請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78962完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴亮全(Liang-Chuan Lai) | |
| dc.contributor.author | Yi-Chun Cheng | en |
| dc.contributor.author | 鄭伊純 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:32:34Z | - |
| dc.date.available | 2025-08-18 | |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.citation | 1. D. M. Gilkes, G. L. Semenza, and D. Wirtz. (2014). Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer, 14:430. 2. N. Sadri, and P. J. Zhang. (2013). Hypoxia-inducible factors: mediators of cancer progression; prognostic and therapeutic targets in soft tissue sarcomas. Cancers, 5:320. 3. S. Y. Tam, V. W. C. Wu, and H. K. W. Law. (2020). Hypoxia-Induced Epithelial-Mesenchymal Transition in Cancers: HIF-1alpha and Beyond. Front Oncol, 10:486. 4. Y. H. Shi, and W. G. Fang. (2004). Hypoxia-inducible factor-1 in tumour angiogenesis. World J Gastroenterol, 10:1082. 5. C. W. Pugh, J. Gleadle, and P. H. Maxwell. (2001). Hypoxia and oxidative stress in breast cancer. Hypoxia signalling pathways. Breast Cancer Res, 3:313. 6. S. Yasuda, S. Arii, A. Mori, N. Isobe, W. Yang, H. Oe, A. Fujimoto, Y. Yonenaga, H. Sakashita, and M. Imamura. (2004). Hexokinase II and VEGF expression in liver tumors: correlation with hypoxia-inducible factor 1 alpha and its significance. J Hepatol, 40:117. 7. R. Airley, J. Loncaster, S. Davidson, M. Bromley, S. Roberts, A. Patterson, R. Hunter, I. Stratford, and C. West. (2001). Glucose transporter glut-1 expression correlates with tumor hypoxia and predicts metastasis-free survival in advanced carcinoma of the cervix. Clin Cancer Res, 7:928. 8. P. N. Span, and J. Bussink. (2019). The Role of Hypoxia and the Immune System in Tumor Radioresistance. Cancers, 11:1555. 9. X. Jing, F. Yang, C. Shao, K. Wei, M. Xie, H. Shen, and Y. Shu. (2019). Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer, 18:157. 10. W. X. Zong, J. D. Rabinowitz, and E. White. (2016). Mitochondria and Cancer. Mol Cell, 61:667. 11. M. G. Vander Heiden, L. C. Cantley, and C. B. Thompson. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324:1029. 12. R. A. Gatenby, and R. J. Gillies. (2004). Why do cancers have high aerobic glycolysis? Nat Rev Cancer, 4:891. 13. S. Vyas, E. Zaganjor, and M. C. Haigis. (2016). Mitochondria and Cancer. Cell, 166:555. 14. V. Fogal, A. D. Richardson, P. P. Karmali, I. E. Scheffler, J. W. Smith, and E. Ruoslahti. (2010). Mitochondrial p32 protein is a critical regulator of tumor metabolism via maintenance of oxidative phosphorylation. Mol Cell Biol, 30:1303. 15. S. Rodriguez-Enriquez, L. Carreno-Fuentes, J. C. Gallardo-Perez, E. Saavedra, H. Quezada, A. Vega, A. Marin-Hernandez, V. Olin-Sandoval, M. E. Torres-Marquez, and R. Moreno-Sanchez. (2010). Oxidative phosphorylation is impaired by prolonged hypoxia in breast and possibly in cervix carcinoma. Int J Biochem Cell Biol, 42:1744. 16. D. C. Fuhrmann, and B. Brune. (2017). Mitochondrial composition and function under the control of hypoxia. Redox Biol, 12:208. 17. G. L. Semenza, B. H. Jiang, S. W. Leung, R. Passantino, J. P. Concordet, P. Maire, and A. Giallongo. (1996). Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem, 271:32529. 18. A. P. West, G. S. Shadel, and S. Ghosh. (2011). Mitochondria in innate immune responses. Nat Rev Immunol, 11:389. 19. X. Huo, S. Han, G. Wu, O. Latchoumanin, G. Zhou, L. Hebbard, J. George, and L. Qiao. (2017). Dysregulated long noncoding RNAs (lncRNAs) in hepatocellular carcinoma: implications for tumorigenesis, disease progression, and liver cancer stem cells. Mol Cancer, 16:165. 20. J. Su, E. Zhang, L. Han, D. Yin, Z. Liu, X. He, Y. Zhang, F. Lin, Q. Lin, P. Mao, W. Mao, and D. Shen. (2017). Long noncoding RNA BLACAT1 indicates a poor prognosis of colorectal cancer and affects cell proliferation by epigenetically silencing of p15. Cell Death Dis, 8:e2665. 21. S. Dhamija, and S. Diederichs. (2016). From junk to master regulators of invasion: lncRNA functions in migration, EMT and metastasis. Int J Cancer, 139:269. 22. R. Fatima, V. S. Akhade, D. Pal, and S. M. Rao. (2015). Long noncoding RNAs in development and cancer: potential biomarkers and therapeutic targets. Mol Cell Ther, 3:5. 23. M. Huarte. (2015). The emerging role of lncRNAs in cancer. Nat Med, 21:1253. 24. Y. Dong, M. H. Wei, J. G. Lu, and C. Y. Bi. (2019). Long non-coding RNA HULC interacts with miR-613 to regulate colon cancer growth and metastasis through targeting RTKN. Biomed Pharmacother, 109:2035. 25. T. W. O'Brien. (2002). Evolution of a protein-rich mitochondrial ribosome: implications for human genetic disease. Gene, 286:73. 26. J. Asin-Cayuela, and C. M. Gustafsson. (2007). Mitochondrial transcription and its regulation in mammalian cells. Trends Biochem Sci, 32:111. 27. Y. Zhao, L. Sun, R. R. Wang, J. F. Hu, and J. Cui. (2018). The effects of mitochondria-associated long noncoding RNAs in cancer mitochondria: New players in an old arena. Crit Rev Oncol Hematol, 131:76. 28. O. Rackham, A. M. Shearwood, T. R. Mercer, S. M. Davies, J. S. Mattick, and A. Filipovska. (2011). Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins. RNA, 17:2085. 29. Y. Dong, T. Yoshitomi, J. F. Hu, and J. Cui. (2017). Long noncoding RNAs coordinate functions between mitochondria and the nucleus. Epigenet Chromatin, 10:41. 30. E. Landerer, J. Villegas, V. A. Burzio, L. Oliveira, C. Villota, C. Lopez, F. Restovic, R. Martinez, O. Castillo, and L. O. Burzio. (2011). Nuclear localization of the mitochondrial ncRNAs in normal and cancer cells. Cell Oncol (Dordr), 34:297. 31. V. Bianchessi, I. Badi, M. Bertolotti, P. Nigro, Y. D'Alessandra, M. C. Capogrossi, M. Zanobini, G. Pompilio, A. Raucci, and A. Lauri. (2015). The mitochondrial lncRNA ASncmtRNA-2 is induced in aging and replicative senescence in Endothelial Cells. J Mol Cell Cardiol, 81:62. 32. H. C. Lin, C. C. Yeh, L. Y. Chao, M. H. Tsai, H. H. Chen, E. Y. Chuang, and L. C. Lai. (2018). The hypoxia-responsive lncRNA NDRG-OT1 promotes NDRG1 degradation via ubiquitin-mediated proteolysis in breast cancer cells. Oncotarget, 9:10470. 33. Y. Yamada, T. Ishikawa, and H. Harashima. (2017). Validation of the use of an artificial mitochondrial reporter DNA vector containing a Cytomegalovirus promoter for mitochondrial transgene expression. Biomaterials, 136:56. 34. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat Methods, 9:671. 35. S. Fang, L. Zhang, J. Guo, Y. Niu, Y. Wu, H. Li, L. Zhao, X. Li, X. Teng, X. Sun, L. Sun, M. Q. Zhang, R. Chen, and Y. Zhao. (2018). NONCODEV5: a comprehensive annotation database for long non-coding RNAs. Nucleic Acids Res, 46:D308. 36. P. Wu, Y. Mo, M. Peng, T. Tang, Y. Zhong, X. Deng, F. Xiong, C. Guo, X. Wu, Y. Li, X. Li, G. Li, Z. Zeng, and W. Xiong. (2020). Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Mol Cancer, 19:22. 37. J. Wang, S. Zhu, N. Meng, Y. He, R. Lu, and G. R. Yan. (2019). ncRNA-Encoded Peptides or Proteins and Cancer. Mol Ther, 27:1718. 38. J. Z. Huang, M. Chen, Chen, X. C. Gao, S. Zhu, H. Huang, M. Hu, H. Zhu, and G. R. Yan. (2017). A Peptide Encoded by a Putative lncRNA HOXB-AS3 Suppresses Colon Cancer Growth. Mol Cell, 68:171. 39. N. Wong, and X. Wang. (2015). miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res, 43:D146. 40. V. Agarwal, G. W. Bell, J. W. Nam, and D. P. Bartel. (2015). Predicting effective microRNA target sites in mammalian mRNAs. Elife, 4:e05005. 41. L. Poliseno, L. Salmena, J. Zhang, B. Carver, W. J. Haveman, and P. P. Pandolfi. (2010). A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 465:1033. 42. I. M. Dykes, and C. Emanueli. (2017). Transcriptional and Post-transcriptional Gene Regulation by Long Non-coding RNA. Genomics Proteomics Bioinformatics, 15:177. 43. M. Cesana, D. Cacchiarelli, I. Legnini, T. Santini, O. Sthandier, M. Chinappi, A. Tramontano, and I. Bozzoni. (2011). A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 147:358. 44. J. H. Yoon, K. Abdelmohsen, and M. Gorospe. (2014). Functional interactions among microRNAs and long noncoding RNAs. Semin Cell Dev Biol, 34:9. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78962 | - |
| dc.description.abstract | 長片段非編碼核糖核酸(long non-coding RNA, lncRNA)最近被認為在癌症細胞中扮演著重要的角色,參與調控諸多遺傳途徑。其中,線粒體相關的lncRNA也被發現可調節粒線體功能和代謝。先前我們實驗室使用次世代定序(next generation sequencing)篩選乳癌細胞株MCF-7在常氧、缺氧、復氧的不同環境中,受氧氣調控的lncRNA,找到了受氧氣調控的粒線體lncRNA MTORT1。因此本研究目的即為探討MTORT1在乳癌細胞中的特性、可能扮演的功能角色以及參與調控的機制。首先、研究結果中發現,MTORT1主要分佈於線粒體中,相較於乳腺細胞,乳腺癌細胞中的內源性表達水平較低,並且發現在序列上擁有四個保守區域。此外,免疫螢光染色分析表明MTORT1可能在線粒體中可以轉譯出小分子蛋白。其次、關於MTORT1的功能角色方面,實驗結果顯示抑制MTORT1的表現可增強細胞增殖和遷移,表示在乳癌細胞中MTORT1扮演抑癌基因的角色。最後,我們使用RNA免疫沉澱分析法以及報導基因冷光活性分析法探討MTORT1是否能作為吸附微小RNA (miRNA)的海綿,實驗結果證實MTORT1藉由吸附miR-26a-5p,來調控CREB1和 STK4。總而言之,在這些結果中我們發現了線粒體lncRNA MTORT1的特性、扮演的功能角色以及參與調控的機制,包括可轉譯出小分子蛋白、作為吸附miRNA的海綿,並且能減緩乳腺癌的生長。 | zh_TW |
| dc.description.abstract | Long non-coding RNAs (lncRNAs) have been regarded to participate in multiple genetic pathways in cancer. Also, mitochondria-associated lncRNAs have been discovered to module mitochondrial function and metabolism. Previously, our lab identified oxygen responsive lncRNAs in breast cancer MCF-7 cells under normoxic, hypoxic and re-oxygenated conditions by using next generation sequencing technology. Among them, a novel mitochondrial lncRNA Mitochondrial Oxygen Responsive Transcript 1 (MTORT1) was chosen for further investigation. Therefore, the purpose of this study was to investigate the characterizations, function roles, and mechanisms of MTORT1 in breast cancer cells. First, the characterization of MTORT1 included four conserved regions, lower endogenous expression levels in breast cancer cells, and mainly distributed in mitochondria. In addition, immunofluorescence assays showed that MTORT1 might translate peptides in mitochondria. Second, functional assays revealed that knockdown of MTORT1 enhanced cell proliferation and migration, implicating the tumor suppressor role of this novel mitochondrial lncRNA. Finally, RNA immunoprecipitation and Luciferase reporter assays indicated that MTORT1 served as sponge of miR-26a-5p to up-regulate its target genes, CREB1 and STK4. In summary, our findings shed some light on the characterization, function, and regulatory mechanism of the novel hypoxia-induced mitochondrial lncRNA MTORT1, which could encode peptide, functioned as miRNA sponge, and inhibited breast cancer progression. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:32:34Z (GMT). No. of bitstreams: 1 U0001-1808202013220600.pdf: 2552154 bytes, checksum: ce5780f1f726ace73c4e93a12c2c0e63 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 I 摘要 II Abstract III List of Tables VII List of Figures VIII Chapter 1. Introduction 1 1.1 Hypoxia is a crucial factor in tumor progression 1 1.2 Mitochondria participates in energy metabolism of cancer 2 1.3 Long non-coding RNAs play multiple roles in regulating gene expression 3 1.4 Mitochondrial lncRNAs modulate mitochondrial gene expression and functions 4 1.5 The aim of this study 5 Chapter 2. Materials and Methods 7 2.1 Cell culture and treatment 7 2.2 RNA interference 8 2.3 Plasmid construction 8 2.4 RNA extraction, reverse transcription and quantitative RT-PCR 9 2.5 Western blot 10 2.6 Isolation of mitochondrial, cytoplasmic, and nuclear fractions 11 2.7 Immunofluorescence 11 2.8 Microarray analysis 12 2.9 RNA immunoprecipitation (RIP) 13 2.10 Luciferase reporter assay 14 2.11 MTT assay 15 2.12 Wound healing assay 15 2.13 Colony formation assay 16 2.14 Statistical analysis 16 Chapter 3. Results 18 3.1 MTORT1 was upregulated under hypoxia and downregulated under re-oxygenation in breast cancer cells. 18 3.2 Characterizations of the novel oxygen-responsive lncRNA MTORT1. 19 3.3 MTORT1 may translate peptides in mitochondria. 20 3.4 Identification of MTORT1-downstream genes by microarray analysis. 22 3.5 Knockdown of MTORT1 enhanced cell proliferation and migration in breast cancer cells. 23 3.6 MTORT1 served as miRNA sponge to regulate CREB1 and STK4 by directly interacting with miR-26a-5p. 24 Chapter 4. Discussion 27 4.1. The novel oxygen-responsive lncRNA MTORT1 in breast cancer cells 27 4.2. Potential translational ability of MTORT1 in mitochondria. 28 4.3. Identification of MTORT1-downstream genes by microarrays 29 4.4. MTORT1 served as miRNA sponge and interacted with miR-26a-5p 30 4.5. Limitations of this study 32 4.6. Summary 32 Tables 34 Figures 38 References 53 | |
| dc.language.iso | zh-TW | |
| dc.subject | 調控機制 | zh_TW |
| dc.subject | 特性 | zh_TW |
| dc.subject | 長片段非編碼核糖核酸 | zh_TW |
| dc.subject | 功能 | zh_TW |
| dc.subject | 乳癌 | zh_TW |
| dc.subject | 微小RNA | zh_TW |
| dc.subject | 缺氧 | zh_TW |
| dc.subject | lncRNA | en |
| dc.subject | hypoxia | en |
| dc.subject | miRNA | en |
| dc.subject | breast cancer | en |
| dc.subject | regulatory mechanism | en |
| dc.subject | function | en |
| dc.subject | characterization | en |
| dc.title | 探討缺氧誘導之長片段非編碼核糖核酸MTORT1在乳癌細胞中的調控機制與扮演的功能角色 | zh_TW |
| dc.title | Investigation of Regulatory Mechanisms and Functional Roles of Hypoxia-Induced Long Non-Coding RNA MTORT1 in Breast Cancer Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡孟勳(Mon-Hsun Tsai),楊鎧鍵(Kai-Chien Yang),胡孟君(Meng-Chun Hu) | |
| dc.subject.keyword | 長片段非編碼核糖核酸,特性,功能,調控機制,乳癌,微小RNA,缺氧, | zh_TW |
| dc.subject.keyword | lncRNA,characterization,function,regulatory mechanism,breast cancer,miRNA,hypoxia, | en |
| dc.relation.page | 66 | |
| dc.identifier.doi | 10.6342/NTU202003960 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-18 | - |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1808202013220600.pdf 未授權公開取用 | 2.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
