in the clearance of microbial pathogens and tissue homeostasis. However, dysregulation of NLRP3 inflammasome has been associated with many autoimmune and auto-inflammatory diseases. Activation of the NLRP3 inflammasome, therefore, needs to be tightly regulated, but the molecular mechanism remains incompletely understood. We previously identified DEAD-box protein 27 (DDX27) from a yeast two-hybrid screening using PAI-2, a negative regulator of the NLRP3 inflammasome, as the bait, yet, the exact function of DDX27 in innate immunity remains unclear. We found that caspase-1 activation and IL-1β production increased in DDX27-depleted THP-1 macrophages treated with LPS. In this study, we further investigate the underlying mechanism by which DDX27 regulates NLRP3 inflammasome activation. We found that besides LPS, TLR2 ligand, Pam3CSK4 also enhanced caspase-1 activation and IL-1β production increased in DDX27-depleted THP-1 and J774a.1 macrophages. In addition, LPS induces DDX27 translocation from the nucleus to the cytoplasm, where it interacts with NLRP3 to suppress NLRP3 inflammasome activation. We further revealed that DDX27 was not involved in LPS-induced K+ efflux, mitochondrial ROS, and lysosomal destabilization, all of which have been reported to be the mediators of NLRP3 inflammasome activation. We also generated mice with DDX27 deletion and found out Ddx27-/- mice are embryonic lethal. DDX27-deficient bone marrow macrophages produced increased caspase-1 activation and IL-1β production upon NLRP3 activator challenge. Our results together suggest that DDX27 suppresses the formation of the NLRP3 inflammasome leading to negative regulation of caspase-1 activation and IL-1β production. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:33:56Z (GMT). No. of bitstreams: 1 ntu-107-R04448003-1.pdf: 1855011 bytes, checksum: 670b9c221c767eeacb931da299f2d9c7 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii Contents v Introduction 1 1. Inflammasomes 1 2. Classification of Inflammasomes 2 3. NLRP3 Iniflammasome 3 4. Structure of NLRP3 Inflammasome 4 5. Mechanisms of the NLRP3 Inflammasome Activation 5 6. Regulation of the NLRP3 Inflammasome 7 7. DEAD-Box RNA Helicase Family 8 8. DEAD-Box RNA Helicases in Immune System 9 9. DEAD-Box Helicase 27 (DDX27) 10 Specific Aim 12 Materials and Methods 13 1. Reagents and Antibodies 13 2. Plasmids 14 3. Mice 15 4. Cell Culture and Transfection 17 5. Preparation of Bone Marrow Derived Macrophages (BMDMs) 18 6. Preparation of Pseudotyped Lentivirus 19 7. Preparation of Cell Lysates 19 8. Immunoblotting 20 9. Immunoprecipitation 21 10. Cytosolic and Nuclear Fractionation 21 11. Detection of Secreted Cytokines and Caspase-1 Activation 22 12. Detection of Lactate Dehydrogenase (LDH) Release 22 13. Intracellular Potassium Measurement 23 14. Mitochondrial Reactive Oxygen Species (mROS) Detection 23 15. Assay for Lysosomal Integrity 24 16. Statistical Analysis 24 Results 25 1. Ablation of DDX27 in THP-1 Macrophages Enhanced NLRP3 Inflammasome Activity and IL-1β Secretion upon Challenge with LPS or Pam3CSK4 25 2. Depletion of DDX27 in J774a.1 Induced Caspase-1 Activation and IL-1β Secretion after LPS or Pam3CSK4 Stimulation 26 3. DDX27 Associated with NLRP3, but not ASC nor caspase-1 27 4. DDX27 Translocated from the Nucleus to Cytosol in THP-1 Macrophages in Response to LPS or Pam3CSK4. 27 5. DDX27 Has No Impact on LPS-induced Mitochondrial ROS, Potassium Efflux, and Lysosomal Destabilization in THP-1 Macrophages. 28 6. Generation of Ddx27-/- Mice 30 7. Depletion of DDX27 in BMDMs Enhances NLRP3 Inflammasome Activation and IL-1β Secretion 31 Discussion 32 References 37 Figures and Figure legends 49 Figure 01. Depletion of DDX27 Enhances NLRP3 Inflammasome Activation and IL-1β Secretion in THP-1 Macrophages after Stimulation with LPS and Pam3CSK4. 49 Figure 02. DDX27 Loss Induces NLRP3 Inflammasome Activation and IL-1β Secretion in J774a.1 Macrophage Cells after LPS and Pam3CSK4 Challenge 51 Figure 03. DDX27 Associates with NLRP3, but not ASC nor Caspase-1 53 Figure 04. DDX27 Translocates from the Nucleus to the Cytosol upon Stimulation with LPS and Pam3CSK4 54 Figure 05. DDX27 Does Not Affect LPS-induced Mitochondria ROS Production in THP-1 Macrophages 55 Figure 06. DDX27 Is Not Involved in LPS-triggered Potassium Efflux in THP-1 Macrophages 56 Figure 07. DDX27 Loss Does Not Affect LPS-elicited Lysosomal Destabilization in THP-1 Macrophages 57 Figure 08. Generation of DDX27+/- and Hematopoietic-specific DDX27 Deletion Mice 58 Figure 09. NLRP3 Inflammasome Activation is Comparable in Wild-type and DDX27+/- or Hematopoietic-specific DDX27 Deletion BMDMs 59 Figure 10. The Proposed Model of DDX27 in Regulation of NLRP3 Inflammasome Activation 60 Appendix 61 Figure S1. DDX27-HA Translocates from the Nucleus to the Cytosol in Response to LPS and Pam3CSK4 61 Figure S2. DDX27 associates with NLRP3 and suppresses the interaction of NLRP3 and ASC 62 | - |
dc.language.iso | en | - |
dc.title | 一個核糖核酸解旋酶於NLRP3發炎體活化的調控角色 | zh_TW |
dc.title | The regulatory role of a RNA helicase in NLRP3 inflammasome activation | en |
dc.type | Thesis | - |
dc.date.schoolyear | 106-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 楊性芳;顧家綺 | zh_TW |
dc.contributor.oralexamcommittee | Hsin-Fang Yang-Yen;Chia-Chi Ku | en |
dc.subject.keyword | 核糖核酸解旋?27,NLRP3發炎小體,鉀離子外流,粒線體活性氧化物質,溶小體破損, | zh_TW |
dc.subject.keyword | DEAD-box RNA helicase 27,NLRP3 inflammasome,K+ efflux,mitochondrial ROS,lysosomal destablization, | en |
dc.relation.page | 62 | - |
dc.identifier.doi | 10.6342/NTU201803396 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2018-08-16 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 分子醫學研究所 | - |
dc.date.embargo-lift | 2028-08-15 | - |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-2.pdf 目前未授權公開取用 | 1.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。