請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78957
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 何佳安(Ja-an Annie Ho) | |
dc.contributor.author | Pei-tsz Hung | en |
dc.contributor.author | 洪沛慈 | zh_TW |
dc.date.accessioned | 2021-07-11T15:32:12Z | - |
dc.date.available | 2023-08-23 | |
dc.date.copyright | 2018-08-23 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-16 | |
dc.identifier.citation | 1. Rahman, R., A.W. Asombang, and J.A. Ibdah, Characteristics of gastric cancer in Asia. World journal of gastroenterology: WJG, 2014. 20(16): p. 4483.
2. Van Cutsem, E., et al., Gastric cancer. The Lancet, 2016. 388(10060): p. 2654-2664. 3. Reuben, D.B. and V. Mor, Nausea and vomiting in terminal cancer patients. Archives of internal medicine, 1986. 146(10): p. 2021-2023. 4. Van Cutsem, E., et al., The diagnosis and management of gastric cancer: expert discussion and recommendations from the 12th ESMO/World Congress on Gastrointestinal Cancer, Barcelona, 2010. Annals of oncology, 2011. 22(suppl_5): p. v1-v9. 5. Lutz, M.P., et al., Highlights of the EORTC St. Gallen International Expert Consensus on the primary therapy of gastric, gastroesophageal and oesophageal cancer–Differential treatment strategies for subtypes of early gastroesophageal cancer. European Journal of Cancer, 2012. 48(16): p. 2941-2953. 6. Waddell, T., et al., Gastric cancer: ESMO–ESSO–ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology, 2013. 24(suppl_6): p. vi57-vi63. 7. Moehler, M., et al., International comparison of the German evidence-based S3-guidelines on the diagnosis and multimodal treatment of early and locally advanced gastric cancer, including adenocarcinoma of the lower esophagus. Gastric Cancer, 2015. 18(3): p. 550-563. 8. Wang, Q.-X., et al., Altered MiRNA expression in gastric cancer: a systematic review and meta-analysis. Cellular physiology and biochemistry, 2015. 35(3): p. 933-944. 9. Torrecilla, J., et al., Lipid nanoparticles as carriers for RNAi against viral infections: current status and future perspectives. BioMed research international, 2014. 2014. 10. He, L. and G.J. Hannon, MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics, 2004. 5(7): p. 522. 11. Eulalio, A., E. Huntzinger, and E. Izaurralde, Getting to the root of miRNA-mediated gene silencing. Cell, 2008. 132(1): p. 9-14. 12. Guarnieri, D.J. and R.J. DiLeone, MicroRNAs: a new class of gene regulators. Annals of medicine, 2008. 40(3): p. 197-208. 13. van Rooij, E., et al., Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 2007. 316(5824): p. 575-579. 14. Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. cell, 1993. 75(5): p. 843-854. 15. Xiao, C., et al., MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell, 2007. 131(1): p. 146-159. 16. Lynam‐Lennon, N., S.G. Maher, and J.V. Reynolds, The roles of microRNA in cancer and apoptosis. Biological Reviews, 2009. 84(1): p. 55-71. 17. Kloosterman, W.P. and R.H. Plasterk, The diverse functions of microRNAs in animal development and disease. Developmental cell, 2006. 11(4): p. 441-450. 18. He, L., et al., A microRNA component of the p53 tumour suppressor network. Nature, 2007. 447(7148): p. 1130. 19. Yu, Z., et al., A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. The Journal of cell biology, 2008. 182(3): p. 509-517. 20. Sarkar, S., B.K. Dey, and A. Dutta, MiR-322/424 and-503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by down-regulation of Cdc25A. Molecular biology of the cell, 2010. 21(13): p. 2138-2149. 21. Yang, X., et al., miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb–E2F1 activity through a feedback loop by targeting CDK6 and CDC25A. Genes & development, 2009. 23(20): p. 2388-2393. 22. Bueno, M.J. and M. Malumbres, MicroRNAs and the cell cycle. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2011. 1812(5): p. 592-601. 23. Johnson, C.D., et al., The let-7 microRNA represses cell proliferation pathways in human cells. Cancer research, 2007. 67(16): p. 7713-7722. 24. Kumamoto, K., et al., Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence. Cancer research, 2008. 68(9): p. 3193-3203. 25. Tazawa, H., et al., Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proceedings of the National Academy of Sciences, 2007. 104(39): p. 15472-15477. 26. Yamakuchi, M. and C.J. Lowenstein, MiR-34, SIRT1, and p53: the feedback loop. Cell cycle, 2009. 8(5): p. 712-715. 27. Kumar, M.S., et al., Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nature genetics, 2007. 39(5): p. 673. 28. Lu, J., et al., MicroRNA expression profiles classify human cancers. nature, 2005. 435(7043): p. 834. 29. Marcucci, G., et al., MicroRNA expression in cytogenetically normal acute myeloid leukemia. New England Journal of Medicine, 2008. 358(18): p. 1919-1928. 30. Schetter, A.J., et al., MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. Jama, 2008. 299(4): p. 425-436. 31. Esquela-Kerscher, A. and F.J. Slack, Oncomirs—microRNAs with a role in cancer. Nature Reviews Cancer, 2006. 6(4): p. 259. 32. Calin, G.A. and C.M. Croce, MicroRNA signatures in human cancers. Nature reviews cancer, 2006. 6(11): p. 857. 33. Mitchell, P.S., et al., Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences, 2008. 105(30): p. 10513-10518. 34. Taylor, D.D. and C. Gercel-Taylor, MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecologic oncology, 2008. 110(1): p. 13-21. 35. Ho, A.S., et al., Circulating miR-210 as a novel hypoxia marker in pancreatic cancer. Translational oncology, 2010. 3(2): p. 109-113. 36. Ng, E.K., et al., Differential expression of microRNAs in plasma of colorectal cancer patients: a potential marker for colorectal cancer screening. Gut, 2009. 37. Li, B.-s., et al., Plasma microRNAs, miR-223, miR-21 and miR-218, as novel potential biomarkers for gastric cancer detection. PloS one, 2012. 7(7): p. e41629. 38. Zhou, X., et al., Clinical role of circulating miR-223 as a novel biomarker in early diagnosis of cancer patients. International journal of clinical and experimental medicine, 2015. 8(9): p. 16890. 39. Válóczi, A., et al., Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic acids research, 2004. 32(22): p. e175-e175. 40. Li, W. and K. Ruan, MicroRNA detection by microarray. Analytical and bioanalytical chemistry, 2009. 394(4): p. 1117-1124. 41. Shingara, J., et al., An optimized isolation and labeling platform for accurate microRNA expression profiling. Rna, 2005. 11(9): p. 1461-1470. 42. Chen, C., et al., Real-time quantification of microRNAs by stem–loop RT–PCR. Nucleic acids research, 2005. 33(20): p. e179-e179. 43. Li, C., et al., One-step ultrasensitive detection of microRNAs with loop-mediated isothermal amplification (LAMP). Chemical Communications, 2011. 47(9): p. 2595-2597. 44. Li, F., et al., Carbon nanotube-based label-free electrochemical biosensor for sensitive detection of miRNA-24. Biosensors and Bioelectronics, 2014. 54: p. 158-164. 45. Schaertel, B. and R. Firstenberg-Eden, Biosensors in the food industry: present and future. Journal of food protection, 1988. 51(10): p. 811-820. 46. Mascini, M., Affinity electrochemical biosensors for pollution control. Pure and Applied Chemistry, 2001. 73(1): p. 23-30. 47. Malhotra, B.D. and A. Chaubey, Biosensors for clinical diagnostics industry. Sensors and Actuators B: Chemical, 2003. 91(1-3): p. 117-127. 48. Kavita, V., DNA biosensors-a review. Journal of Bioengineering and Biomedical Science, 2017. 7(2). 49. Tuerk, C. and L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990. 249(4968): p. 505-510. 50. Marks, R., Handbook of biosensors and biochips. 2007: John Wiley & Sons. 51. Gu, J., X. Lu, and H. Ju, DNA sensor for recognition of native yeast DNA sequence with methylene blue as an electrochemical hybridization indicator. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 2002. 14(13): p. 949-954. 52. Yamashita, K., et al., Electrochemical detection of nucleic base mismatches with ferrocenyl naphthalene diimide. Analytical biochemistry, 2002. 306(2): p. 188-196. 53. Tombelli, S., et al., Coupling of a DNA piezoelectric biosensor and polymerase chain reaction to detect apolipoprotein E polymorphisms. Biosensors and Bioelectronics, 2000. 15(7-8): p. 363-370. 54. Deng, H. and Z. Gao, Bioanalytical applications of isothermal nucleic acid amplification techniques. Analytica chimica acta, 2015. 853: p. 30-45. 55. Notomi, T., et al., Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects. Journal of Microbiology, 2015. 53(1): p. 1-5. 56. Zhao, Y., et al., Isothermal amplification of nucleic acids. Chemical reviews, 2015. 115(22): p. 12491-12545. 57. Jia, H., et al., Ultrasensitive detection of microRNAs by exponential isothermal amplification. Angewandte Chemie International Edition, 2010. 49(32): p. 5498-5501. 58. Yin, P., et al., Programming biomolecular self-assembly pathways. Nature, 2008. 451(7176): p. 318. 59. Li, B., A.D. Ellington, and X. Chen, Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods. Nucleic acids research, 2011. 39(16): p. e110-e110. 60. Dirks, R.M. and N.A. Pierce, Triggered amplification by hybridization chain reaction. Proceedings of the National Academy of Sciences, 2004. 101(43): p. 15275-15278. 61. Huang, J., et al., Pyrene‐excimer probes based on the hybridization chain reaction for the detection of nucleic acids in complex biological fluids. Angewandte Chemie International Edition, 2011. 50(2): p. 401-404. 62. Xuan, F. and I.-M. Hsing, Triggering hairpin-free chain-branching growth of fluorescent DNA dendrimers for nonlinear hybridization chain reaction. Journal of the American Chemical Society, 2014. 136(28): p. 9810-9813. 63. Zhou, G., et al., Multivalent capture and detection of cancer cells with DNA nanostructured biosensors and multibranched hybridization chain reaction amplification. Analytical chemistry, 2014. 86(15): p. 7843-7848. 64. Kolpashchikov, D.M., A binary DNA probe for highly specific nucleic acid recognition. Journal of the American Chemical Society, 2006. 128(32): p. 10625-10628. 65. Yamaguchi, T., et al., In situ DNA‐hybridization chain reaction (HCR): a facilitated in situ HCR system for the detection of environmental microorganisms. Environmental microbiology, 2015. 17(7): p. 2532-2541. 66. Ge, Z., et al., Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor. Analytical chemistry, 2014. 86(4): p. 2124-2130. 67. Hosek, M. and J. Tang, Polymer-induced bundling of F actin and the depletion force. Physical Review E, 2004. 69(5): p. 051907. 68. Glaser, M., et al., Self-assembly of hierarchically ordered structures in DNA nanotube systems. New Journal of Physics, 2016. 18(5): p. 055001. 69. Kan, Z.-y., et al., G-quadruplex formation in human telomeric (TTAGGG) 4 sequence with complementary strand in close vicinity under molecularly crowded condition. Nucleic acids research, 2007. 35(11): p. 3646-3653. 70. Kim, M.-Y., et al., The different biological effects of telomestatin and TMPyP4 can be attributed to their selectivity for interaction with intramolecular or intermolecular G-quadruplex structures. Cancer research, 2003. 63(12): p. 3247-3256. 71. Shimron, S., et al., Amplified detection of DNA through the enzyme-free autonomous assembly of hemin/G-quadruplex DNAzyme nanowires. Analytical chemistry, 2011. 84(2): p. 1042-1048. 72. Tsujiura, M., et al., Circulating microRNAs in plasma of patients with gastric cancers. British journal of cancer, 2010. 102(7): p. 1174. 73. Asangani, I.A., et al., MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 2008. 27(15): p. 2128. 74. Frankel, L.B., et al., Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. Journal of Biological Chemistry, 2007. 75. Si, M., et al., miR-21-mediated tumor growth. Oncogene, 2007. 26(19): p. 2799. 76. He, H.-X., et al., Fabrication of designed architectures of Au nanoparticles on solid substrate with printed self-assembled monolayers as templates. Langmuir, 2000. 16(8): p. 3846-3851. 77. Ho, J.-a.A., et al., Gold-nanostructured immunosensor for the electrochemical sensing of biotin based on liposomal competitive assay. Journal of nanoscience and nanotechnology, 2009. 9(4): p. 2324-2329. 78. Steel, A., et al., Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly. Biophysical journal, 2000. 79(2): p. 975-981. 79. Ricci, F., et al., Effect of molecular crowding on the response of an electrochemical DNA sensor. Langmuir, 2007. 23(12): p. 6827-6834. 80. Lagos-Quintana, M., et al., New microRNAs from mouse and human. Rna, 2003. 9(2): p. 175-179. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78957 | - |
dc.description.abstract | 近年來,微型核醣核酸 (miRNA) 被指出為多種疾病的新興生物標誌 (Biomarker),並被視有取代傳統侵入式活檢手術的發展潛力。而miR-223在文獻中被提出為一可靠的早期胃癌之癌症標誌,因此我們擬發展一個對於胃癌病患體內異常表現之miRNA-223具有高專一性、高靈敏性的檢測平台。此實驗中,我們以核酸迴路 (Nucleic acid circuits) 搭配電化學分析平台設計了一種非酵素型的檢測方法。首先,目標miRNA會被雙探針系統 (Binary probe) 專一性的辨識,以此誘使一條單股的DNA initiator被釋放並啟動下一階段的雜合連鎖反應 (Hybridization Chain Reaction, HCR),讓訊號得以被放大。在此HCR反應中,髮夾結構的DNA hairpins自發性的組裝形成DNA奈米線 (Nanowires),並能夠與修飾在電極表面上的核酸探針進行雜合。此時,位於hairpin上被截成兩段的G-四聯體 (G-quadruplex) 序列會由於形成長鏈的雙股結構而互相靠近,並且在加入氯化血紅素 (Hemin) 時形成具有類似辣根過氧化物酶 (Horseradish peroxidase, HRP) 活性的DNAzyme。當環境中有對苯二酚 (Hydroquinone,HQ) 作為中介物質時,具HRP活性的DNAzyme便可催化過氧化氫的還原,並產生電化學上的訊號。此種不需酵素的檢測策略能在溶液系統中靈敏且專一性的檢測出微量的miRNA,可在合理的反應時間內達成且耗費相對低的實驗成本。此系統之偵測極限 (Limit of detection) 達到2.15 pM,線性範圍在1 pM~1000 pM之間,涵跨3個數量級。預期在未來能夠將我們發展出的篩檢策略應用於常規性的身體檢查,於胃癌的早期階段將其篩檢出並輔助醫生進行即時且準確的臨床診斷及治療,藉此提升胃癌病患的存活率。 | zh_TW |
dc.description.abstract | MicroRNAs have been reported intensively as novel biomarkers for varieties of diseases providing alternatives to replace traditional invasive biopsy procedures. MiR-223 was found previously to be a reliable gastric cancer marker in early stage. We therefore aimed to develop an analytical method with high specificity and sensitivity to detect miR-223 that expressed abnormally in patients with gastric cancer. A non-enzymatic detection method was herein designed and developed, combining nucleic acid circuits and electrochemical detection platform. Firstly, the target miRNA was selectively recognized by one of the binary probes to induce a release of ssDNA initiators, and subsequently promoting a Hybridization Chain Reaction (HCR) to occur for amplification. It was followed by the generation of the DNA nanowires by autonomous assembly of hairpins that could hybridize with capture probes modified on the electrode surface. Due to the approaching of two split sequences of G-quadruplex on the hairpins, a horseradish peroxidase (HRP)-mimicking DNAzyme was formed simultaneously, upon addition of hemin. With presence of hydroquinone as mediator, HRP-mimicking DNAzyme catalyzed redox reaction of hydrogen peroxide, producing an electrochemical signal. This enzyme-free strategy enables not only sensitive but selective detection of trace amount of miRNA in buffer system with reasonable assay time and relatively low cost. Our detection platform offers a detection limit of 2.15 pM, and a linear dynamic range of 1 pM~1000 pM, covering 3 orders of magnitude. Our assay design may be further extended to be used in routine physical checkup, leading to an early detection procedure for gastric cancer that aids doctors to make prompt and accurate clinical decision to improve survival rate. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:32:12Z (GMT). No. of bitstreams: 1 ntu-107-R05b22058-1.pdf: 6819113 bytes, checksum: 907bd54cf8148a3e7f6c328e70d0c5d5 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 目錄
第一章 緒論 1 1.1 胃癌 (Gastric cancer) 1 1.1.1 胃癌現狀 1 1.1.2 胃癌之成因、症狀與治療 2 1.1.3 胃癌診斷 3 1.2 微型核醣核酸 (MicroRNA) 3 1.2.1 miRNA的生成與作用機制 3 1.2.2 miRNA與癌症之間的關係 5 1.2.3 循環性miRNA (Circulating miRNA) 5 1.2.4 miRNA偵測方法 5 1.3 DNA生化感測器 (DNA Biosensor) 9 1.3.1 Biosensor簡介與應用 9 1.3.2 DNA Hybridization Biosensors 9 1.3.3 SPR-DNA Biosensor 9 1.3.4 Electrochemical DNA Biosensors 9 1.4 等溫核酸放大技術 (Isothermal amplification) 10 1.4.1 指數擴增反應 (Exponential Amplification Reaction, EXPAR) 11 1.4.2 Catalyzed Hairpin Assembly (CHA) 11 1.4.3 雜交連鎖反應 (Hybridization Chain Reaction, HCR) 12 1.5 電化學偵測 13 1.5.1 電化學偵測方法簡介 13 1.5.2 循環伏安法(Cyclic Voltammetry, CV) 13 1.5.3 微分脈衝伏安法 (Differential Pulse Voltammetry, DPV) 15 1.5.4 方波伏安法(Square wave Voltammetry, SWV) 16 1.5.5 安培法 (Amperometry, i-t) 16 第二章 實驗材料與方法 17 2.1核酸序列 17 2.2實驗試劑與材料 19 2.3實驗儀器 22 2.4緩衝溶液 24 2.5 聚丙烯醯胺膠體電泳Polyacrylamide gel electrophoresis (PAGE) 25 2.6 雙探針系統中Binary probe A與B之序列優化 25 2.7 雙探針系統中各式duplex之Melting curve與Tm值測定 26 2.8 雙探針反應中核酸探針比例的優化 26 2.9 雙探針系統反應時間最佳化 27 2.10 雙探針系統對於目標miRNA的專一性測試 27 2.11 Hybridization chain reaction系統的可行性測試 27 2.12 探討含有Polyethylene glycol的反應溶液對HCR反應的促進效果 28 2.13 以循環伏安法鑑定工作電極表面探針修飾 28 2.14 鑑定電極表面核酸探針修飾密度 32 2.15 以Positive control DNA進行電化學輸出平台之條件優化 32 2.16 以電化學biosensor應用於目標miRNA之分析 35 2.17 電化學平台之選擇性測試 35 第三章 結果與討論 36 3.1 實驗設計 36 3.2 雙探針系統中Binary probe A與B之序列優化 42 3.3 雙探針系統中各式duplex之Melting curve與Tm值測定 47 3.4 雙探針反應中核酸探針比例的優化 49 3.4.1 Binary probe A與 ∆(BI’) 之間比例最佳化 49 3.4.2 Binary probe B與Initiator’ 互補配對比例最佳化 51 3.5 雙探針系統反應時間最佳化 53 3.6 雙探針系統對於目標miRNA的專一性測試 55 3.6.1 對於miR-223與其他胃癌相關miRNA的選擇性 55 3.6.2 對於miR-223與其DNA analog的選擇性 56 3.7 Hybridization chain reaction系統的可行性測試 58 3.8 探討含有PEG的反應溶液對HCR反應的促進效果 61 3.9 以循環伏安法鑑定工作電極表面探針修飾 64 3.10 鑑定電極表面核酸探針修飾密度 65 3.11 以Positive control DNA進行電化學輸出平台之條件優化 67 3.11.1 電化學平台中Hydroquinone (HQ) 與H2O2濃度最佳化 68 3.11.2 電化學平台中Hemin濃度最佳化 70 3.12 以Ru(NH3)63+為電化學活性分子鑑定於PEG溶液中反應之HCR產物 72 3.13 應用電化學平台以分析目標核酸分子 (miRNA-223) 74 3.14 電化學平台之選擇性測試 76 第四章 結論 78 參考文獻 79 | |
dc.language.iso | zh-TW | |
dc.title | 以非酵素型訊號放大策略結合電化學分析平台應用於研發液體活檢中之胃癌標記核酸分子 | zh_TW |
dc.title | Liquid biopsy for early detection of gastric cancer by combination of enzyme-free signal amplification and electrochemical platform | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳立真,徐士蘭,周芳如,官翰文 | |
dc.subject.keyword | 胃癌,miR-223,電化學分析平台,雙探針系統,雜合連鎖反應,G-四聯體,對苯二酚, | zh_TW |
dc.subject.keyword | gastric cancer,miR-223,electrochemical platform,binary probe,HCR,G-quadruplex,hydroquinone, | en |
dc.relation.page | 87 | |
dc.identifier.doi | 10.6342/NTU201803583 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-16 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科技學系 | zh_TW |
dc.date.embargo-lift | 2023-08-23 | - |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-R05b22058-1.pdf 目前未授權公開取用 | 6.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。