請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78953完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蕭寧馨 | |
| dc.contributor.author | Ying-Chen Huang | en |
| dc.contributor.author | 黃映晨 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:31:54Z | - |
| dc.date.available | 2023-08-23 | |
| dc.date.copyright | 2018-08-23 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-16 | |
| dc.identifier.citation | 1 Siegel, R., Ward, E., Brawley, O. & Jemal, A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA: a cancer journal for clinicians 61, 212-236, doi:10.3322/caac.20121 (2011).
2 Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International journal of cancer 136, E359-386, doi:10.1002/ijc.29210 (2015). 3 Lee, C. L., Ko, Y. C. & Choong, C. S. Survival rate for liver cancer in Taiwan. Zhonghua yi xue za zhi = Chinese medical journal; Free China ed 63, 16-20 (2000). 4 Janevska, D., Chaloska-Ivanova, V. & Janevski, V. Hepatocellular Carcinoma: Risk Factors, Diagnosis and Treatment. Open access Macedonian journal of medical sciences 3, 732-736, doi:10.3889/oamjms.2015.111 (2015). 5 Lavanchy, D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. Journal of viral hepatitis 11, 97-107 (2004). 6 Hong, M. et al. Trained immunity in newborn infants of HBV-infected mothers. Nature communications 6, 6588, doi:10.1038/ncomms7588 (2015). 7 Kim, H. & Kim, B. J. Association of preS/S Mutations with Occult Hepatitis B Virus (HBV) Infection in South Korea: Transmission Potential of Distinct Occult HBV Variants. International journal of molecular sciences 16, 13595-13609, doi:10.3390/ijms160613595 (2015). 8 Oakes, K. Hepatitis B: prevalence and pathophysiology. Nursing times 110, 12-16 (2014). 9 Popper, H., Shafritz, D. A. & Hoofnagle, J. H. Relation of the hepatitis B virus carrier state to hepatocellular carcinoma. Hepatology 7, 764-772 (1987). 10 Fattovich, G., Stroffolini, T., Zagni, I. & Donato, F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology 127, S35-50 (2004). 11 Koshiol, J., Liu, Z., O'Brien, T. R. & Hildesheim, A. Beasley's 1981 paper: The power of a well-designed cohort study to drive liver cancer research and prevention. Cancer epidemiology 53, 195-199, doi:10.1016/j.canep.2018.01.007 (2018). 12 Qu, J. et al. HBV DNA can bind to P53 protein and influence p53 transactivation in hepatoma cells. Biochemical and biophysical research communications 386, 504-509, doi:10.1016/j.bbrc.2009.06.081 (2009). 13 Anthony, P. P. Hepatocellular carcinoma: an overview. Histopathology 39, 109-118 (2001). 14 Liang, T. J. Hepatitis B: The Virus and Disease. Hepatology 49, S13-21, doi:10.1002/hep.22881 (2009). 15 Geng, M., Xin, X., Bi, L. Q., Zhou, L. T. & Liu, X. H. Molecular mechanism of hepatitis B virus X protein function in hepatocarcinogenesis. World journal of gastroenterology 21, 10732-10738, doi:10.3748/wjg.v21.i38.10732 (2015). 16 Neuveut, C., Wei, Y. & Buendia, M. A. Mechanisms of HBV-related hepatocarcinogenesis. Journal of hepatology 52, 594-604, doi:10.1016/j.jhep.2009.10.033 (2010). 17 Murakami, S., Cheong, J. H. & Kaneko, S. Human hepatitis virus X gene encodes a regulatory domain that represses transactivation of X protein. The Journal of biological chemistry 269, 15118-15123 (1994). 18 Elmore, L. W. et al. Hepatitis B virus X protein and p53 tumor suppressor interactions in the modulation of apoptosis. Proceedings of the National Academy of Sciences of the United States of America 94, 14707-14712 (1997). 19 Tang, H. et al. The transcriptional transactivation function of HBx protein is important for its augmentation role in hepatitis B virus replication. Journal of virology 79, 5548-5556, doi:10.1128/jvi.79.9.5548-5556.2005 (2005). 20 Li, S. K., Ho, S. F., Tsui, K. W., Fung, K. P. & Waye, M. Y. Identification of functionally important amino acid residues in the mitochondria targeting sequence of hepatitis B virus X protein. Virology 381, 81-88, doi:10.1016/j.virol.2008.07.037 (2008). 21 Hodgson, A. J., Hyser, J. M., Keasler, V. V., Cang, Y. & Slagle, B. L. Hepatitis B virus regulatory HBx protein binding to DDB1 is required but is not sufficient for maximal HBV replication. Virology 426, 73-82, doi:10.1016/j.virol.2012.01.021 (2012). 22 Tang, H., Oishi, N., Kaneko, S. & Murakami, S. Molecular functions and biological roles of hepatitis B virus x protein. Cancer science 97, 977-983, doi:10.1111/j.1349-7006.2006.00299.x (2006). 23 Henkler, F. et al. Intracellular localization of the hepatitis B virus HBx protein. The Journal of general virology 82, 871-882, doi:10.1099/0022-1317-82-4-871 (2001). 24 Yang, Y. et al. HBV X protein (HBX) interacts with general transcription factor TFIIB both in vitro and in vivo. Chinese medical sciences journal = Chung-kuo i hsueh k'o hsueh tsa chih 14, 152-157 (1999). 25 Haviv, I., Shamay, M., Doitsh, G. & Shaul, Y. Hepatitis B virus pX targets TFIIB in transcription coactivation. Molecular and cellular biology 18, 1562-1569 (1998). 26 Jaitovich-Groisman, I. et al. Transcriptional regulation of the TFIIH transcription repair components XPB and XPD by the hepatitis B virus x protein in liver cells and transgenic liver tissue. The Journal of biological chemistry 276, 14124-14132, doi:10.1074/jbc.M010852200 (2001). 27 Maguire, H. F., Hoeffler, J. P. & Siddiqui, A. HBV X protein alters the DNA binding specificity of CREB and ATF-2 by protein-protein interactions. Science (New York, N.Y.) 252, 842-844 (1991). 28 Kekule, A. S., Lauer, U., Weiss, L., Luber, B. & Hofschneider, P. H. Hepatitis B virus transactivator HBx uses a tumour promoter signalling pathway. Nature 361, 742-745, doi:10.1038/361742a0 (1993). 29 Zhang, X., Zhang, H. & Ye, L. Effects of hepatitis B virus X protein on the development of liver cancer. The Journal of laboratory and clinical medicine 147, 58-66, doi:10.1016/j.lab.2005.10.003 (2006). 30 Guan, J. et al. Involvement of extracellular signal-regulated kinase/mitogen-activated protein kinase pathway in multidrug resistance induced by HBx in hepatoma cell line. World journal of gastroenterology 10, 3522-3527 (2004). 31 Waris, G., Huh, K. W. & Siddiqui, A. Mitochondrially associated hepatitis B virus X protein constitutively activates transcription factors STAT-3 and NF-kappa B via oxidative stress. Molecular and cellular biology 21, 7721-7730, doi:10.1128/mcb.21.22.7721-7730.2001 (2001). 32 Lee, Y. H. & Yun, Y. HBx protein of hepatitis B virus activates Jak1-STAT signaling. The Journal of biological chemistry 273, 25510-25515 (1998). 33 Zhang, L., Cao, Y. & Song, J. [The correlation between integration of HBV X, S, Pre-S, C gene and the expression of oncogenes/tumor suppressor genes in primary hepatocellular carcinoma]. Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese journal of hepatology 7, 138-139 (1999). 34 Lee, S. G. & Rho, H. M. Transcriptional repression of the human p53 gene by hepatitis B viral X protein. Oncogene 19, 468-471, doi:10.1038/sj.onc.1203312 (2000). 35 Choi, B. H., Choi, M., Jeon, H. Y. & Rho, H. M. Hepatitis B viral X protein overcomes inhibition of E2F1 activity by pRb on the human Rb gene promoter. DNA and cell biology 20, 75-80, doi:10.1089/104454901750070274 (2001). 36 Zhu, H., Wang, Y., Chen, J., Cheng, G. & Xue, J. Transgenic mice expressing hepatitis B virus X protein are more susceptible to carcinogen induced hepatocarcinogenesis. Experimental and molecular pathology 76, 44-50 (2004). 37 Fu, Y. X., Huang, G., Wang, Y. & Chaplin, D. D. B lymphocytes induce the formation of follicular dendritic cell clusters in a lymphotoxin alpha-dependent fashion. The Journal of experimental medicine 187, 1009-1018 (1998). 38 Ware, C. F. Network communications: lymphotoxins, LIGHT, and TNF. Annual review of immunology 23, 787-819, doi:10.1146/annurev.immunol.23.021704.115719 (2005). 39 Rennert, P. D., Browning, J. L., Mebius, R., Mackay, F. & Hochman, P. S. Surface lymphotoxin alpha/beta complex is required for the development of peripheral lymphoid organs. The Journal of experimental medicine 184, 1999-2006 (1996). 40 Tumanov, A. V., Kuprash, D. V. & Nedospasov, S. A. The role of lymphotoxin in development and maintenance of secondary lymphoid tissues. Cytokine & growth factor reviews 14, 275-288 (2003). 41 Etemadi, N. et al. Lymphotoxin alpha induces apoptosis, necroptosis and inflammatory signals with the same potency as tumour necrosis factor. The FEBS journal 280, 5283-5297, doi:10.1111/febs.12419 (2013). 42 Tang, H., Zhu, M., Qiao, J. & Fu, Y. X. Lymphotoxin signalling in tertiary lymphoid structures and immunotherapy. Cellular & molecular immunology, doi:10.1038/cmi.2017.13 (2017). 43 Dwyer, B. J., Olynyk, J. K., Ramm, G. A. & Tirnitz-Parker, J. E. TWEAK and LTbeta Signaling during Chronic Liver Disease. Frontiers in immunology 5, 39, doi:10.3389/fimmu.2014.00039 (2014). 44 Wolf, M. J., Seleznik, G. M., Zeller, N. & Heikenwalder, M. The unexpected role of lymphotoxin beta receptor signaling in carcinogenesis: from lymphoid tissue formation to liver and prostate cancer development. Oncogene 29, 5006-5018, doi:10.1038/onc.2010.260 (2010). 45 Browning, J. L. & French, L. E. Visualization of lymphotoxin-beta and lymphotoxin-beta receptor expression in mouse embryos. Journal of immunology (Baltimore, Md. : 1950) 168, 5079-5087 (2002). 46 Tumanov, A. V. et al. T cell-derived lymphotoxin regulates liver regeneration. Gastroenterology 136, 694-704.e694, doi:10.1053/j.gastro.2008.09.015 (2009). 47 Ruddell, R. G., Mann, D. A. & Ramm, G. A. The function of serotonin within the liver. Journal of hepatology 48, 666-675, doi:10.1016/j.jhep.2008.01.006 (2008). 48 Haybaeck, J. et al. A lymphotoxin-driven pathway to hepatocellular carcinoma. Cancer cell 16, 295-308, doi:10.1016/j.ccr.2009.08.021 (2009). 49 Lee, S. H., Park, S. G., Lim, S. O. & Jung, G. The hepatitis B virus X protein up-regulates lymphotoxin alpha expression in hepatocytes. Biochimica et biophysica acta 1741, 75-84, doi:10.1016/j.bbadis.2004.10.004 (2005). 50 Lowes, K. N., Croager, E. J., Abraham, L. J., Olynyk, J. K. & Yeoh, G. C. Upregulation of lymphotoxin beta expression in liver progenitor (oval) cells in chronic hepatitis C. Gut 52, 1327-1332 (2003). 51 Oeckinghaus, A., Hayden, M. S. & Ghosh, S. Crosstalk in NF-kappaB signaling pathways. Nature immunology 12, 695-708, doi:10.1038/ni.2065 (2011). 52 Yamamoto, Y., Yin, M. J. & Gaynor, R. B. IkappaB kinase alpha (IKKalpha) regulation of IKKbeta kinase activity. Molecular and cellular biology 20, 3655-3666 (2000). 53 Li, Z. W. et al. The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. The Journal of experimental medicine 189, 1839-1845 (1999). 54 Li, X. et al. IKKalpha, IKKbeta, and NEMO/IKKgamma are each required for the NF-kappa B-mediated inflammatory response program. The Journal of biological chemistry 277, 45129-45140, doi:10.1074/jbc.M205165200 (2002). 55 Zandi, E. & Karin, M. Bridging the gap: composition, regulation, and physiological function of the IkappaB kinase complex. Molecular and cellular biology 19, 4547-4551 (1999). 56 Baldwin, A. S., Jr. Series introduction: the transcription factor NF-kappaB and human disease. J Clin Invest 107, 3-6, doi:10.1172/jci11891 (2001). 57 Sun, S. C. The non-canonical NF-kappaB pathway in immunity and inflammation. Nat Rev Immunol 17, 545-558, doi:10.1038/nri.2017.52 (2017). 58 Sun, S.-C. Non-canonical NF-κB signaling pathway. Cell Research 21, 71-85, doi:10.1038/cr.2010.177 (2011). 59 Cildir, G., Low, K. C. & Tergaonkar, V. Noncanonical NF-kappaB Signaling in Health and Disease. Trends in molecular medicine 22, 414-429, doi:10.1016/j.molmed.2016.03.002 (2016). 60 Bombardieri, M., Lewis, M. & Pitzalis, C. Ectopic lymphoid neogenesis in rheumatic autoimmune diseases. Nature reviews. Rheumatology 13, 141-154, doi:10.1038/nrrheum.2016.217 (2017). 61 Hjelmstrom, P. Lymphoid neogenesis: de novo formation of lymphoid tissue in chronic inflammation through expression of homing chemokines. J Leukoc Biol 69, 331-339 (2001). 62 Dejardin, E. The alternative NF-kappaB pathway from biochemistry to biology: pitfalls and promises for future drug development. Biochemical pharmacology 72, 1161-1179, doi:10.1016/j.bcp.2006.08.007 (2006). 63 Pitzalis, C., Jones, G. W., Bombardieri, M. & Jones, S. A. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat Rev Immunol 14, 447-462, doi:10.1038/nri3700 (2014). 64 Martinet, L. et al. Human solid tumors contain high endothelial venules: association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer. Cancer research 71, 5678-5687, doi:10.1158/0008-5472.Can-11-0431 (2011). 65 Drayton, D. L., Liao, S., Mounzer, R. H. & Ruddle, N. H. Lymphoid organ development: from ontogeny to neogenesis. Nature immunology 7, 344-353, doi:10.1038/ni1330 (2006). 66 Ruddle, N. H. Lymphoid neo-organogenesis: lymphotoxin's role in inflammation and development. Immunologic research 19, 119-125, doi:10.1007/bf02786481 (1999). 67 De Togni, P. et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science (New York, N.Y.) 264, 703-707 (1994). 68 Kratz, A., Campos-Neto, A., Hanson, M. S. & Ruddle, N. H. Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. The Journal of experimental medicine 183, 1461-1472 (1996). 69 Luther, S. A. et al. Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. Journal of immunology (Baltimore, Md. : 1950) 169, 424-433 (2002). 70 Finkin, S. et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nature immunology 16, 1235-1244, doi:10.1038/ni.3290 (2015). 71 de Chaisemartin, L. et al. Characterization of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer. Cancer research 71, 6391-6399, doi:10.1158/0008-5472.Can-11-0952 (2011). 72 Dieu-Nosjean, M. C. et al. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 26, 4410-4417, doi:10.1200/jco.2007.15.0284 (2008). 73 Gu-Trantien, C. et al. CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest 123, 2873-2892, doi:10.1172/jci67428 (2013). 74 Nzula, S., Going, J. J. & Stott, D. I. Antigen-driven clonal proliferation, somatic hypermutation, and selection of B lymphocytes infiltrating human ductal breast carcinomas. Cancer research 63, 3275-3280 (2003). 75 Coppola, D. et al. Unique ectopic lymph node-like structures present in human primary colorectal carcinoma are identified by immune gene array profiling. The American journal of pathology 179, 37-45, doi:10.1016/j.ajpath.2011.03.007 (2011). 76 Bergomas, F. et al. Tertiary intratumor lymphoid tissue in colo-rectal cancer. Cancers (Basel) 4, 1-10, doi:10.3390/cancers4010001 (2011). 77 Goc, J., Fridman, W. H., Sautes-Fridman, C. & Dieu-Nosjean, M. C. Characteristics of tertiary lymphoid structures in primary cancers. Oncoimmunology 2, e26836, doi:10.4161/onci.26836 (2013). 78 Hamanishi, J. et al. Activated local immunity by CC chemokine ligand 19-transduced embryonic endothelial progenitor cells suppresses metastasis of murine ovarian cancer. Stem Cells 28, 164-173, doi:10.1002/stem.256 (2010). 79 Di Caro, G. et al. Occurrence of tertiary lymphoid tissue is associated with T-cell infiltration and predicts better prognosis in early-stage colorectal cancers. Clinical cancer research : an official journal of the American Association for Cancer Research 20, 2147-2158, doi:10.1158/1078-0432.Ccr-13-2590 (2014). 80 Messina, J. L. et al. 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? Scientific reports 2, 765, doi:10.1038/srep00765 (2012). 81 Goodwin, T. J. et al. Liver specific gene immunotherapies resolve immune suppressive ectopic lymphoid structures of liver metastases and prolong survival. Biomaterials 141, 260-271, doi:10.1016/j.biomaterials.2017.07.007 (2017). 82 Murakami, S. Hepatitis B virus X protein: a multifunctional viral regulator. Journal of gastroenterology 36, 651-660 (2001). 83 Jia, L., Wang, X. W. & Harris, C. C. Hepatitis B virus X protein inhibits nucleotide excision repair. International journal of cancer 80, 875-879 (1999). 84 Mathonnet, G., Lachance, S., Alaoui-Jamali, M. & Drobetsky, E. A. Expression of hepatitis B virus X oncoprotein inhibits transcription-coupled nucleotide excision repair in human cells. Mutation research 554, 305-318, doi:10.1016/j.mrfmmm.2004.05.010 (2004). 85 Fischer, M., Runkel, L. & Schaller, H. HBx protein of hepatitis B virus interacts with the C-terminal portion of a novel human proteasome alpha-subunit. Virus genes 10, 99-102 (1995). 86 Schuster, R. et al. Conserved transactivating and pro-apoptotic functions of hepadnaviral X protein in ortho- and avihepadnaviruses. Oncogene 21, 6606-6613, doi:10.1038/sj.onc.1205916 (2002). 87 Lara-Pezzi, E. et al. The hepatitis B virus X protein promotes tumor cell invasion by inducing membrane-type matrix metalloproteinase-1 and cyclooxygenase-2 expression. J Clin Invest 110, 1831-1838, doi:10.1172/jci15887 (2002). 88 Hubbard, A. K. & Rothlein, R. Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free radical biology & medicine 28, 1379-1386 (2000). 89 Fotis, L. et al. Intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 at the early stages of atherosclerosis in a rat model. In vivo (Athens, Greece) 26, 243-250 (2012). 90 Kawaguchi, S. et al. VLA-4 molecules on tumor cells initiate an adhesive interaction with VCAM-1 molecules on endothelial cell surface. Japanese journal of cancer research : Gann 83, 1304-1316 (1992). 91 Barone, F. et al. CXCL13, CCL21, and CXCL12 expression in salivary glands of patients with Sjogren's syndrome and MALT lymphoma: association with reactive and malignant areas of lymphoid organization. Journal of immunology (Baltimore, Md. : 1950) 180, 5130-5140 (2008). 92 Christopherson, K. W., 2nd, Hood, A. F., Travers, J. B., Ramsey, H. & Hromas, R. A. Endothelial induction of the T-cell chemokine CCL21 in T-cell autoimmune diseases. Blood 101, 801-806, doi:10.1182/blood-2002-05-1586 (2003). 93 Kucia, M. et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells 23, 879-894, doi:10.1634/stemcells.2004-0342 (2005). 94 Lombardi, L. et al. Chemokine receptor CXCR4: role in gastrointestinal cancer. Critical reviews in oncology/hematology 88, 696-705, doi:10.1016/j.critrevonc.2013.08.005 (2013). 95 Zeelenberg, I. S., Ruuls-Van Stalle, L. & Roos, E. The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer research 63, 3833-3839 (2003). 96 Wuu, K. D. et al. Karyotypic characterization of an established human hepatoma cell line HA22T/VGH. Cancer genetics and cytogenetics 26, 279-286 (1987). 97 Alexopoulou, A. N., Couchman, J. R. & Whiteford, J. R. The CMV early enhancer/chicken beta actin (CAG) promoter can be used to drive transgene expression during the differentiation of murine embryonic stem cells into vascular progenitors. BMC cell biology 9, 2, doi:10.1186/1471-2121-9-2 (2008). 98 Wang, W. et al. Impact of different promoters, promoter mutation, and an enhancer on recombinant protein expression in CHO cells. Scientific reports 7, 10416, doi:10.1038/s41598-017-10966-y (2017). 99 Sautes-Fridman, C. et al. Tertiary Lymphoid Structures in Cancers: Prognostic Value, Regulation, and Manipulation for Therapeutic Intervention. Frontiers in immunology 7, 407, doi:10.3389/fimmu.2016.00407 (2016). 100 Su, F. & Schneider, R. J. Hepatitis B virus HBx protein activates transcription factor NF-kappaB by acting on multiple cytoplasmic inhibitors of rel-related proteins. Journal of virology 70, 4558-4566 (1996). 101 Worm, M. M., Tsytsykova, A. & Geha, R. S. CD40 ligation and IL-4 use different mechanisms of transcriptional activation of the human lymphotoxin alpha promoter in B cells. European journal of immunology 28, 901-906, doi:10.1002/(sici)1521-4141(199803)28:03<901::Aid-immu901>3.0.Co;2-s (1998). 102 Kuprash, D. V. et al. Functional analysis of the lymphotoxin-beta promoter. Sequence requirements for PMA activation. Journal of immunology (Baltimore, Md. : 1950) 156, 2465-2472 (1996). 103 Marrero, J. A. et al. Prognosis of hepatocellular carcinoma: comparison of 7 staging systems in an American cohort. Hepatology 41, 707-716, doi:10.1002/hep.20636 (2005). 104 Cillo, U. et al. Prospective validation of the Barcelona Clinic Liver Cancer staging system. Journal of hepatology 44, 723-731, doi:10.1016/j.jhep.2005.12.015 (2006). 105 Heimbach, J. K. et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 67, 358-380, doi:10.1002/hep.29086 (2018). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78953 | - |
| dc.description.abstract | B型肝炎病毒X蛋白質 (HBx) 是由B型肝炎病毒所編碼出來的一種多功能性蛋白質,與肝癌的形成有關。異位類淋巴結構 (ELSs) 是由B細胞和T 細胞所組成的淋巴集結體,常見於慢性發炎的部位。先前的研究指出肝細胞中的ELSs對於肝癌病患有較差的預後,再者,ELSs的形成與淋巴毒素 (LT)-β所驅動之非典型NF-κB訊息傳遞途徑的活化有關。為了瞭解HBx在晚期肝癌中形成ELSs所扮演的角色,我們將HBx基因分別利用轉染和感染的方式植入肝癌細胞株中,並以即時定量聚合酶連鎖反應和西方墨點法去鑑定LT家族與非典型NF-κB相關訊息的表達。研究結果顯示,在表現HBx的HA22T/VGH肝癌細胞株中,會增加LTα和LTβ的表現,並且透過活化非經典型NF-κB訊息傳遞路徑,促進下游效應因子─趨化因子CXCL12、CXCL13和CCL21的表達,吸引B細胞與T 細胞過來聚集。由我們的研究結果可知HBx亦具有調控ELSs形成的功能,此機制的明朗化將提供一種新型的免疫治療策略,治療由HBV誘導所形成之肝癌。 | zh_TW |
| dc.description.abstract | Hepatitis B virus X protein (HBx) is a multifunctional protein encoded by the hepatitis B virus that involved in hepatocarcinogenesis. Ectopic lymphoid-like structures (ELSs) are lymphoid aggregates mainly composed of B cells and T cells, frequently developed at sites of chronic inflammation. Hepatic ELSs indicates poor prognosis for hepatocellular carcinoma (HCC), which are associated with activation of the lymphotoxin (LT)-β-driven non-canonical NF-κB signaling pathway. To understand the role of HBx in ELSs formation in advanced HCC, we used HBx-transfected and HBx-infected HCC cell lines to identify the expression of LT family and non-canonical NF-κB signals by real-time PCR and western bloting. The data showed that HBx expression in HA22T/VGH cells up-regulated LTα, LTβ and their downstream effectors, the chemokines CXCL12, CXCL13 and CCL21 which are necessary for recruitment of B cells and T cells, through stimulating the non-canonical NF-κB signaling pathway. Our findings revealed that HBx also functioned as a regulator in ELSs formation, providing a possibility to develop a novel immunotherapeutic strategy for treating HBV-induced HCC. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:31:54Z (GMT). No. of bitstreams: 1 ntu-107-R05b22018-1.pdf: 3121855 bytes, checksum: be016dc7c5a33df5833e3db22a1b6293 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 謝誌 i
中文摘要 iii Abstract iv 第一章 緒論 1 1.1 B型肝炎病毒 (Hepatitis B Virus, HBV) 的感染與肝癌的發生 1 1.2 B型肝炎病毒X蛋白扮演重要的調控角色 3 1.3 HBV X蛋白質在細胞核與細胞質中參與的訊息調控 5 1.4 HBV X蛋白質與淋巴毒素 (Lymphotoxin, LT) 的關係 6 1.5 經典型與非經典型NF-κB訊息傳遞路徑的比較 8 1.6異位類淋巴結構 (Ectopic lymphoid-like structures, ELSs) 的組成與功能 10 1.7 異位類淋巴結構形成的機制 11 1.7.1異位類淋巴結構形成的初始階段 11 1.7.2 淋巴細胞的聚集 12 1.7.3 異位類淋巴結構的維持 13 1.8 異位類淋巴結構與肝癌的關係 14 第二章 研究動機、方向與設計 15 2.1 研究動機 15 2.2 實驗探討之方向與設計 16 2.3 本篇研究所設計的Scheme: 17 第三章 實驗材料與方法 18 3.1 實驗材料 18 3.1.1 藥品 18 3.1.2 試劑 19 3.1.3 抗體 20 3.1.4 引子序列 20 3.1.5 儀器 21 3.1.6 細胞株 22 3.1.7 質體圖譜 23 3.2 實驗方法 24 3.2.1 細胞培養(Cell culture) 24 3.2.2 轉形作用 (Transformation) 26 3.2.3 小量萃取質體DNA (Mini Plasmid DNA Extraction) 27 3.2.4 中量萃取質體DNA (Midi Plasmid DNA Extraction) 28 3.2.5 細胞轉染 (Transfection) 30 3.2.6 細胞感染 (Infection) 30 3.2.7 RNA萃取 (RNA extraction) 31 3.2.8 將mRNA轉成cDNA 32 3.2.9 即時聚合酶鏈鎖反應 (Real-time PCR) 33 3.2.10 蛋白質萃取 (Protein extraction) 33 3.2.11 西方墨點法 (Western Blot) 35 3.2.12 培養液濃縮 37 3.2.13 酵素連結免疫吸附分析法 (Enzyme-linked immunosorbent assay, ELISA) 38 3.2.14 T細胞遷移 (T cell transwell migration) 38 3.2.15 癌症基因體圖譜 (The Cancer Genome Atlas, TCGA) 之分析 39 3.2.16 統計 39 第四章 實驗結果 40 4.1 建立能夠持續而穩定表達HBV X蛋白質的HA22T/VGH肝癌細胞株 40 4.2 HBV X蛋白質在HA22T/VGH肝癌細胞中會促進淋巴毒素家族的表現 46 4.3在持續穩定表現HBV X蛋白質的HA22T/VGH肝癌細胞中會活化非經典型NF-κB訊息調控路徑 51 4.4在持續而穩定表現HBV X蛋白質的HA22T/VGH肝癌細胞中會增加細胞黏附分子的表現量 56 4.5在持續而穩定表現HBV X蛋白質的HA22T/VGH肝癌細胞中會增加趨化因子的表現 60 4.6在持續而穩定表現HBV X蛋白質的HA22T/VGH肝癌細胞會分泌趨化因子吸引免疫細胞的聚集 63 第五章 討論 66 第六章 結論與未來展望 68 第七章 參考文獻 69 | |
| dc.language.iso | zh-TW | |
| dc.subject | 異位類淋巴結構 | zh_TW |
| dc.subject | B 型肝炎病毒 | zh_TW |
| dc.subject | HBV X 蛋白質 | zh_TW |
| dc.subject | 淋巴毒素 | zh_TW |
| dc.subject | 非經典型NF-κB 訊息傳遞路徑 | zh_TW |
| dc.subject | HBV X protein | en |
| dc.subject | Ectopic lymphoid-like structure | en |
| dc.subject | Lymphotoxin | en |
| dc.subject | HBV | en |
| dc.subject | Noncanonical NF-B signaling pathway | en |
| dc.title | B 型肝炎病毒 X 蛋白質之探討:藉由調節淋巴毒素 α 和 β 的表現以促進肝癌細胞中異位類淋巴結構的生成 | zh_TW |
| dc.title | Analysis of the Hepatitis B Virus X Protein: Promotion of ectopic lymphoid-like structures formation by up-regulating lymphotoxin α and β expression in human hepatoma cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 何佳安 | |
| dc.contributor.oralexamcommittee | 徐士蘭,吳立真,蘇純立,謝淑貞 | |
| dc.subject.keyword | B 型肝炎病毒,HBV X 蛋白質,淋巴毒素,非經典型NF-κB 訊息傳遞路徑,異位類淋巴結構, | zh_TW |
| dc.subject.keyword | HBV,HBV X protein,Lymphotoxin,Noncanonical NF-B signaling pathway,Ectopic lymphoid-like structure, | en |
| dc.relation.page | 77 | |
| dc.identifier.doi | 10.6342/NTU201803694 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-16 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科技學系 | zh_TW |
| dc.date.embargo-lift | 2023-08-23 | - |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-R05b22018-1.pdf 未授權公開取用 | 3.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
