Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78966
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳世銘
dc.contributor.authorI-Chen Liuen
dc.contributor.author劉奕辰zh_TW
dc.date.accessioned2021-07-11T15:32:52Z-
dc.date.available2023-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citation方麗萍。2017。 2016 年台灣除草劑市場概況。中華民國雜草學會會刊 38(2):185-189。
吳明芳、李振興、王炳聰、詹慧珊、黃建邦。2011。多人臉影像視覺辨識技術。崑山科大學報 (8):75-95。
張小麗、于國英、柴民傑、李江國。2012。除草機機構設計及除草效果研究。安徽農業科學 40(10):6322-6324。
周恩權、毛罕平、陳樹人。2011。八爪除草機構的設計與實驗——基於虛擬樣機技術。農機化研究 33(2):62-64。
許涵竣。2017。蝴蝶蘭開花品質之光譜預測模式。碩士論文。台北: 國立台灣大學生物產業機電工程學研究所。
洪添勝、李震、吳春胤、劉敏娟、喬軍。2007。高光譜圖像技術在水果品質無損檢測中的應用。農業工程學報 23(11):280-285。
胡煉、羅錫文、張智剛、陳雄飛、林潮興。2013。株間除草裝置橫向偏移量識別與作物行跟蹤控制。農業工程學報 29(14):8-14。
日農中耕機。2018。產品項目。日農IE-101單-雙輪式中耕培土機。網址: http://www.ietw.com.tw/productdetail.asp?proid=35。上網日期: 2018-06-26。
新農民農機網。2014。MJ 水田中耕除草機紀錄。網址: https://www.youtube.com/watch?v=JKFQt9G9B5c。上網日期: 2018-06-26。
株式会社キュウホーは。2013。除草カルチ。田植機にS3カルチをつけて除草。網址: http://www11.plala.or.jp/qfo/homepage%202013/karuchi.html。上網日期: 2018-06-26。
徐家盛。2003。多種尺度遙測影像於農業土地利用分類精確度探討。碩士論文。新竹: 中華大學土木工程學系所。
高靜瑤。2008。智慧型物體追蹤監控系統之開發。碩士論文。台中: 中興大學電機工程學系所。
黃泰祥。2004。具備人臉追蹤與辨識功能的一個智慧型數位監視系統。碩士論文。桃園:中原大學電子工程研究所。
樊江川。2014。无人机航空摄影测树技术研究。碩士論文。北京: 北京林业大学。
蔡超人。2004。先進車輛控制及安全系統之設計與模擬---子計畫三---先進車輛前景移動物体影像之即時辨識系統的研究與實作 (I) 。
張光華。2017。附掛式旱田除草機之研發。花蓮區農業專訊 101:23-25。
蔣永正。2011。除草劑毒性及環境安全性。中華民國雜草學會會刊 32(2):117-131。
蕭政弘、邱建中、鍾維榮。2003。台灣蔬菜田除草劑之應用與發展。中華民國雜草學會會刊 24(2):99-113。
謝清祿、鄭聖夫、林達德。1997。應用影像紋理分析及類神經網路辨識甘藍種苗之生長階段。農業機械學刊 6(2):1-13。
Andrea, C. C., B. B. M. Daniel, and J. B. J. Misael. 2017. Precise weed and maize classification through convolutional neuronal networks. In Ecuador Technical Chapters Meeting (ETCM), 2017 IEEE. IEEE.
Arroyo, J., M. Guijarro, and G. Pajares. 2016. An instance-based learning approach for thresholding in crop images under different outdoor conditions. Computers and Electronics in Agriculture 127:669-679.
Chechliński, Ł., B. Siemia̧tkowska, and M. Majewski. 2018. A System for Weeds and Crops Identification Based on Convolutional Neural Network. In Conference on Automation. Springer.
Ciresan, D., U. Meier, J. Masci, and J. Schmidhuber. 2012. Multi-column deep neural network for traffic sign classification. Neural Networks 32:333-338.
Comaniciu, D., V. Ramesh, and P. Meer. 2003. Kernel-based object tracking. IEEE Transactions on pattern analysis and machine intelligence 25(5):564-577.
Dedousis, A. 2007. An investigation into the design of precision weeding mechanisms for inter or intra-row weed control.
Dyrmann, M., H. Karstoft, and H. S. Midtiby. 2016. Plant species classification using deep convolutional neural network. Biosystems Engineering 151(Supplement C):72-80.
Farabet, C., C. Couprie, L. Najman, and Y. LeCun. 2012. Scene parsing with multiscale feature learning, purity trees, and optimal covers. arXiv preprint arXiv:1202.2160.
Garcia, C., and M. Delakis. 2004. Convolutional face finder: A neural architecture for fast and robust face detection. IEEE Transactions on pattern analysis and machine intelligence 26(11):1408-1423.
Gobor, Z., and P. S. Lammers. 2015. Concept and virtual prototype of a rotary hoe for intra-row weed control in row crops.
Gonzalez, R. C., and R. E. Woods. 2007. Image processing. Digital image processing 2.
Hamuda, E., B. Mc Ginley, M. Glavin, and E. Jones. 2017. Automatic crop detection under field conditions using the HSV colour space and morphological operations. Computers and Electronics in Agriculture 133:97-107.
Haug, S., and J. Ostermann. 2014. A Crop/Weed Field Image Dataset for the Evaluation of Computer Vision Based Precision Agriculture Tasks. In ECCV Workshops (4).
Hwang, T.-L., and J. J. Clark. 1990. On local detection of moving edges. In Pattern Recognition, 1990. Proceedings., 10th International Conference on. IEEE.
Kim, C., and J.-N. Hwang. 2002. Fast and automatic video object segmentation and tracking for content-based applications. IEEE transactions on circuits and systems for video technology 12(2):122-129.
LeCun, Y., Y. Bengio, and G. Hinton. 2015. Deep learning. nature 521(7553):436.
Li, N., C. Wang, H. Zhao, X. Gong, and D. Wang. 2018. A NOVEL DEEP CONVOLUTIONAL NEURAL NETWORK FOR SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL DATA. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences 42(3).
Lin, T.-Y., P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. 2017. Feature pyramid networks for object detection. In CVPR.
Liu, I. C., S. Chen, C. Y. Tsai, and Y. H. Chang. 2018. Application of convolution neural network analysis on intra-row weeding system for vegetables. In “Proceedings of the 9th International Symposium on Machinery and Mechatronics for Agricultural and Bio-systems Engineering (ISMAB 2018)”, IE3-5. Jeju, Korea: Jeju KAL Hotel.
Ning, F., D. Delhomme, Y. LeCun, F. Piano, L. Bottou, and P. E. Barbano. 2005. Toward automatic phenotyping of developing embryos from videos. IEEE Transactions on Image Processing 14(9):1360-1371.
Pearlstein, L., M. Kim, and W. Seto. 2016. Convolutional neural network application to plant detection, based on synthetic imagery. In Applied Imagery Pattern Recognition Workshop (AIPR), 2016 IEEE. IEEE.
Redmon, J., and A. Farhadi. 2017. YOLO9000: better, faster, stronger. arXiv preprint arXiv:1612.08242.
Redmon, J., S. Divvala, R. Girshick, and A. Farhadi. 2016. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition.
Sakai, Y., T. Oda, M. Ikeda, and L. Barolli. 2016. A vegetable category recognition system using deep neural network. In Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2016 10th International Conference on. IEEE.
Sladojevic, S., M. Arsenovic, A. Anderla, D. Culibrk, and D. Stefanovic. 2016. Deep neural networks based recognition of plant diseases by leaf image classification. Computational intelligence and neuroscience 2016.
Tang, J., D. Wang, Z. Zhang, L. He, J. Xin, and Y. Xu. 2017. Weed identification based on K-means feature learning combined with convolutional neural network. Computers and Electronics in Agriculture 135:63-70.
Tompson, J., R. Goroshin, A. Jain, Y. LeCun, and C. Bregler. 2015. Efficient object localization using convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
Turk, M., and A. Pentland. 1991. Eigenfaces for recognition. Journal of cognitive neuroscience 3(1):71-86.
Viola, P., and M. J. Jones. 2004. Robust real-time face detection. International Journal of Computer Vision 57(2):137-154.
Zhang, C., J. Zhang, X. Huang, N. Li, Z. Chen, and W. Li. 2013. System Integration Design of Intra-Row Weeding Robot. ASABE.
広瀬貴士, 久田浩志, and 光井輝彰. 2013. 水田用小型除草ロボット (アイガモロボット) の除草効果. Bulletin of the Gifu Prefectural Research Institute of Agricultural Technology in Hilly and Mountainous Areas(8):17-21.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78966-
dc.description.abstract雜草在作物栽培體系扮演著不能忽視的角色,因為它對陽光、水份、養份、空間等資源的競爭,會直接影響到作物的生長。雜草的防治若以化學方法處理,會污染環境及農產品,而以人力方法處理,既費時又費工,效率非常低。近年來研究有關於機械除草越來越受到關注,機械除草相比化學除草和人工除草具有污染少、效率高的優點,採用機械除草設備進行田間除草,以目前研發之設備而言,大部分只做到行間的除草,株間的除草仍需靠人工。甘藍於種植前期,其生長勢與周遭雜草相當,需要進行密集的除草,在缺工的農業生產模式下,造成農民許多困擾。
本研究應用影像定位技術開發智慧型田間甘藍除草系統,進行物理性之除草,使用攝影機擷取田間帶有雜草之甘藍影像照片474張,分為379張之訓練組及95張之預測組,透過卷積神經網路 (Convolutional Neural Network, CNN)的影像處理方法,取出特徵且分類來辨識甘藍菜和雜草。在驗證的圖片中共計有 381 株甘藍,只有 3 株沒被辨識出來,成功率為99.2%,而且沒有雜草被辨識成甘藍,透過框選出來的結果也可以得到甘藍植株的位置。以建立之模型進行實地測試,即使在雜草比訓練樣本更多的環境下,一樣能辨識出甘藍,共將49珠作物辨識成功,5未辨識出,將3珠雜草辨識成作物辨識率為86.0%。
進行實驗之後證實其能有效和準確的辨識作物之後進行除草爪迴轉以達到攪動土壤除草的功能,採用之三種轉速分別為 0、9、23 rpm,9、23 rpm可以因應不同車速所面對的不同情況進行除草,能有70%成功率透過旋轉除草爪進行除草,研究結果顯示以智慧型除草系統,可達到精確、快速地獲得作物的位置資訊,並進一步實現自動化精準除草,達成降低農作物的生產成本,提升其生產力,更能達到保護環境和提供消費者健康和安全農產品。
zh_TW
dc.description.abstractWeeds play an important, non-negligible role in crop cultivation because their competition for sunlight, moisture, nutrients, space and other resources directly affects the growth of crops. Application of chemicals for weed control will pollute the environment and agricultural products, while physical treatments is time-consuming and laborious, which leads to low efficiency. Recently, research on mechanical weeding has received more and more attention. Compared to chemical and manual techniques, mechanical weeding can be more efficient and less pollution. Conducting mechanical weeding in the field, between-row weeding is the best way current technologies can do. Intra-row weeding relies on labor force. Therefore, while the technology of mechanical weeding has reached quite a breakthrough, the productivity has been making no progress. The growth potential of cabbage can be smilar to that of weeds. Therefore, intensive weeding is highly required. The situation can be bothering to farmers in the agricultural production mode with labor shortages.
This research intends to develop an intelligent vegetable intra-row weeding system using image positioning technology to conduct physical weeding. Total of 474 cabbage images with weeds were captured in the field with camera, in which 379 of these images were used as training data, and the other 95 images were used as testing data. Through the image processing method of Convolutional Neural Network (CNN), the features were extracted and classified between identify cabbages and weeds. There were 381 cabbages in the verified images in total, only 3 of which were unidentified, with a success rate of 99.2%. No weed was identified as cabbage, and the positions of cabbages were also obtained. Conducting field tests with this model, we are able to identify cabbages in an environment where the number of weeds is far more than training samples. In the test, 49 crops were successfully identified, 5 were not. 3 weeds were wrongly identified as crops. The identification rate reached 86%.
Tests show that after identifying crops from weeds, applying weeding rotors is able to remove weeds by rotating and stirring the soil. With the rotating speed of 0, 9, 23 rpm respectively, rotors are able to weed under different circumstances. The success rate of applying weeding rotors to weed is 70%. The research shows that applying smart weeding system allows people to locate crops and remove weeds automatically and precisely. The system is able to reduce the producing cost of agriculture and enhance the productivity. Furthermore, it protects the environment and provides consumers with healthy and safe agricultural products.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:32:52Z (GMT). No. of bitstreams: 1
ntu-107-R05631011-1.pdf: 9622757 bytes, checksum: cd2cdc63008e3136036f77fab536d192 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌 謝 ii
摘 要 iii
Abstract iv
目 錄 vi
圖目錄 ix
表目錄 xiii
第一章 前 言 1
1.1 前言 1
1.2 研究目的 2
第二章 文獻探討 3
2.1 甘藍簡介 3
2.2 除草現況介紹 5
2.3 影像辨識 11
2.3.1 影像處理技術 11
2.3.2 影像辨識技術 11
2.3.3 影像辨識之農業應用 12
2.3.4 卷積神經網路 12
2.3.5 影像追蹤 15
第三章 材料與方法 18
3.1 系統架構開發 18
3.2 硬體 21
3.2.1 載具 21
3.2.2 電力系統 22
3.2.3 拍攝系統 24
3.2.4 油壓系統 27
3.2.5 除草爪 32
3.2.6 系統組裝 35
3.3 影像辨識系統 36
3.3.1 實驗樣本 37
3.3.2 靜/動態拍攝 38
3.3.3 特徵擷取 40
3.3.4 卷積神經網路 41
3.3.5 動態辨識 51
3.3.6 影像追蹤 52
3.4 實驗設計 53
3.4.1 實驗步驟 53
3.4.2 系統性能調整 54
第四章 結果與討論 55
4.1 初始試驗 55
4.1.1 控制介面 55
4.1.2 影像辨識 56
4.1.3 動態辨識 65
4.1.4 影像追蹤 67
4.2 除草系統 68
4.2.1 影像系統 68
4.2.2 比例閥 70
4.2.3 油壓馬達 73
4.3 除草系統性能 74
4.3.1 除草測試 74
4.3.2 避障作物測試 77
第五章 結論 80
第六章 未來建議 81
參考文獻 82
dc.language.isozh-TW
dc.title以卷積神經網路分析方法應用於除草系統之研究zh_TW
dc.titleApplication of Convolution Neural Network Analysis to Weeding System for Vegetablesen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王豐政,莊永坤,吳剛智,顏炳郎
dc.subject.keyword卷積神經網路,甘藍,影像辨識,株間除草,深度學習,zh_TW
dc.subject.keywordConvolutional Neural Network,Cabbage,Image Recognition,Intra-row Weeding,Deep Learning,en
dc.relation.page86
dc.identifier.doi10.6342/NTU201802886
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
dc.date.embargo-lift2023-08-21-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-R05631011-1.pdf
  目前未授權公開取用
9.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved