Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78949
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林啟萬(Chii-Wann LIN)
dc.contributor.authorZu-Yi WANGen
dc.contributor.author王姿懿zh_TW
dc.date.accessioned2021-07-11T15:31:34Z-
dc.date.available2021-08-23
dc.date.copyright2018-08-23
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citation1. Eggins, B.R., Chemical sensors and biosensors. Vol. 28. 2008: John Wiley & Sons.
2. Di Fiore, F., et al., Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by Cetuximab plus chemotherapy. British journal of cancer, 2007. 96(8): p. 1166.
3. Misale, S., et al., Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature, 2012. 486(7404): p. 532.
4. WU, T.-H., Smart Plasmonic Lab-on-a-Chip System for DNA based Biosensing, in College of Electrical Engineering and Computer Science. 2017, National Taiwan University
5. BRUYANT, A., VAILLANT, Julien, WU, Tzu-Heng and LIN, Chii-Wann., COMPACT INTERFEROMETER, RELATED BIO-CHEMICAL SENSOR AND MEASUREMENT DEVICE, W.i.p. organization, Editor. 2017.
6. Chuang, T.-L., et al., Disposable surface plasmon resonance aptasensor with membrane-based sample handling design for quantitative interferon-gamma detection. Lab on a Chip, 2014. 14(16): p. 2968-2977.
7. Chang, C.C., et al., Comparative assessment of oriented antibody immobilization on surface plasmon resonance biosensing. Journal of the Chinese Chemical Society, 2013. 60(12): p. 1449-1456.
8. Huang, Y., et al., Detecting phase shifts in surface plasmon resonance: a review. Advances in Optical Technologies, 2012. 2012.
9. Deng, S., P. Wang, and X. Yu, Phase-Sensitive Surface Plasmon Resonance Sensors: Recent Progress and Future Prospects. Sensors, 2017. 17(12): p. 2819.
10. Wood, R.W., XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1902. 4(21): p. 396-402.
11. Kretschmann, E. and H. Raether, Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A, 1968. 23(12): p. 2135-2136.
12. Otto, A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and nuclei, 1968. 216(4): p. 398-410.
13. Barnes, W.L., A. Dereux, and T.W. Ebbesen, Surface plasmon subwavelength optics. nature, 2003. 424(6950): p. 824.
14. Gwon, H.R. and S.H. Lee, Spectral and angular responses of surface plasmon resonance based on the Kretschmann prism configuration. Materials transactions, 2010. 51(6): p. 1150-1155.
15. Kabashin, A.V., S. Patskovsky, and A.N. Grigorenko, Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing. Optics Express, 2009. 17(23): p. 21191-21204.
16. Su, L.-C., et al., Detection of prostate-specific antigen with a paired surface plasma wave biosensor. Analytical chemistry, 2010. 82(9): p. 3714-3718.
17. Wu, S., et al., Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach–Zehnder configuration. Optics Letters, 2004. 29(20): p. 2378-2380.
18. Wu, C.-M., et al., High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry. Sensors and Actuators B: Chemical, 2003. 92(1-2): p. 133-136.
19. Ho, H., et al., Phase-sensitive surface plasmon resonance biosensor using the photoelastic modulation technique. Sensors and Actuators B: Chemical, 2006. 114(1): p. 80-84.
20. Wong, C., et al., Two-dimensional biosensor arrays based on surface plasmon resonance phase imaging. Applied optics, 2007. 46(12): p. 2325-2332.
21. Xinglong, Y., et al., A surface plasmon resonance imaging interferometry for protein micro-array detection. Sensors and Actuators B: Chemical, 2005. 108(1-2): p. 765-771.
22. Grigorenko, A., P. Nikitin, and A. Kabashin, Phase jumps and interferometric surface plasmon resonance imaging. Applied Physics Letters, 1999. 75(25): p. 3917-3919.
23. Kabashin, A. and P. Nikitin, Surface plasmon resonance interferometer for bio-and chemical-sensors. Optics communications, 1998. 150(1-6): p. 5-8.
24. Wong, C.L. and M. Olivo, Surface plasmon resonance imaging sensors: a review. Plasmonics, 2014. 9(4): p. 809-824.
25. Huang, Y., et al., Phase‐sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications. Annalen Der Physik, 2012. 524(11): p. 637-662.
26. Hsieh, S.-C., et al., Rapid identification of Mycobacterium tuberculosis infection by a new array format-based surface plasmon resonance method. Nanoscale research letters, 2012. 7(1): p. 180.
27. Douglas B. Murphy, K.R.S., Thomas J. Fellers and Michael W. Davidson, Principles of Birefringence, Introduction to Optical Birefringence MicroscopyU, 2017.
28. Kobayashi, J. and Y. Uesu, A new optical method and apparatusHAUP'for measuring simultaneously optical activity and birefringence of crystals. I. Principles and construction. Journal of applied crystallography, 1983. 16(2): p. 204-211.
29. Sano, Y., Optical anisotropy of bovine serum albumin. Journal of colloid and interface science, 1988. 124(2): p. 403-406.
30. Baglio, J. and G. Gashurov, A refinement of the crystal structure of yttrium vanadate. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1968. 24(2): p. 292-293.
31. Guldberg, C., P. Waage, and E. Lund, Studies concerning affinity. CM Forhandlinger: Videnskabs-Selskabet i Christiana, 35. 1965) Journal of Chemical Education, 1864. 42: p. 548-550.
32. Waage, P., Experiments for determining the affinity law Forh.: Vidensk. Selsk. Christiana, 1864. 92.
33. Guldberg, C.M., Concerning the laws of chemical affinity. CM Forhandlinger: Videnskabs-Selskabet i Christiana, 1864. 111: p. 1864.
34. Wilson, W.D., Analyzing biomolecular interactions. Science, 2002. 295(5562): p. 2103-2105.
35. Fivash, M., E.M. Towler, and R.J. Fisher, BIAcore for macromolecular interaction. Current opinion in biotechnology, 1998. 9(1): p. 97-101.
36. Oshannessy, D.J., et al., Determination of rate and equilibrium binding constants for macromolecular interactions using surface plasmon resonance: use of nonlinear least squares analysis methods. Analytical biochemistry, 1993. 212(2): p. 457-468.
37. Okahata, Y., et al., Kinetic measurements of DNA hybridization on an oligonucleotide-immobilized 27-MHz quartz crystal microbalance. Analytical Chemistry, 1998. 70(7): p. 1288-1296.
38. Panchal, V., et al., The electronic structure of zircon-type orthovanadates: Effects of high-pressure and cation substitution. Journal of Applied Physics, 2011. 110(4): p. 043723.
39. Wyckoff, R.W. and E. Crittenden, The preparation and crystal structure of ferrous oxide. Journal of the American Chemical Society, 1925. 47(12): p. 2876-2882.
40. Bruyant, A., et al., Interferometry Using Generalized Lock-in Amplifier (G-LIA): A Versatile Approach for Phase-Sensitive Sensing and Imaging, in Optical Interferometry. 2017, InTech.
41. Orfanidis, S.J., Electromagnetic Waves and Antenna. 2016.
42. Hurwitz, H.I., et al., The clinical benefit of bevacizumab in metastatic colorectal cancer is independent of K-ras mutation status: analysis of a phase III study of bevacizumab with chemotherapy in previously untreated metastatic colorectal cancer. The oncologist, 2009. 14(1): p. 22-28.
43. Karapetis, C.S., et al., K-ras mutations and benefit from cetuximab in advanced colorectal cancer. New England Journal of Medicine, 2008. 359(17): p. 1757-1765.
44. Peterson, A.W., R.J. Heaton, and R.M. Georgiadis, The effect of surface probe density on DNA hybridization. Nucleic acids research, 2001. 29(24): p. 5163-5168.
45. Gao, Y., L.K. Wolf, and R.M. Georgiadis, Secondary structure effects on DNA hybridization kinetics: a solution versus surface comparison. Nucleic acids research, 2006. 34(11): p. 3370-3377.
46. Formisano, N., et al., Optimisation of an electrochemical impedance spectroscopy aptasensor by exploiting quartz crystal microbalance with dissipation signals. Sensors and Actuators B: Chemical, 2015. 220: p. 369-375.
47. Huss, V.A., H. Festl, and K.H. Schleifer, Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Systematic and Applied Microbiology, 1983. 4(2): p. 184-192.
48. Gotoh, M., et al., A new approach to determine the effect of mismatches on kinetic parameters in DNA hybridization using an optical biosensor. DNA Research, 1995. 2(6): p. 285-293.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78949-
dc.description.abstract根據許多文獻指出,相位式表面電漿子共振感測器比強度式更加靈敏,對折射率之解析度至少高一個數量級。基於相位檢測在靈敏度上的優勢與棲列式生物分子感測的需求,我們提出一個新型偏振干涉的相位式影像式表面電漿子共振感測器。
本論文提出基於雙折射晶體之相位式全像式表面電漿子共振感測器,本技術結合垂直共振腔面射雷射本身的特性及雙折射晶體之特殊晶體結構達到有效的相位調變與干涉。主要是利用雙折射晶體在兩軸向上不同的折射率,對P 和 S 波造成相位差,進而在極化片的幫助下使得兩軸向的資訊投影到同一平面產生干涉,配合團隊先前已獲有專利的泛用式鎖相放大器,擷取其相位及強度資訊。
為了證明本研究所提出之系統架構的可行性,我們構建了一個原型系統來進行驗證。在此我們透過雷射波長-電流調變係數(S)及特定之電壓調變等特殊條件下,達到特定的相位深度(∆ϕ=3.8317)並解調出相位資訊。利用影像式的優點,我們能篩選干涉較好的區域進行量測,同時提升訊雜比。在此架構下,本系統可在雜訊0.0004 rad的層級下達到7.5∙10^-7 RIU之最低偵測極限。而根據模擬我們推估,電漿層膜厚為49 nm下可以進一步提升靈敏度。最後,透過K-ras基因突變檢測,本研究驗證了其在生物感測方面之應用潛力。在本系統下,我們能量測到50 nM濃度之K-ras基因突變樣本。此外,由於通過多陣列測量K-ras之單點突變的影響,我們初步驗證了本系統對單核甘酸多態(Single Nucleotide Polymorphism , SNP)的分辨能力。最後,利用動力學分析以確認我們最終結果之可靠性。
zh_TW
dc.description.abstractSurface Plasmon Resonance (SPR) sensor with optical phase interrogation has been well known to exceed the performance of conventional SPR by at least one order of magnitude. To take the advantage of phase interrogation SPR, we propose herein a phase-sensitive imaging SPR system based on a novel interferometric scheme. The basis of the proposed technology is the use of Vertical Cavity Surface Emitting Laser (VCSEL) diode which provides cost-effective phase modulator to discriminate amplitude and phase. VCSEL is driven in current to create minute wavelength modulation such that sufficient phase modulation can be achieved (∆ϕ=3.8317). The interference is generated with the help of a YVO4 birefringent crystal, which leads to phase difference between S and P polarization. After the measuring beam passing the SPR sensor chip, the S and P polarization of the beam are then projected back into a single polarization direction, thereby generating polarimetry type interference. Moreover, since the amplitude is modulated at same frequency with phase, the phase retrieval a non-trivial task. We have therefore adopted a previously published Generalized Lock-In Amplifier (G-LIA) to acquire phase information.
To demonstrate the efficacy of the proposed system, we built a prototype system to carry out proof-of-concept. First by estimating wavelength-to-current sensitivity factor (S) value, which is intrinsic nature of individual VCSEL, we determine a specific current modulation that is needed to achieve ∆ϕ=3.8317. We then demonstrate the feasibility to the proposed phase sensitive SPR system through fringe image and SPR image at Krestchmann angle. To accurately distinguish signal of DNA measurement, thermal drift issue is subtracted by adding a reference arm. Then, with glucose solution for sensitivity calibration, we demonstrate a Limited-of Detection (LOD) of 7.5∙10^-7 RIU where noise is estimated to be around 0.0004 rad. From our data and simulations, we estimate that sensitivity can largely improve at around film thickness 49 nm. Finally, a result of K-ras mutation sensing down to 50nM is presented. Also, with the effect on mismatch K-ras DNA measured through multi-array, we proof that our system is capable to distinguish Single Nucleotide Polymorphism (SNP). Concentration calibration together with kinetics analysis is presented to confirm the reliability of our final results.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:31:34Z (GMT). No. of bitstreams: 1
ntu-107-R05548022-1.pdf: 12667341 bytes, checksum: 491285b3756a956dc1d1ea820a3f7588 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
Acknowledgement ii
摘要 iii
Abstract iv
Chapter I. General introduction 1
Section 1-1: Background 1
Section 1-2: Chapter overview 4
Chapter II. Literature review 5
Section 2-1. Surface Plasmon Resonance 5
Section 2-2: Fundamental theory of SPR 6
Section 2-3: Phase sensitive SPR literature review 12
Section 2-4: Application of Phase sensitive SPR 15
Section 2-4-1: Phase sensitive SPR interferometry 15
Section 2-5: Literature review of Birefringence crystal 22
Section 2-6: Literature review of Kinetics analysis 25
Chapter III. Methodology 29
Section 3-1: Working principle of Birefringent iSPR 29
Section 3-1-1: The selection of birefringent crystal 29
Section 3-1-2: Wavefront analysis on YVO4 crystal 29
Section 3-2: Phase retrieval method 31
Section 3-2-1: G-LIA algorithm 31
Section 3-2-2: Determinations of parameters 34
Section 3-3: Laboratory Prototype building 37
Section 3-3-1: Design of multiple channel microfluidic system 40
Section 3-3-2: Simulations 42
Section 3-4: Signal Process algorithm and VI 45
Section 3-5. Design of biosensing model 48
Section 3-5-1: Design of K-ras mutation sequence 48
Section 3-5-2: Biosensing protocol and procedure 50
Chapter IV. Results and discussion 53
Section 4-1: Determination of ∆ϕa 53
Section 4-2: Performance of Birefringent iSPR 57
Section 4-2-1: Interferometric scheme 57
Section 4-2-2: Thermal compensation 60
Section 4-2-3: Sensitivity calibration 61
Section 4-3: Preliminary biosensing data 66
V. General conclusion and future perspectives 71
Appendix 74
Section A1. Matlab code for simulation of SPR performance 74
Section A2. Matlab code for analyzing working range of Au thickness 76
Section A3. Matlab code for Fresnel m script 77
Section A4. Matlab for unwarping SPR phasogram 79
Section A4. Matlab for phase vs angle SPR simulation 80
Reference 82
dc.language.isoen
dc.subject雙折射晶體zh_TW
dc.subject單核甘酸多態zh_TW
dc.subjectK-ras 基因突變測試zh_TW
dc.subject鎖向放大zh_TW
dc.subject表面電漿共振zh_TW
dc.subject相位檢測zh_TW
dc.subject生物感測器zh_TW
dc.subjectPhaseen
dc.subjectSingle Nucleotide Polymorphismen
dc.subjectK-ras mutationen
dc.subjectVCSEL diodeen
dc.subjectG-LIAen
dc.subjectBirefringent crystalen
dc.subjectBiosensoren
dc.subjectSurface Plasmon Resonanceen
dc.subjectImagingen
dc.title基於雙折射晶體之相位式全像式表面電漿子共振感測器zh_TW
dc.titleBirefringent Crystal Based Phase-sensitive Imaging Surface Plasmon Resonanceen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor歐赫里昂 布雍(Aure?lien BRUYANT)
dc.contributor.oralexamcommittee劉建豪(Chien-Hao Liu)
dc.subject.keyword生物感測器,表面電漿共振,相位檢測,雙折射晶體,鎖向放大,K-ras 基因突變測試,單核甘酸多態,zh_TW
dc.subject.keywordBiosensor,Surface Plasmon Resonance,Phase,Imaging,Birefringent crystal,G-LIA,VCSEL diode,K-ras mutation,Single Nucleotide Polymorphism,en
dc.relation.page85
dc.identifier.doi10.6342/NTU201803673
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-R05548022-1.pdf
  未授權公開取用
12.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved