Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78968
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧虎生(Huu-Sheng Lur)
dc.contributor.authorTung-Shan Chengen
dc.contributor.author鄭同杉zh_TW
dc.date.accessioned2021-07-11T15:33:01Z-
dc.date.available2023-08-23
dc.date.copyright2018-08-23
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citationAmarawathi, Y., Singh, R., Singh, A. K., Singh, V. P., Mohapatra, T., Sharma, T. R. & Singh, N. K. (2008). Mapping of quantitative trait loci for basmati quality traits in rice (Oryza sativa L.). Molecular Breeding 21(1): 49-65.
Bandillo, N., Raghavan, C., Muyco, P. A., Sevilla, M. A. L., Lobina, I. T., Dilla-Ermita, C. J., Tung, C.-W., McCouch, S., Thomson, M. & Mauleon, R. (2013). Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice 6(1): 11.
Borisjuk, L. & Rolletschek, H. (2009). The oxygen status of the developing seed. New Phytologist 182(1): 17-30.
Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y. & Buckler, E. S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19): 2633-2635.
Cavanagh, C., Morell, M., Mackay, I. & Powell, W. (2008). From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Current Opinion in Plant Biology 11(2): 215-221.
Dell’Acqua, M., Gatti, D. M., Pea, G., Cattonaro, F., Coppens, F., Magris, G., Hlaing, A. L., Aung, H. H., Nelissen, H., Baute, J., Frascaroli, E., Churchill, G. A., Inzé, D., Morgante, M. & Pè, M. E. (2015). Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays. Genome Biology 16(1): 167.
Fan, C., Xing, Y., Mao, H., Lu, T., Han, B., Xu, C., Li, X. & Zhang, Q. (2006). GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theoretical and Applied Genetics 112(6): 1164-1171.
Fukuoka, S., Saka, N., Mizukami, Y., Koga, H., Yamanouchi, U., Yoshioka, Y., Hayashi, N., Ebana, K., Mizobuchi, R. & Yano, M. (2015). Gene pyramiding enhances durable blast disease resistance in rice. Scientific Reports 5: 7773.
Gao, Y., Liu, C., Li, Y., Zhang, A., Dong, G., Xie, L., Zhang, B., Ruan, B., Hong, K. & Xue, D. (2016). QTL analysis for chalkiness of rice and fine mapping of a candidate gene for qACE9. Rice 9(1): 41.
Geisler, M. J. & Sack, F. D. (2002). Variable timing of developmental progression in the stomatal pathway in Arabidopsis cotyledons. New Phytologist 153(3): 469-476.
Grimault, A., Gendrot, G., Chaignon, S., Gilard, F., Tcherkez, G., Thévenin, J., Dubreucq, B., Depège-Fargeix, N. & Rogowsky, P. M. (2015). Role of B3 domain transcription factors of the AFL family in maize kernel filling. Plant Science 236: 116-125.
Huang, B. E., George, A. W., Forrest, K. L., Kilian, A., Hayden, M. J., Morell, M. K. & Cavanagh, C. R. (2012). A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnology Journal 10(7): 826-839.
Huang, B. E., Verbyla, K. L., Verbyla, A. P., Raghavan, C., Singh, V. K., Gaur, P., Leung, H., Varshney, R. K. & Cavanagh, C. R. (2015). MAGIC populations in crops: current status and future prospects. Theoretical and Applied Genetics 128(6): 999-1017.
Ishimaru, T., Matsuda, T., Ohsugi, R. & Yamagishi, T. (2003). Morphological development of rice caryopses located at the different positions in a panicle from early to middle stage of grain filling. Functional Plant Biology 30(11): 1139-1149.
Islam, M. S., Thyssen, G. N., Jenkins, J. N., Zeng, L., Delhom, C. D., McCarty, J. C., Deng, D. D., Hinchliffe, D. J., Jones, D. C. & Fang, D. D. (2016). A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton. BMC Genomics 17(1): 903.
Kawahara, Y., de la Bastide, M., Hamilton, J. P., Kanamori, H., McCombie, W. R., Ouyang, S., Schwartz, D. C., Tanaka, T., Wu, J. & Zhou, S. (2013). Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6(1): 4.
Kover, P. X., Valdar, W., Trakalo, J., Scarcelli, N., Ehrenreich, I. M., Purugganan, M. D., Durrant, C. & Mott, R. (2009). A Multiparent Advanced Generation Inter-Cross to Fine-Map Quantitative Traits in Arabidopsis thaliana. PLOS Genetics 5(7): e1000551.
Li, J., Xiao, J., Grandillo, S., Jiang, L., Wan, Y., Deng, Q., Yuan, L. & McCouch, S. R. (2004). QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice. Genome 47(4): 697-704.
Li, X., Guo, Z., Lv, Y., Cen, X., Ding, X., Wu, H., Li, X., Huang, J. & Xiong, L. (2017). Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study. PLOS Genetics 13(7): e1006889.
Li, Y., Fan, C., Xing, Y., Jiang, Y., Luo, L., Sun, L., Shao, D., Xu, C., Li, X. & Xiao, J. (2011). Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature Genetics 43(12): 1266.
Li, Y., Fan, C., Xing, Y., Yun, P., Luo, L., Yan, B., Peng, B., Xie, W., Wang, G. & Li, X. (2014). Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice. Nature Genetics 46(4): 398.
Li, Z., Wan, J., Xia, J. & Zhai, H. (2003). Mapping quantitative trait loci underlying appearance quality of rice grains (Oryza sativa L.). Acta Genetica Sinica 30(3): 251-259.
Lipka, A. E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P. J., Gore, M. A., Buckler, E. S. & Zhang, Z. (2012). GAPIT: genome association and prediction integrated tool. Bioinformatics 28(18): 2397-2399.
Lur, H.-S., Hsu, C.-L., Wu, C.-W., Lee, C.-Y., Lao, C.-L., Wu, Y.-C., Chang, S.-J., Wang, C.-Y. & Kondo, M. (2009). Changes in temperature, cultivation timing and grain quality of rice in Taiwan in recent years. Crop, Environment and Bioinformatics 6: 175-182.
Metzker, M. L. (2010). Sequencing technologies—the next generation. Nature Reviews Genetics 11(1): 31.
Nagasawa, N., Hibara, K. I., Heppard, E. P., Vander Velden, K. A., Luck, S., Beatty, M., Nagato, Y. & Sakai, H. (2013). GIANT EMBRYO encodes CYP78A13, required for proper size balance between embryo and endosperm in rice. The Plant Journal 75(4): 592-605.
Ogura, T. & Busch, W. (2015). From phenotypes to causal sequences: using genome wide association studies to dissect the sequence basis for variation of plant development. Current Opinion in Plant Biology 23: 98-108.
Patindol, J. & Wang, Y.-J. (2003). Fine structures and physicochemical properties of starches from chalky and translucent rice kernels. Journal of Agricultural and Food Chemistry 51(9): 2777-2784.
Qiu, X., Chen, K., Lv, W., Ou, X., Zhu, Y., Xing, D., Yang, L., Fan, F., Yang, J. & Xu, J. (2017). Examining two sets of introgression lines reveals background-independent and stably expressed QTL that improve grain appearance quality in rice (Oryza sativa L.). Theoretical and Applied Genetics 130(5): 951-967.
Qiu, X., Pang, Y., Yuan, Z., Xing, D., Xu, J., Dingkuhn, M., Li, Z. & Ye, G. (2015). Genome-wide association study of grain appearance and milling quality in a worldwide collection of indica rice germplasm. PLoS One 10(12): e0145577.
Rolletschek, H., Borisjuk, L., Koschorreck, M., Wobus, U. & Weber, H. (2002). Legume embryos develop in a hypoxic environment. Journal of Experimental Botany 53(371): 1099-1107.
Rolletschek, H., Borisjuk, L., Sánchez-García, A., Gotor, C., Romero, L. C., Martínez-Rivas, J. M. & Mancha, M. (2007). Temperature-dependent endogenous oxygen concentration regulates microsomal oleate desaturase in developing sunflower seeds. Journal of Experimental Botany 58(12): 3171-3181.
Sacco, A., Di Matteo, A., Lombardi, N., Trotta, N., Punzo, B., Mari, A. & Barone, A. (2013). Quantitative trait loci pyramiding for fruit quality traits in tomato. Molecular Breeding 31(1): 217-222.
Sakai, H., Lee, S. S., Tanaka, T., Numa, H., Kim, J., Kawahara, Y., Wakimoto, H., Yang, C.-c., Iwamoto, M. & Abe, T. (2013). Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics. Plant and Cell Physiology 54(2): e6-e6.
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9(7): 671.
Shamsudin, N. A. A., Swamy, B. M., Ratnam, W., Cruz, M. T. S., Sandhu, N., Raman, A. K. & Kumar, A. (2016). Pyramiding of drought yield QTLs into a high quality Malaysian rice cultivar MRQ74 improves yield under reproductive stage drought. Rice 9(1): 21.
Shao, G., Tang, S., Luo, J., Jiao, G., Wei, X., Tang, A., Wu, J., Zhuang, J. & Hu, P. (2010). Mapping of qGL7-2, a grain length QTL on chromosome 7 of rice. Journal of Genetics and Genomics 37(8): 523-531.
She, K.-C., Kusano, H., Yaeshima, M., Sasaki, T., Satoh, H. & Shimada, H. (2010). Reduced rice grain production under high-temperature stress closely correlates with ATP shortage during seed development. Plant biotechnology 27(1): 67-73.
Song, X.-J., Huang, W., Shi, M., Zhu, M.-Z. & Lin, H.-X. (2007). A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics 39(5): 623.
Suzuki, M., Wang, H. H.-Y. & McCarty, D. R. (2007). Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes. Plant Physiology 143(2): 902-911.
Tan, Y., Xing, Y., Li, J., Yu, S., Xu, C. & Zhang, Q. (2000). Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theoretical and Applied Genetics 101(5-6): 823-829.
Tanabata, T., Shibaya, T., Hori, K., Ebana, K. & Yano, M. (2012). SmartGrain: high-throughput phenotyping software for measuring seed shape through image analysis. Plant Physiology: pp. 112.205120.
Tashiro, T. & Wardlaw, I. (1991). The effect of high temperature on kernel dimensions and the type and occurrence of kernel damage in rice. Australian Journal of Agricultural Research 42(3): 485-496.
Tashiro, T. & Wardlaw, I. F. (1989). A comparison of the effect of high temperature on grain development in wheat and rice. Annals of Botany 64(1): 59-65.
Team, R. C. (2013). R: A language and environment for statistical computing.
Terao, T. & Hirose, T. (2018). Temperature-dependent QTLs in indica alleles for improving grain quality in rice: increased prominence of QTLs responsible for reduced chalkiness under high-temperature conditions. Molecular Breeding 38(5): 52.
Tsukaguchi, T. & Iida, Y. (2008). Effects of assimilate supply and high temperature during grain-filling period on the occurrence of various types of chalky kernels in rice plants (Oryza sativa L.). Plant Production Science 11(2): 203-210.
VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. Journal of Dairy Science 91(11): 4414-4423.
Wada, T., Miyahara, K., Sonoda, J.-y., Tsukaguchi, T., Miyazaki, M., Tsubone, M., Ando, T., Ebana, K., Yamamoto, T. & Iwasawa, N. (2015). Detection of QTLs for white-back and basal-white grains caused by high temperature during ripening period in japonica rice. Breeding Science 65(3): 216-225.
Wakamatsu, K.-i. (2010). Effects of high air temperature during the ripening period on the grain quality of rice in warm regions of Japan. Bulletin of the Kagoshima Prefectural Institute for Agricultural Development. Agricultural Research (Japan).
Wan, X., Wan, J., Weng, J., Jiang, L., Bi, J., Wang, C. & Zhai, H. (2005). Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theoretical and Applied Genetics 110(7): 1334-1346.
Wang, S., Li, S., Liu, Q., Wu, K., Zhang, J., Wang, S., Wang, Y., Chen, X., Zhang, Y. & Gao, C. (2015). The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature Genetics 47(8): 949.
Wang, X., Pang, Y., Wang, C., Chen, K., Zhu, Y., Shen, C., Ali, J., Xu, J. & Li, Z. (2017). New Candidate Genes Affecting Rice Grain Appearance and Milling Quality Detected by Genome-Wide and Gene-Based Association Analyses. Frontiers in Plant Science 7: 1998.
Weng, J., Gu, S., Wan, X., Gao, H., Guo, T., Su, N., Lei, C., Zhang, X., Cheng, Z. & Guo, X. (2008). Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Research 18(12): 1199.
Wu, Y.-C., Chang, S.-J. & Lur, H.-S. (2016). Effects of field high temperature on grain yield and quality of a subtropical type japonica rice—Pon-Lai rice. Plant Production Science 19(1): 145-153.
Xu, F., Fang, J., Ou, S., Gao, S., Zhang, F., Du, L., Xiao, Y., Wang, H., Sun, X. & Chu, J. (2015). Variations in CYP 78 A 13 coding region influence grain size and yield in rice. Plant, Cell & Environment 38(4): 800-811.
Xu, S. B., Li, T., Deng, Z. Y., Chong, K., Xue, Y. & Wang, T. (2008). Dynamic proteomic analysis reveals a switch between central carbon metabolism and alcoholic fermentation in rice filling grains. Plant Physiology 148(2): 908-925.
Yamakawa, H., Ebitani, T. & Terao, T. (2008). Comparison between locations of QTLs for grain chalkiness and genes responsive to high temperature during grain filling on the rice chromosome map. Breeding Science 58(3): 337-343.
Yamakawa, H., Hirose, T., Kuroda, M. & Yamaguchi, T. (2007). Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiology 144(1): 258-277.
Yang, J., Kim, S.-R., Lee, S.-K., Choi, H., Jeon, J.-S. & An, G. (2015). Alanine aminotransferase 1 (OsAlaAT1) plays an essential role in the regulation of starch storage in rice endosperm. Plant Science 240: 79-89.
Yano, K., Yamamoto, E., Aya, K., Takeuchi, H., Lo, P.-c., Hu, L., Yamasaki, M., Yoshida, S., Kitano, H. & Hirano, K. (2016). Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nature Genetics 48(8): 927.
Yao, Q., Chen, J., Guan, Z., Sun, C. & Zhu, Z. (2009).Inspection of rice appearance quality using machine vision. In 2009 WRI Global Congress on Intelligent Systems (GCIS). Vol. 4, 274-279: IEEE.
Yonemaru, J.-i., Yamamoto, T., Fukuoka, S., Uga, Y., Hori, K. & Yano, M. (2010). Q-TARO: QTL annotation rice online database. Rice 3(2-3): 194-203.
Yoshioka, Y., Iwata, H., Tabata, M., Ninomiya, S. & Ohsawa, R. (2007). Chalkiness in Rice: Potential for Evaluation with Image Analysis. Crop Science 47(5): 2113-2120.
Youens-Clark, K., Buckler, E., Casstevens, T., Chen, C., DeClerck, G., Derwent, P., Dharmawardhana, P., Jaiswal, P., Kersey, P. & Karthikeyan, A. (2010). Gramene database in 2010: updates and extensions. Nucleic Acids Research 39(suppl_1): D1085-D1094.
Zhang, J., Nallamilli, B. R., Mujahid, H. & Peng, Z. (2010a). OsMADS6 plays an essential role in endosperm nutrient accumulation and is subject to epigenetic regulation in rice (Oryza sativa). The Plant Journal 64(4): 604-617.
Zhang, Z., Ersoz, E., Lai, C.-Q., Todhunter, R. J., Tiwari, H. K., Gore, M. A., Bradbury, P. J., Yu, J., Arnett, D. K. & Ordovas, J. M. (2010b). Mixed linear model approach adapted for genome-wide association studies. Nature Genetics 42(4): 355.
Zhao, D., Li, P., Wang, L., Sun, L., Xia, D., Luo, L., Gao, G., Zhang, Q. & He, Y. (2017). Genetic dissection of large grain shape in rice cultivar ‘Nanyangzhan’and validation of a grain thickness QTL (qGT3. 1) and a grain length QTL (qGL3. 4). Molecular Breeding 37(3): 42.
Zhao, K., Tung, C.-W., Eizenga, G. C., Wright, M. H., Ali, M. L., Price, A. H., Norton, G. J., Islam, M. R., Reynolds, A. & Mezey, J. (2011). Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications 2: 467.
林芹如 (2008). 充實期高溫影響稻米品質形成的生理途徑. 臺灣大學農藝學研究所學位論文: 1-63.
張芳瑜 (2013).高溫下水稻穀粒粒型對米質形成之生理影響.
顏任祥 (2015). 水稻穎果充實期間其氧氣濃度分析方法之建立. 臺灣大學農藝學研究所學位論文: 1-60.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78968-
dc.description.abstract全球暖化日漸加劇,高溫對於水稻品質的影響更為劇烈。為提供台灣地區水稻耐熱育種之參考依據,以利緩解高溫對於穀粒外觀品質的負面衝擊。本研究使用自國際水稻研究中心引進之稉稻多親本互交進階世代 (multi-parent advanced generation inter- cross, MAGIC)- japonica MAGIC作為材料,結合22190個單核苷酸多型性 (single nucleotide polymorphism, SNP)分子標誌,透過全基因體關聯性分析 (genome-wide association study, GWAS)和自行建立之影像分析系統,探討常溫與高溫下,穀粒長度、寬度以及白堊質程度的遺傳基礎。由性狀調查的結果得知,高溫處理加劇穀粒白堊質程度,並使粒型縮小,但不影響長寬比; 其中,穀粒寬度與白堊質程度在高溫之下呈現顯著正相關。由GWAS的分析,發現29個染色體區域在常溫之下與穀粒外觀品質相關; 25個染色體區域在高溫之下與穀粒外觀品質相關。不論常溫或高溫的GWAS結果中,皆有部分的染色體區域座落於已知的數量性狀基因座 (quantitative trait locus, QTL)。進一步檢驗堆疊QTL對於高溫之下白堊質程度的影響,發現堆疊較多優良QTL之MAGIC子代白堊質程度較低。最終,本篇研究提供japonica MAGIC族群內,與穀粒外觀品質相關之遺傳背景參考資訊,證明堆疊優良等位基因型用於水稻高溫白堊質育種之可行性,並建議選拔窄粒型之水稻以減少高溫下白堊質的增加。zh_TW
dc.description.abstractHigh temperature caused by climate change has dramatically reduced rice grain appearance quality in Taiwan. In order to improve grain appearance quality including grain length, width and chalkiness under high temperature, we conducted a genome-wide association study (GWAS) to identify grain appearance quality related genomic regions under ambient and high temperature using 409 accessions of Japonica multi-parent advanced generation inter-cross population (MAGIC) as diversity panel. Phenotypic analysis results suggested high temperature significantly increase grain chalkiness while reducing grain size without affecting length/width ratio. In addition, significant positive correlation between grain width and chalkiness value was observed under high temperature. GWAS using 22190 single nucleotide polymorphism (SNP) markers identified several genomic regions and some of them were co-localized in reported quantitative trait locus (QTL) or genes related to grain appearance quality. Based on the GWAS result of chalkiness under high temperature, favorable alleles were defined, accessions of japonica MAGIC carrying more favorable alleles had a significant reduction of chalkiness value suggesting the improvement of grain chalkiness could be achieved by QTLs pyramiding.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:33:01Z (GMT). No. of bitstreams: 1
ntu-107-R05621116-1.pdf: 3925664 bytes, checksum: 7f218cc7284136f7ed36b98957234c4a (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
Table of contents iv
Figure index vii
Table index x
I. Introduction 1
1. Impact of high temperature on rice appearance quality 1
2. Mechanism of chalkiness formation under high temperature 1
3. Relationship between grain shape and chalkiness value under high temperature 2
4. Quantitative trait locus of grain appearance quality 3
5. Application of multi-parent advanced generation inter-cross (MAGIC) populations in rice breeding 4
6. Genome-wide association study for agronomic traits 5
7. Rationale 6
II. Methods 7
1. Plant materials 7
2. Image analysis for grain shape and chalkiness 10
3. Genotyping 13
4. Population structure analysis 13
5. Genome-wide association study and QTL detection 13
III. Results 15
1. Image analysis procedure for measuring rice grain appearance quality 15
2. Variation of grain appearance quality in japonica MAGIC population under different temperature treatments 18
3. Correlation between grain shape and grain chalkiness value 24
4. Genome-wide association study for agronomic traits 27
5. Detection of quantitative trait locus and pyramiding effect of favorable SNP alleles 39
IV. Discussion 50
1. Using gray scale value as chalkiness value index for GWAS 50
2. Variation of japonica MAGIC and correlation between grain shape and chalkiness value 51
3. QTL regions of grain shape and chalkiness specifically identified under high temperature 53
4. QTLs pyramiding for grain chalkiness under high temperature 56
V. References 58
dc.language.isoen
dc.subject水稻zh_TW
dc.subject全基因體關聯性分析zh_TW
dc.subject多親本互交進階世代族群zh_TW
dc.subject高溫zh_TW
dc.subject穀粒外觀品質zh_TW
dc.subjectRice appearance qualityen
dc.subjectGWASen
dc.subjectmulti-parent advanced generation inter-crossen
dc.subjecthigh temperatureen
dc.title高溫下稉稻多親本互交進階世代族群穀粒外觀品質之全基因體關聯性分析zh_TW
dc.titleGenome-wide Association Study on Grain Appearance Quality under High Temperature using Rice (Oryza sativa L. ssp. japonica) Multi-Parent Advanced Generation Inter-Cross Populationen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor董致韡(Chih-Wei Tung),張孟基(Men-Chi Chang)
dc.contributor.oralexamcommittee李長沛(Charng-Pei Li),黃文理(Wen-Lii Huang)
dc.subject.keyword水稻,穀粒外觀品質,高溫,多親本互交進階世代族群,全基因體關聯性分析,zh_TW
dc.subject.keywordRice appearance quality,high temperature,multi-parent advanced generation inter-cross,GWAS,en
dc.relation.page64
dc.identifier.doi10.6342/NTU201803552
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
dc.date.embargo-lift2023-08-23-
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-107-R05621116-1.pdf
  未授權公開取用
3.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved