請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78975
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李芳仁 | zh_TW |
dc.contributor.advisor | Fang-Jen S. Lee | en |
dc.contributor.author | 高紹恩 | zh_TW |
dc.contributor.author | Shao-En Kao | en |
dc.date.accessioned | 2021-07-11T15:33:33Z | - |
dc.date.available | 2024-03-06 | - |
dc.date.copyright | 2018-10-09 | - |
dc.date.issued | 2017 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 1. Takai, Y., T. Sasaki, and T. Matozaki, Small GTP-binding proteins. Physiol Rev, 2001. 81(1): p. 153-208.
2. Vetter, I.R. and A. Wittinghofer, The guanine nucleotide-binding switch in three dimensions. Science, 2001. 294(5545): p. 1299-304. 3. Chardin, P., et al., Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2. Science, 1993. 260(5112): p. 1338-43. 4. Gibbs, J.B., et al., Purification of ras GTPase activating protein from bovine brain. Proc Natl Acad Sci U S A, 1988. 85(14): p. 5026-30. 5. Kahn, R.A. and A.G. Gilman, The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein. Journal of Biological Chemistry, 1986. 261(17): p. 7906-7911. 6. Gillingham, A.K. and S. Munro, The small G proteins of the Arf family and their regulators. Annu Rev Cell Dev Biol, 2007. 23: p. 579-611. 7. Jackson, C.L. and S. Bouvet, Arfs at a Glance. Journal of Cell Science, 2014. 8. Goldberg, J., Structural Basis for Activation of ARF GTPase: Mechanisms of Guanine Nucleotide Exchange and GTP–Myristoyl Switching. Cell, 1998. 95(2): p. 237-248. 9. Liu, Y., R.A. Kahn, and J.H. Prestegard, Dynamic structure of membrane-anchored Arf[bull]GTP. Nat Struct Mol Biol, 2010. 17(7): p. 876-881. 10. Clark, J., et al., Selective amplification of additional members of the ADP-ribosylation factor (ARF) family: cloning of additional human and Drosophila ARF-like genes. Proc Natl Acad Sci U S A, 1993. 90(19): p. 8952-6. 11. Burd, C.G., T.I. Strochlic, and S.R. Setty, Arf-like GTPases: not so Arf-like after all. Trends Cell Biol, 2004. 14(12): p. 687-94. 12. Donaldson, J.G. and C.L. Jackson, ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol, 2011. 12(6): p. 362-75. 13. Lu, L., G. Tai, and W. Hong, Autoantigen Golgin-97, an effector of Arl1 GTPase, participates in traffic from the endosome to the trans-golgi network. Mol Biol Cell, 2004. 15(10): p. 4426-43. 14. Zhou, C., et al., Arl2 and Arl3 regulate different microtubule-dependent processes. Mol Biol Cell, 2006. 17(5): p. 2476-87. 15. Hofmann, I., et al., The Arl4 family of small G proteins can recruit the cytohesin Arf6 exchange factors to the plasma membrane. Curr Biol, 2007. 17(8): p. 711-6. 16. Heo, W.D., et al., PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science, 2006. 314(5804): p. 1458-61. 17. Lin, C.-Y., et al., ARL4, an ARF-like Protein That Is Developmentally Regulated and Localized to Nuclei and Nucleoli. Journal of Biological Chemistry, 2000. 275(48): p. 37815-37823. 18. Lin, Y.C., et al., ARL4A acts with GCC185 to modulate Golgi complex organization. J Cell Sci, 2011. 124(Pt 23): p. 4014-26. 19. Patel, M., et al., The Arf Family GTPase Arl4A Complexes with ELMO Proteins to Promote Actin Cytoskeleton Remodeling and Reveals a Versatile Ras-binding Domain in the ELMO Proteins Family. The Journal of Biological Chemistry, 2011. 286(45): p. 38969-38979. 20. Engel, T., et al., ADP-ribosylation factor (ARF)-like 7 (ARL7) is induced by cholesterol loading and participates in apolipoprotein AI-dependent cholesterol export. FEBS Lett, 2004. 566(1-3): p. 241-6. 21. Li, C.-C., et al., ARL4D Recruits Cytohesin-2/ARNO to Modulate Actin Remodeling. Molecular Biology of the Cell, 2007. 18(11): p. 4420-4437. 22. Li, C.C., et al., GTP-binding-defective ARL4D alters mitochondrial morphology and membrane potential. PLoS One, 2012. 7(8): p. e43552. 23. Still, I.H., et al., Cloning of TACC1, an embryonically expressed, potentially transforming coiled coil containing gene, from the 8p11 breast cancer amplicon. Oncogene, 1999. 18(27): p. 4032-8. 24. Gergely, F., et al., The TACC domain identifies a family of centrosomal proteins that can interact with microtubules. Proc Natl Acad Sci U S A, 2000. 97(26): p. 14352-7. 25. Nwagbara, B.U., et al., TACC3 is a microtubule plus end-tracking protein that promotes axon elongation and also regulates microtubule plus end dynamics in multiple embryonic cell types. Mol Biol Cell, 2014. 25(21): p. 3350-62. 26. Kinoshita, K., et al., Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis. J Cell Biol, 2005. 170(7): p. 1047-55. 27. Barr, A.R. and F. Gergely, MCAK-independent functions of ch-Tog/XMAP215 in microtubule plus-end dynamics. Mol Cell Biol, 2008. 28(23): p. 7199-211. 28. Gutierrez-Caballero, C., et al., TACC3-ch-TOG track the growing tips of microtubules independently of clathrin and Aurora-A phosphorylation. Biol Open, 2015. 4(2): p. 170-9. 29. Lin, C.H., C.K. Hu, and H.M. Shih, Clathrin heavy chain mediates TACC3 targeting to mitotic spindles to ensure spindle stability. J Cell Biol, 2010. 189(7): p. 1097-105. 30. Ding, Z.M., et al., The role of TACC3 in mitotic spindle organization. Cytoskeleton (Hoboken), 2017. 74(10): p. 369-378. 31. Singh, P., et al., TACC3 protein regulates microtubule nucleation by affecting gamma-tubulin ring complexes. J Biol Chem, 2014. 289(46): p. 31719-35. 32. Hall, A., Rho GTPases and the actin cytoskeleton. Science, 1998. 279(5350): p. 509-14. 33. Mackay, D.J. and A. Hall, Rho GTPases. J Biol Chem, 1998. 273(33): p. 20685-8. 34. Bishop, A.L. and A. Hall, Rho GTPases and their effector proteins. Biochem J, 2000. 348 Pt 2: p. 241-55. 35. Zhang, B., et al., A built-in arginine finger triggers the self-stimulatory GTPase-activating activity of rho family GTPases. J Biol Chem, 1999. 274(5): p. 2609-12. 36. Zhao, L., et al., Direct and GTP-dependent interaction of ADP ribosylation factor 1 with coatomer subunit beta. Proc Natl Acad Sci U S A, 1997. 94(9): p. 4418-23. 37. Zhang, B., et al., Oligomerization of Rac1 gtpase mediated by the carboxyl-terminal polybasic domain. J Biol Chem, 2001. 276(12): p. 8958-67. 38. Li, C.C., et al., ARL4D recruits cytohesin-2/ARNO to modulate actin remodeling. Mol Biol Cell, 2007. 18(11): p. 4420-37. 39. Ha, G.H., J.S. Park, and E.K. Breuer, TACC3 promotes epithelial-mesenchymal transition (EMT) through the activation of PI3K/Akt and ERK signaling pathways. Cancer Lett, 2013. 332(1): p. 63-73. 40. Bearce, E.A., B. Erdogan, and L.A. Lowery, TIPsy tour guides: how microtubule plus-end tracking proteins (+TIPs) facilitate axon guidance. Front Cell Neurosci, 2015. 9: p. 241. 41. Erdogan, B., et al., The microtubule plus-end-tracking protein TACC3 promotes persistent axon outgrowth and mediates responses to axon guidance signals during development. Neural Dev, 2017. 12(1): p. 3. 42. Yamauchi, J., et al., Valproic acid-inducible Arl4D and cytohesin-2/ARNO, acting through the downstream Arf6, regulate neurite outgrowth in N1E-115 cells. Exp Cell Res, 2009. 315(12): p. 2043-52. 43. Li, Y., K. Ling, and J. Hu, The emerging role of Arf/Arl small GTPases in cilia and ciliopathies. J Cell Biochem, 2012. 113(7): p. 2201-7. 44. Gotthardt, K., et al., A G-protein activation cascade from Arl13B to Arl3 and implications for ciliary targeting of lipidated proteins. Elife, 2015. 4 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78975 | - |
dc.description.abstract | 人類腺嘌呤核苷二磷酸核醣化相似因子4D(Arl4D)為二磷酸腺苷核醣基化因子(Arfs)小分子家族的一員。Arl4D與肌動蛋白的重組、粒線體的型態以及膜電位的調控功能有關。我們透過酵母菌雙雜交篩選法發現了Arl4D的新作用蛋白TACC3。TACC家族的蛋白會出現在中心體與周遭紡錘體,並且都是微管正端的微管結合蛋白。TACC3則與有絲分裂紡錘體的組織還有微管之生長有關。為了進一步釐清Arl4D與TACC3之間的作用,我們縮小觀察它們之間的結合位置。發現TACC結構域的N端是與Arl4D結合作用的重要片段。利用丙胺酸置換掃描的方法,我們發現了幾個不會和Arl4D作用的突變型TACC3。也藉由穀胱苷肽轉移酶融合蛋白進行試管結合實驗(in vitro binding assay)與共同免疫沉澱(co-immunoprecipitation)的方法證實。A2及A5突變型的TACC3的確失去與Arl4D結合的能力。雖然在細胞週期間期時看不出Arl4D與TACC3間有特別的共同座落位置,在有絲分裂期間,卻可以發現它們共同坐落在中心體與周遭紡錘體。降低Arl4D與TACC3的表現量則都會影響微管的重新生長,也告訴我們可能Arl4D與TACC3間的作用與微管之生長有重要性。
小分子三磷酸鳥苷蛋白酶家族之蛋白為單分子構造的,透過構型的改變能夠調控GTP與GDP的循環。然而Arl4A與Arl4D則被發現會自發的在生物體內外形成低聚合物。Arl4家族之蛋白質特徵在於N端有豆蔻酸化之修飾(myristoylation),與膜之結合有關,C端則有poly-basic的區域。本篇論文中,我們發現Arl4A與Arl4D不只能與自己結合,彼此之間也會結合在一起。Arl4A與Arl4D會高度的集中在細胞核周與細胞膜上。並且失去上膜能力的N端豆蔻酸化修飾突變的Arl4A G2A則可以被Arl4D帶到細胞膜上。低聚合化的Arl4在生理上扮演的功能值得我們進一步去釐清。 | zh_TW |
dc.description.abstract | ADP-ribosylation factor-like protein 4D (Arl4D) is a member of Arf family small G proteins. Arl4D function in actin reorganization, mitochondrial morphology and membrane potential. We identify a novel interacting protein of Arl4D by yeast two-hybrid assay, Transforming Acidic Coiled-Coil Protein 3 (TACC3). TACC proteins can concentrate at the centrosomes and mitotic spindles and function as microtubule plus-end tracking proteins. TACC3 is associate with mitotic spindle organization and microtubule nucleation. To further confirm the interaction between Arl4D and TACC3, we narrow down the interaction region. N-terminal of TACC domain is the important region that Arl4D and TACC3 can interaction to each other. By alanine scanning mutagenesis, we found several Arl4D interaction-defect TACC3 mutants. These data are also confirm by in vitro binding assay and co-immunoprecipitation. TACC3 A2 and A5 loss the interaction ability to Arl4D. Although Arl4D and TACC3 show no specific co-localization in interphase cells, both Arl4D and TACC3 can localize to the centrosomes and spindles in mitotic cells. Knock down of Arl4D and TACC3 affect the microtubule regrowth, which the interaction between Arl4D and TACC3 may be important for microtubule nucleation.
Small GTP-binding proteins are monomeric G proteins, which cycle through GTP- and GDP-bound states, according to the conformational changed. However, Arl4A and Arl4D was found to form oligomers in vitro and in vivo spontaneously. Arl4s is feature of their N-terminal myristoylation, which lead to membrane association and the C-terminal poly-basic region. In this thesis, we found Arl4A and Arl4D not only can interact with themselves, but also interact to each other. Arl4A and Arl4D show high co-localization at the perinuclear and plasma membrane. N-terminal myristoylation defect mutation Arl4A G2A can recruit to the membrane by Arl4D. The physiological function of the oligomerization of Arl4s is still a problem for us to clarify. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:33:33Z (GMT). No. of bitstreams: 1 ntu-106-R04448019-1.pdf: 3030697 bytes, checksum: ddcd5396a0db309b8ea5ea5baa288361 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | Table of Content i
中文摘要 v Abstract vi Abbreviations viii 1. Introduction 1 1.1 Small GTP-binding proteins (small G proteins) 1 1.2. The Arf family small GTPase 1 1.3. Arf-like proteins (Arls) 2 1.4. ADP-ribosylation factor-like 4 3 1.5. Transforming Acidic Coiled-Coil Protein 3 (TACC3) 4 1.6. Oligomerization of small G proteins 6 2. Materials and Methods 7 3. Results 15 Part 1. Arl4D and TACC3 15 3-1-1. Identification of TACC3 as a novel Arl4D interacting protein 15 3-1-2. TACC3 specifically interacts with Arl4D but other Arl4 members 15 3-1-3. Arl4D interact with the TACC domain of TACC3 16 3-1-4. Identification of Arl4D-interaction defective TACC3 mutants 17 3-1-5. Arl4D can direct interact with TACC3 by In vitro binding assay 18 3-1-6. In vivo co-immunoprecipitation of Arl4D and TACC3 with cross-linker DSP 19 3-1-7. Subcellular localization of Arl4D and TACC3 20 3-1-8. Interaction between Arl4D and TACC3 is important for microtubule regrowth 21 Part 2. Oligomerization of the Arl4s 23 3-2-1 Arl4s may form oligomer in vitro 23 3-2-2 Arl4s may form oligomer in vivo 24 3-2-3 Interaction between Arl4A and Arl4D in vivo and in vitro 24 3-2-4 Localization of Arl4A and Arl4D 25 4. Discussion 27 Part 1. Arl4D and TACC3 27 Part 2. Oligomerization of the Arl4s 30 5. Tables 32 Table 1. Antibodies used in the thesis 32 Table 2. Oligonucleotide used in the thesis 34 6. Figures 36 Part 1. Arl4D and TACC3 36 Figure 1. TACC3 full length specifically interact with Arl4D. 36 Figure 2. Arl4D interact with TACC domain and N-terminal TACC domain of TACC3. 37 Figure 3. TACC-N is the shortest region we identified to interact with Arl4D. 40 Figure 4. Alanine scanning of TACC3 to identified interaction deficient form with Arl4D. 42 Figure 5. In vitro binding assay confirm the interaction between TACC3 and Arl4D. 44 Figure 6. In vitro binding assay confirm the Arl4D interaction deficient mutants of TACC3. 46 Figure 7. Co-immunoprecipitation confirm the Arl4D interaction with TACC3 in vivo. 49 Figure 8. Co-localization of Arl4D and TACC3 in interphase and mitosis. 51 Figure 9. Knockdown of TACC3 affects microtubule regrowth. 53 Part 2. Oligomerization of the Arl4s 55 Figure 10. Interaction of Arl4A and Arl4D in vivo and in vitro. 55 Figure 11. Interaction of Arl4D and nucleotide mimic mutants. 57 Figure 12. Co-localization of Arl4A and Arl4D. 58 7. Supplementary figures 60 Part 1. Arl4D and TACC3 60 Figure. S1. Interaction between binding partners of Arl4s and Arl GTPase. 60 Figure. S2. Knockdown of Arl4D and EB1 affects microtubule regrowth. 61 Figure. S3. Yeast-two hybrid assay of Arl4D and TACC3 truncate forms. 62 Part 2. Oligomerization of the Arl4s 63 Figure. S4. Gel filtration analysis of Arl4A complex. 63 Figure. S5. Arl4A processes the ability to form oligomers in COS-7 cells. 65 8. Reference 66 | - |
dc.language.iso | en | - |
dc.title | 人類四D腺嘌呤核苷二磷酸核醣化相似因子與其結合蛋白特性探討 | zh_TW |
dc.title | Functional Characterization of human Arl4D and its interacting partners | en |
dc.type | Thesis | - |
dc.date.schoolyear | 106-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 施修明;劉雅雯;周祖述 | zh_TW |
dc.contributor.oralexamcommittee | Hsiu-Ming Shih;Ya-Wen Liu;Tzuu-Shuh Jou | en |
dc.subject.keyword | 腺嘌呤核?二磷酸核醣化相似因子,微管,低聚合化, | zh_TW |
dc.subject.keyword | Arl4A,Arl4D,TACC3,microtubule,oligomerization, | en |
dc.relation.page | 71 | - |
dc.identifier.doi | 10.6342/NTU201803522 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2018-08-16 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 分子醫學研究所 | - |
dc.date.embargo-lift | 2023-10-09 | - |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-2.pdf 目前未授權公開取用 | 2.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。