請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78942完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡孟君 | zh_TW |
| dc.contributor.advisor | Meng-Chun Hu | en |
| dc.contributor.author | 楊順喻 | zh_TW |
| dc.contributor.author | Shun-Yu Yang | en |
| dc.date.accessioned | 2021-07-11T15:30:58Z | - |
| dc.date.available | 2024-02-28 | - |
| dc.date.copyright | 2018-10-11 | - |
| dc.date.issued | 2018 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Abel MH, Baker PJ, Charlton HM, Monteiro A, Verhoeven G, De Gendt K, Guillou F, O'Shaughnessy PJ. 2008. Spermatogenesis and sertoli cell activity in mice lacking sertoli cell receptors for follicle-stimulating hormone and androgen. Endocrinology 149: 3279-3285.
Abel MH, Wootton AN, Wilkins V, Huhtaniemi I, Knight PG, Charlton HM. 2000. The effect of a null mutation in the follicle-stimulating hormone receptor gene on mouse reproduction. Endocrinology 141: 1795-1803. Agarwal A. 2014. Male Reproductive System—Anatomy and Physiology. Ahmed EA, de Rooij DG. 2009. Staging of mouse seminiferous tubule cross-sections. Methods in molecular biology (Clifton, NJ) 558: 263-277. Allemand I, Anglo A, Jeantet AY, Cerutti I, May E. 1999. Testicular wild-type p53 expression in transgenic mice induces spermiogenesis alterations ranging from differentiation defects to apoptosis. Oncogene 18: 6521-6530. Amann RP. 1989. Structure and Function of the Normal Testis and Epididymis. Journal of the American College of Toxicology 8: 457-471. Auchus RJ. 2015. Chapter 8 - Human Steroid Biosynthesis. in Knobil and Neill's Physiology of Reproduction (Fourth Edition), pp. 295-312. Academic Press, San Diego. Baarends WM, Grootegoed JA. 2003. Chromatin dynamics in the male meiotic prophase. Cytogenetic and genome research 103: 225-234. Barthold JS, Gonzalez R. 2003. The epidemiology of congenital cryptorchidism, testicular ascent and orchiopexy. J Urol 170: 2396-2401. Beumer TL, Roepers-Gajadien HL, Gademan IS, van Buul PP, Gil-Gomez G, Rutgers DH, de Rooij DG. 1998. The role of the tumor suppressor p53 in spermatogenesis. Cell death and differentiation 5: 669-677. Bremer AA, Miller WL. 2014. Chapter 13 - Regulation of Steroidogenesis A2 - Ulloa-Aguirre, Alfredo. in Cellular Endocrinology in Health and Disease (ed. PM Conn), pp. 207-227. Academic Press, Boston. Brinster RL. 2002. Germline stem cell transplantation and transgenesis. Science 296: 2174-2176. Chang C, Chen YT, Yeh SD, Xu Q, Wang RS, Guillou F, Lardy H, Yeh S. 2004. Infertility with defective spermatogenesis and hypotestosteronemia in male mice lacking the androgen receptor in Sertoli cells. Proc Natl Acad Sci U S A 101: 6876-6881. Chang C, Lee SO, Wang RS, Yeh S, Chang TM. 2013. Androgen receptor (AR) physiological roles in male and female reproductive systems: lessons learned from AR-knockout mice lacking AR in selective cells. Biol Reprod 89: 21. Chung BC, Matteson KJ, Voutilainen R, Mohandas TK, Miller WL. 1986. Human cholesterol side-chain cleavage enzyme, P450scc: cDNA cloning, assignment of the gene to chromosome 15, and expression in the placenta. Proc Natl Acad Sci U S A 83: 8962-8966. Clarkson J, Herbison AE. 2016. Hypothalamic control of the male neonatal testosterone surge. Philosophical transactions of the Royal Society of London Series B, Biological sciences 371: 20150115. Dandona P, Rosenberg MT. 2010. A practical guide to male hypogonadism in the primary care setting. International journal of clinical practice 64: 682-696. Dierich A, Sairam MR, Monaco L, Fimia GM, Gansmuller A, LeMeur M, Sassone-Corsi P. 1998. Impairing follicle-stimulating hormone (FSH) signaling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proc Natl Acad Sci U S A 95: 13612-13617. El-Brolosy MA, Stainier DYR. 2017. Genetic compensation: A phenomenon in search of mechanisms. PLoS genetics 13: e1006780. Fujihara Y, Satouh Y, Inoue N, Isotani A, Ikawa M, Okabe M. 2012. SPACA1-deficient male mice are infertile with abnormally shaped sperm heads reminiscent of globozoospermia. Development (Cambridge, England) 139: 3583-3589. Grgurevic N, Budefeld T, Rissman EF, Tobet SA, Majdic G. 2008. Aggressive behaviors in adult SF-1 knockout mice that are not exposed to gonadal steroids during development. Behav Neurosci 122: 876-884. Griswold MD. 2016. Spermatogenesis: The Commitment to Meiosis. Physiological reviews 96: 1-17. Hakkarainen J, Zhang FP, Jokela H, Mayerhofer A, Behr R, Cisneros-Montalvo S, Nurmio M, Toppari J, Ohlsson C, Kotaja N et al. 2018. Hydroxysteroid (17beta) dehydrogenase 1 expressed by Sertoli cells contributes to steroid synthesis and is required for male fertility. Faseb j 32: 3229-3241. Hasegawa T, Zhao L, Caron KM, Majdic G, Suzuki T, Shizawa S, Sasano H, Parker KL. 2000. Developmental roles of the steroidogenic acute regulatory protein (StAR) as revealed by StAR knockout mice. Mol Endocrinol 14: 1462-1471. Hu MC, Hsu NC, El Hadj NB, Pai CI, Chu HP, Wang CK, Chung BC. 2002. Steroid deficiency syndromes in mice with targeted disruption of Cyp11a1. Mol Endocrinol 16: 1943-1950. Hughes IA, Acerini CL. 2008. Factors controlling testis descent. European journal of endocrinology 159 Suppl 1: S75-82. Hutson JM, Balic A, Nation T, Southwell B. 2010. Cryptorchidism. Semin Pediatr Surg 19: 215-224. Ilacqua A, Francomano D, Aversa A. 2017. The Physiology of the Testis. Ishiguro K, Kim J, Fujiyama-Nakamura S, Kato S, Watanabe Y. 2011. A new meiosis-specific cohesin complex implicated in the cohesin code for homologous pairing. EMBO reports 12: 267-275. Kaftanovskaya EM, Huang Z, Barbara AM, De Gendt K, Verhoeven G, Gorlov IP, Agoulnik AI. 2012. Cryptorchidism in mice with an androgen receptor ablation in gubernaculum testis. Mol Endocrinol 26: 598-607. Kaftanovskaya EM, Neukirchner G, Huff V, Agoulnik AI. 2013. Left-sided cryptorchidism in mice with Wilms' tumour 1 gene deletion in gubernaculum testis. J Pathol 230: 39-47. Leblond CP, Clermont Y. 1952. Definition of the stages of the cycle of the seminiferous epithelium in the rat. Annals of the New York Academy of Sciences 55: 548-573. Lin CY, Chen CY, Yu CH, Yu IS, Lin SR, Wu JT, Lin YH, Kuo PL, Wu JC, Lin SW. 2016. Human X-linked Intellectual Disability Factor CUL4B Is Required for Post-meiotic Sperm Development and Male Fertility. Scientific reports 6: 20227. McKenna NJ. 2015. Chapter 9 - Gonadal Steroid Action. in Knobil and Neill's Physiology of Reproduction (Fourth Edition), pp. 313-333. Academic Press, San Diego. Meistrich ML, Hess RA. 2013. Assessment of spermatogenesis through staging of seminiferous tubules. Methods in molecular biology (Clifton, NJ) 927: 299-307. Miller WL, Auchus RJ. 2011. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 32: 81-151. Morse HC, Horike N, Rowley MJ, Heller CG. 1973. Testosterone concentrations in testes of normal men: effects of testosterone propionate administration. The Journal of clinical endocrinology and metabolism 37: 882-886. Notini AJ, Davey RA, McManus JF, Bate KL, Zajac JD. 2005. Genomic actions of the androgen receptor are required for normal male sexual differentiation in a mouse model. J Mol Endocrinol 35: 547-555. O'Shaughnessy PJ, Monteiro A, Verhoeven G, De Gendt K, Abel MH. 2010. Effect of FSH on testicular morphology and spermatogenesis in gonadotrophin-deficient hypogonadal mice lacking androgen receptors. Reproduction 139: 177-184. O’Shaughnessy P. 2015. Chapter 14 - Testicular Development. in Knobil and Neill's Physiology of Reproduction (Fourth Edition), pp. 567-594. Academic Press, San Diego. Oakberg EF. 1956. A description of spermiogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium and germ cell renewal. Am J Anat 99: 391-413. Pang S, Yang X, Wang M, Tissot R, Nino M, Manaligod J, Bullock LP, Mason JI. 1992. Inherited congenital adrenal hyperplasia in the rabbit: absent cholesterol side-chain cleavage cytochrome P450 gene expression. Endocrinology 131: 181-186. Papadopoulos V, Miller WL. 2012. Role of mitochondria in steroidogenesis. Best practice & research Clinical endocrinology & metabolism 26: 771-790. Parra MT, Viera A, Gomez R, Page J, Benavente R, Santos JL, Rufas JS, Suja JA. 2004. Involvement of the cohesin Rad21 and SCP3 in monopolar attachment of sister kinetochores during mouse meiosis I. J Cell Sci 117: 1221-1234. Ravindranath N, Dettin L, Dym M. 2003. Mammalian Testes: Structure and Function. in Introduction to Mammalian Reproduction (ed. DRP Tulsiani), pp. 1-19. Springer US, Boston, MA. Rubtsov P, Karmanov M, Sverdlova P, Spirin P, Tiulpakov A. 2009. A novel homozygous mutation in CYP11A1 gene is associated with late-onset adrenal insufficiency and hypospadias in a 46,XY patient. The Journal of clinical endocrinology and metabolism 94: 936-939. Saitou M, Yamaji M. 2012. Primordial germ cells in mice. Cold Spring Harbor perspectives in biology 4. Singh SR, Burnicka-Turek O, Chauhan C, Hou SX. 2011. Spermatogonial stem cells, infertility and testicular cancer. J Cell Mol Med 15: 468-483. Smith LB, Walker WH. 2015. Chapter 16 - Hormone Signaling in the Testis. in Knobil and Neill's Physiology of Reproduction (Fourth Edition), pp. 637-690. Academic Press, San Diego. Tajima T, Fujieda K, Kouda N, Nakae J, Miller WL. 2001. Heterozygous mutation in the cholesterol side chain cleavage enzyme (p450scc) gene in a patient with 46,XY sex reversal and adrenal insufficiency. The Journal of clinical endocrinology and metabolism 86: 3820-3825. Turner TT, Jones CE, Howards SS, Ewing LL, Zegeye B, Gunsalus GL. 1984. On the androgen microenvironment of maturing spermatozoa. Endocrinology 115: 1925-1932. Wu FJ, Lin TY, Sung LY, Chang WF, Wu PC, Luo CW. 2017. BMP8A sustains spermatogenesis by activating both SMAD1/5/8 and SMAD2/3 in spermatogonia. Sci Signal 10. Xing Y, Lerario AM, Rainey W, Hammer GD. 2015. Development of adrenal cortex zonation. Endocrinology and metabolism clinics of North America 44: 243-274. Xu Q, Lin HY, Yeh SD, Yu IC, Wang RS, Chen YT, Zhang C, Altuwaijri S, Chen LM, Chuang KH et al. 2007. Infertility with defective spermatogenesis and steroidogenesis in male mice lacking androgen receptor in Leydig cells. Endocrine 32: 96-106. Yang X, Iwamoto K, Wang M, Artwohl J, Mason JI, Pang S. 1993. Inherited congenital adrenal hyperplasia in the rabbit is caused by a deletion in the gene encoding cytochrome P450 cholesterol side-chain cleavage enzyme. Endocrinology 132: 1977-1982. Yeh S, Tsai MY, Xu Q, Mu XM, Lardy H, Huang KE, Lin H, Yeh SD, Altuwaijri S, Zhou X et al. 2002. Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues. Proc Natl Acad Sci U S A 99: 13498-13503. Zhang C, Yeh S, Chen YT, Wu CC, Chuang KH, Lin HY, Wang RS, Chang YJ, Mendis-Handagama C, Hu L et al. 2006. Oligozoospermia with normal fertility in male mice lacking the androgen receptor in testis peritubular myoid cells. Proc Natl Acad Sci U S A 103: 17718-17723. Zhang FP, Poutanen M, Wilbertz J, Huhtaniemi I. 2001. Normal prenatal but arrested postnatal sexual development of luteinizing hormone receptor knockout (LuRKO) mice. Mol Endocrinol 15: 172-183. Zirkin BR, Santulli R, Awoniyi CA, Ewing LL. 1989. Maintenance of advanced spermatogenic cells in the adult rat testis: quantitative relationship to testosterone concentration within the testis. Endocrinology 124: 3043-3049. 陳怡靜. 2016. Effects of Cyp11a1 knockout on the development of mouse testis and intestine. in Graduate Institute of Physiology College of Medicine National Taiwan University Master Thesis. 羅文均. 2009. Characterization of Cyp11a1 expression in mice retina and retinal development in Cyp11a1 knockout mice. in Graduate Institute of Physiology College of Medicine National Taiwan University Master Thesis. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78942 | - |
| dc.description.abstract | Cyp11a1基因主要表現在腎上腺皮質及性腺,參與類固醇荷爾蒙生成的第一關鍵步驟。睪丸中生成雄性荷爾蒙即需要CYP11A1的作用,對於雄性特徵的發育與維持相當重要。由於Cyp11a1基因剔除 (Cyp11a1-/-) 會使小鼠在出生後不久死於腎上腺功能不足。我們利用皮質類固醇的補充及腎上腺移植的方法,使Cyp11a1-/- 小鼠存活至八週,藉以探討Cyp11a1在睪丸發育與精子生成作用的重要性。我們發現Cyp11a1-/- 小鼠雙側睪丸較小且皆無法沉降至陰囊區域,位置呈現右低左高。右側與左側睪丸的平均重量分別比野生型Cyp11a1+/+ 減少了72% 及90%。以精母細胞 (spermatocyte) 的標誌蛋白synaptonemal complex protein 3 (SCP3) 進行免疫螢光染色,我們發現Cyp11a1-/- 小鼠睪丸的細精管中有粗絲期 (pachytene) 或偶絲期 (zygotene) 精母細胞堆積的現象,其出現比例分別為50%、15%。以lectin染劑觀察精細胞 (spermatid),結果顯示Cyp11a1-/- 小鼠右側睪丸中圓型及長型精細胞的數目大量減少,而左側睪丸中則沒有看到精細胞。Cyp11a1-/- 小鼠細精管中沒有看到發育至後期S14-16的精細胞,說明其精子生成作用可能停滯在S13時期的精細胞。此外,我們也發現這些生殖細胞發育異常的程度與睪丸的大小有關。而Cyp11a1-/- 睪丸中與Sertoli cell相關的WT1及SOX9表現與野生型小鼠相比並沒有差異。TUNEL結果顯示,Cyp11a1-/- 小鼠睪丸中出現凋亡訊號的細精管比例顯著增加,細精管內的凋亡細胞數也變多。其睪丸中cleaved caspase 3、cleaved caspase 7及p53的蛋白質量皆有增加。在Cyp11a1-/- 小鼠的血清中沒有測到睪固酮,然而在其睪丸中卻有少量的睪固酮存在。由上述結果說明Cyp11a1基因對於雄性素的生成相當重要,在睪丸的發育以及精子生成過程中亦扮演著重要的角色。 | zh_TW |
| dc.description.abstract | The Cyp11a1 gene, which is mainly expressed in adrenal cortex and gonads, is involved in the first and rate-limiting step of steroids biosynthesis. In testes, Cyp11a1 is needed for the production of androgens which control the development and maintenance of male characteristics. Cyp11a1 knockout mice (Cyp11a1-/-) die early after birth because of adrenal failure. To investigate the role of Cyp11a1 in testicular development and spermatogenesis, Cyp11a1-/- mice were rescued with steroid injection and subcutaneous adrenal transplantation to survive to 8 weeks of age. We found that the testes of Cyp11a1-/- mice were not descended into the scrotal region, with the left testis located at a higher intra-abdominal position. In the Cyp11a1-/- mice, the weight of testis were reduced by 73% in the right-side and 90% in the left-side relative to wild-type. Immunostaining with synaptonemal complex protein 3 (SCP3) exhibited spermatocytes accumulation arrested at pachytene (50%) or zygotene (15%) stage in a number of tubules of knockout mice. Spermatids were stained with lectin and the results showed that the number of spermatids, including round and elongated spermatids, were markedly reduced in the right testis and no signal was detected in the left testis in the Cyp11a1-/- mice. In addition, the steps 14-16 spermatid in late stage were not found in the Cyp11a1-/- testis, suggesting that a arrest of spermatogenesis at step 13. We found that the extent of defective germ cell development was correlated to the size of testis. The levels of WT1 and Sox9, the Sertoli cell markers, showed no significant difference between Cyp11a1-/- and control testis. TUNEL assay revealed that the percentage of tubules with TUNEL-positive cells was greatly increased in Cyp11a1-/- testis compared to control mice (83% vs 11%). In addition, the number of apoptotic cells in tubules was also increased in Cyp11a1-/- mice. Increased expressions of cleaved caspase 3, cleaved caspase 7 and P53 were found in Cyp11a1-/- testis. In Cyp11a1-/- mice, the level of testosterone was not be detected in the serum; however, low level of testosterone still was detected in the testis. In conclusion, Cyp11a1 gene is essential for androgen production which plays a critical role in testicular development and spermatogenesis. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:30:58Z (GMT). No. of bitstreams: 1 ntu-107-R05441004-1.pdf: 3879643 bytes, checksum: 65d1f63780b61c6ca57e23945bcb2806 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 目錄
誌謝 I 中文摘要 II Abstract III 中英文名稱及簡稱對照表 IX 第一章 導論 1 1.1 類固醇荷爾蒙 1 1.2 CYP11A1在類固醇生成的重要性 2 1.3 睪丸 2 1.3.1睪丸的發育 2 1.3.2睪丸的結構與功能 2 1.4 精子生成作用 3 1.4.1精子生成作用的過程 3 1.4.2第一波精子生成作用 4 1.5 細精管上皮週期 (cycle of the seminiferous epithelium) 4 1.6 荷爾蒙調控對精子生成的重要性 5 1.7 研究動機與目的 6 第二章 材料與方法 8 2.1 基因轉殖小鼠 8 2.1.1 Cyp11a1+/- 異合子小鼠 8 2.1.2 Cyp11a1-/- 基因剔除小鼠 8 2.2 幼鼠基因型及性別鑑定 9 2.3 石蠟組織切片 (Paraffin Section) 10 2.4 蘇木素-伊紅 (hematoxylin-eosin,H & E) 染色 11 2.5 免疫組織螢光染色 11 2.6 細精管上皮週期的辨別 13 2.7 西方墨點法 (Western blot) 13 2.8 睪固酮之測量 16 2.9 細胞凋亡 (apoptosis) 分析 18 2.10 統計分析 19 第三章 結果 20 3.1 Cyp11a1基因剔除小鼠產生 20 3.2 Cyp11a1基因剔除對雄性生殖器官發育的影響 20 3.3 Cyp11a1基因剔除對精子生成作用的影響 21 3.4 Cyp11a1基因剔除對睪丸中細胞凋亡的影響 23 3.5 Cyp11a1基因剔除對testosterone生成的影響 23 3.6 產生非腎上腺移植的Cyp11a1基因剔除小鼠模式 24 第四章 討論 25 4.1 Cyp11a1-/- 小鼠testosterone的量 25 4.2 Cyp11a1-/- 小鼠睪丸無法沉降且呈現右低左高 26 4.3 Cyp11a1-/- 小鼠有spermatocytes堆積及spermatids大量減少的情形 27 4.4 Cyp11a1-/- 小鼠睪丸中細胞凋亡增加 27 參考文獻 29 表次 表一、螢光染色使用之抗體及染劑 12 表二、西方墨點法使用之抗體 15 表三、Testosterone ELISA kit偵測範圍 18 表四、小鼠血清及睪丸中testosterone的濃度 34 附表一、小鼠細精管上皮週期12個階段 (stage I-XII) 的生殖細胞組合 53 圖次 圖一、Cyp11a1-/- 基因剔除小鼠基因型鑑定 35 圖二、雄鼠外生殖器官與睪丸發育 36 圖三、雄鼠體重與睪丸重量分析 37 圖四、睪丸組織型態 38 圖五、Cyp11a1基因剔除對睪丸中類固醇生成基因表現之影響 39 圖六、小鼠細精管上皮週期各階段的生殖細胞組合 41 圖七、Cyp11a1-/- 小鼠細精管中有spermatocyte堆積的表現 42 圖八、Cyp11a1-/- 小鼠細精管中spermatocyte堆積之定量分析 43 圖九、Cyp11a1-/- 小鼠spermatid數量減少且發育不完全 45 圖十、Cyp11a1-/- 小鼠細精管中spermatid之定量分析 46 圖十一、Spermatid 相關蛋白質在Cyp11a1-/- 小鼠睪丸的表現量降低 47 圖十二、Sertoli cell 相關蛋白質在Cyp11a1-/- 小鼠睪丸的表現量沒有改變 49 圖十三、睪丸組織細胞凋亡分析 50 圖十四、細胞凋亡相關蛋白質在Cyp11a1-/- 睪丸之表現 51 圖十五、有無給予腎上腺移植之兩種Cyp11a1-/-小鼠模式雄性生殖器官發育之比較 52 附圖一、辨別小鼠細精管上皮週期12個階段 (stage I-XII) 的二元判定圖 54 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 精子生成作用 | zh_TW |
| dc.subject | 睪固酮 | zh_TW |
| dc.subject | 睪丸 | zh_TW |
| dc.subject | Cyp11a1基因 | zh_TW |
| dc.subject | testosterone | en |
| dc.subject | spermatogenesis | en |
| dc.subject | testis | en |
| dc.subject | Cyp11a1 | en |
| dc.title | Cyp11a1基因剔除小鼠睪丸發育與精子生成作用異常 | zh_TW |
| dc.title | Impaired testicular development and spermatogenesis in Cyp11a1-knockout mice | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 106-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鍾邦柱;夏詩閔;李立仁 | zh_TW |
| dc.contributor.oralexamcommittee | Bon-Chu Chung;Shih-Min Hsia;Li-Jen Lee | en |
| dc.subject.keyword | Cyp11a1基因,睪丸,精子生成作用,睪固酮, | zh_TW |
| dc.subject.keyword | Cyp11a1,testis,spermatogenesis,testosterone, | en |
| dc.relation.page | 54 | - |
| dc.identifier.doi | 10.6342/NTU201802858 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2018-08-16 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 生理學研究所 | - |
| dc.date.embargo-lift | 2028-08-16 | - |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-2.pdf 未授權公開取用 | 3.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
