Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78939
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉旻禕(Helene Minyi Liu)
dc.contributor.authorYa-Ching Tsaoen
dc.contributor.author曹雅晴zh_TW
dc.date.accessioned2021-07-11T15:30:44Z-
dc.date.available2025-08-19
dc.date.copyright2020-09-10
dc.date.issued2020
dc.date.submitted2020-08-19
dc.identifier.citationAizaki, H., Choi, K.S., Liu, M., Li, Y.-J., and Lai, M.M.C. (2006). Polypyrimidine-tract-binding Protein is a Component of the HCV RNA Replication Complex and Necessary for RNA Synthesis. Journal of Biomedical Science 13, 469-480.
Ali, N., Pruijn, G.J., Kenan, D.J., Keene, J.D., and Siddiqui, A. (2000). Human La antigen is required for the hepatitis C virus internal ribosome entry site-mediated translation. J Biol Chem 275, 27531-27540.
Ali, N., and Siddiqui, A. (1995). Interaction of polypyrimidine tract-binding protein with the 5' noncoding region of the hepatitis C virus RNA genome and its functional requirement in internal initiation of translation. Journal of virology 69, 6367-6375.
Anwar, A., Ali, N., Tanveer, R., and Siddiqui, A. (2000). Demonstration of functional requirement of polypyrimidine tract-binding protein by SELEX RNA during hepatitis C virus internal ribosome entry site-mediated translation initiation. J Biol Chem 275, 34231-34235.
Auweter, S.D., Oberstrass, F.C., and Allain, F.H.T. (2007). Solving the Structure of PTB in Complex with Pyrimidine Tracts: An NMR Study of Protein–RNA Complexes of Weak Affinities†. Journal of Molecular Biology 367, 174-186.
Back, S.H., Kim, Y.K., Kim, W.J., Cho, S., Oh, H.R., Kim, J.-E., and Jang, S.K. (2002). Translation of polioviral mRNA is inhibited by cleavage of polypyrimidine tract-binding proteins executed by polioviral 3C(pro). Journal of virology 76, 2529-2542.
Barbato, G., Cicero, D., Nardi, M.C., Steinkühler, C., Cortese, R., De Francesco, R., and Bazzo, R. (1999). The solution structure of the N-terminal proteinase domain of the hepatitis C virus (HCV) NS3 protein provides new insights into its activation and catalytic mechanism. Journal of molecular biology 289, 371-384.
Bartenschlager, R., Ahlborn-Laake, L., Mous, J., and Jacobsen, H. (1993). Nonstructural protein 3 of the hepatitis C virus encodes a serine-type proteinase required for cleavage at the NS3/4 and NS4/5 junctions. Journal of virology 67, 3835-3844.
Bartenschlager, R., Ahlborn-Laake, L., Mous, J., and Jacobsen, H. (1994). Kinetic and structural analyses of hepatitis C virus polyprotein processing. Journal of virology 68, 5045-5055.
Bartenschlager, R., Lohmann, V., Wilkinson, T., and Koch, J.O. (1995). Complex formation between the NS3 serine-type proteinase of the hepatitis C virus and NS4A and its importance for polyprotein maturation. Journal of Virology 69, 7519-7528.
Behrens, S.E., Tomei, L., and De Francesco, R. (1996). Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. The EMBO journal 15, 12-22.
Beran, R.K., Serebrov, V., and Pyle, A.M. (2007). The serine protease domain of hepatitis C viral NS3 activates RNA helicase activity by promoting the binding of RNA substrate. J Biol Chem 282, 34913-34920.
Binder, M., Quinkert, D., Bochkarova, O., Klein, R., Kezmic, N., Bartenschlager, R., and Lohmann, V. (2007). Identification of determinants involved in initiation of hepatitis C virus RNA synthesis by using intergenotypic replicase chimeras. J Virol 81, 5270-5283.
Birney, E., Kumar, S., and Krainer, A.R. (1993). Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Research 21, 5803-5816.
Castelo-Branco, P., Furger, A., Wollerton, M., Smith, C., Moreira, A., and Proudfoot, N. (2004). Polypyrimidine tract binding protein modulates efficiency of polyadenylation. Molecular and cellular biology 24, 4174-4183.
Chang, K.-S., and Luo, G. (2006). The polypyrimidine tract-binding protein (PTB) is required for efficient replication of hepatitis C virus (HCV) RNA. Virus Research 115, 1-8.
Chang, K.H., Brown, E.A., and Lemon, S.M. (1993). Cell type-specific proteins which interact with the 5' nontranslated region of hepatitis A virus RNA. Journal of Virology 67, 6716-6725.
Conte, M.R., Grüne, T., Ghuman, J., Kelly, G., Ladas, A., Matthews, S., and Curry, S. (2000). Structure of tandem RNA recognition motifs from polypyrimidine tract binding protein reveals novel features of the RRM fold. The EMBO Journal 19, 3132-3141.
Cote, C.A., Gautreau, D., Denegre, J.M., Kress, T.L., Terry, N.A., and Mowry, K.L. (1999). A Xenopus Protein Related to hnRNP I Has a Role in Cytoplasmic RNA Localization. Molecular Cell 4, 431-437.
Domitrovich, A.M., Diebel, K.W., Ali, N., Sarker, S., and Siddiqui, A. (2005). Role of La autoantigen and polypyrimidine tract-binding protein in HCV replication. Virology 335, 72-86.
Dreyfuss, G., Matunis, M.J., Piñol-Roma, S., and Burd, C.G. (1993). hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 62, 289-321.
Dubuisson, J., and Cosset, F.L. (2014). Virology and cell biology of the hepatitis C virus life cycle: an update. J Hepatol 61, S3-s13.
Egger, D., Wölk, B., Gosert, R., Bianchi, L., Blum, H.E., Moradpour, D., and Bienz, K. (2002). Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. Journal of virology 76, 5974-5984.
Elazar, M., Cheong, K.H., Liu, P., Greenberg, H.B., Rice, C.M., and Glenn, J.S. (2003). Amphipathic helix-dependent localization of NS5A mediates hepatitis C virus RNA replication. Journal of virology 77, 6055-6061.
Elazar, M., Liu, P., Rice, C.M., and Glenn, J.S. (2004). An N-Terminal Amphipathic Helix in Hepatitis C Virus (HCV) NS4B Mediates Membrane Association, Correct Localization of Replication Complex Proteins, and HCV RNA Replication. Journal of Virology 78, 11393-11400.
Failla, C., Tomei, L., and De Francesco, R. (1994). Both NS3 and NS4A are required for proteolytic processing of hepatitis C virus nonstructural proteins. Journal of virology 68, 3753-3760.
Fraser, C.S., and Doudna, J.A. (2007). Structural and mechanistic insights into hepatitis C viral translation initiation. Nat Rev Microbiol 5, 29-38.
Frick, D.N., Rypma, R.S., Lam, A.M.I., and Gu, B. (2004). The nonstructural protein 3 protease/helicase requires an intact protease domain to unwind duplex RNA efficiently. The Journal of biological chemistry 279, 1269-1280.
García-Blanco MA, Jamison SF, and PA., S. (1989). Identification and purification of a 62,000-dalton protein that binds specifically to the polypyrimidine tract of introns. Genes Dev 3(12A), 1874-1886.
Geuens, T., Bouhy, D., and Timmerman, V. (2016). The hnRNP family: insights into their role in health and disease. Hum Genet 135, 851-867.
Gil A, Sharp PA, Jamison SF, and MA., G.-B. (1991). Characterization of cDNAs encoding the polypyrimidine tract-binding protein. Genes Dev 5, 1224–1236.
Gosert, R., Chang, K.H., Rijnbrand, R., Yi, M., Sangar, D.V., and Lemon, S.M. (2000). Transient expression of cellular polypyrimidine-tract binding protein stimulates cap-independent translation directed by both picornaviral and flaviviral internal ribosome entry sites In vivo. Molecular and cellular biology 20, 1583-1595.
Gower, E., Estes, C., Blach, S., Razavi-Shearer, K., and Razavi, H. (2014). Global epidemiology and genotype distribution of the hepatitis C virus infection. Journal of Hepatology 61, S45-S57.
Grakoui, A., McCourt, D.W., Wychowski, C., Feinstone, S.M., and Rice, C.M. (1993a). Characterization of the hepatitis C virus-encoded serine proteinase: determination of proteinase-dependent polyprotein cleavage sites. Journal of Virology 67, 2832-2843.
Grakoui, A., McCourt, D.W., Wychowski, C., Feinstone, S.M., and Rice, C.M. (1993b). A second hepatitis C virus-encoded proteinase. Proc Natl Acad Sci U S A 90, 10583-10587.
Hajarizadeh, B., Grebely, J., and Dore, G.J. (2013). Epidemiology and natural history of HCV infection. Nat Rev Gastroenterol Hepatol 10, 553-562.
Hellen, C.U., and Sarnow, P. (2001). Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15, 1593-1612.
Hijikata, M., Mizushima, H., Akagi, T., Mori, S., Kakiuchi, N., Kato, N., Tanaka, T., Kimura, K., and Shimotohno, K. (1993). Two distinct proteinase activities required for the processing of a putative nonstructural precursor protein of hepatitis C virus. Journal of virology 67, 4665-4675.
Hunt, S.L., and Jackson, R.J. (1999). Polypyrimidine-tract binding protein (PTB) is necessary, but not sufficient, for efficient internal initiation of translation of human rhinovirus-2 RNA. RNA (New York, NY) 5, 344-359.
Ito, T., and Lai, M.M.C. (1999). An Internal Polypyrimidine-Tract-Binding Protein-Binding Site in the Hepatitis C Virus RNA Attenuates Translation, Which Is Relieved by the 3′-Untranslated Sequence. Virology 254, 288-296.
Ito, T., Tahara, S.M., and Lai, M.M. (1998). The 3'-untranslated region of hepatitis C virus RNA enhances translation from an internal ribosomal entry site. Journal of virology 72, 8789-8796.
Ji, H., Fraser, C.S., Yu, Y., Leary, J., and Doudna, J.A. (2004). Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA. Proceedings of the National Academy of Sciences of the United States of America 101, 16990-16995.
Kafasla, P., Lin, H., Curry, S., and Jackson, R.J. (2011). Activation of picornaviral IRESs by PTB shows differential dependence on each PTB RNA-binding domain. Rna 17, 1120-1131.
Kafasla, P., Morgner, N., Pöyry, T.A., Curry, S., Robinson, C.V., and Jackson, R.J. (2009). Polypyrimidine tract binding protein stabilizes the encephalomyocarditis virus IRES structure via binding multiple sites in a unique orientation. Mol Cell 34, 556-568.
Kafasla, P., Morgner, N., Robinson, C.V., and Jackson, R.J. (2010). Polypyrimidine tract-binding protein stimulates the poliovirus IRES by modulating eIF4G binding. Embo j 29, 3710-3722.
Kamath, R.V., Leary, D.J., and Huang, S. (2001). Nucleocytoplasmic shuttling of polypyrimidine tract-binding protein is uncoupled from RNA export. Molecular biology of the cell 12, 3808-3820.
Kaminski, A., Hunt, S.L., Patton, J.G., and Jackson, R.J. (1995). Direct evidence that polypyrimidine tract binding protein (PTB) is essential for internal initiation of translation of encephalomyocarditis virus RNA. RNA (New York, NY) 1, 924-938.
Kanda, T., Gauss-Müller, V., Cordes, S., Tamura, R., Okitsu, K., Shuang, W., Nakamoto, S., Fujiwara, K., Imazeki, F., and Yokosuka, O. (2010). Hepatitis A virus (HAV) proteinase 3C inhibits HAV IRES-dependent translation and cleaves the polypyrimidine tract-binding protein. Journal of Viral Hepatitis 17, 618-623.
Kaneko, T., Tanji, Y., Satoh, S., Hijikata, M., Asabe, S., Kimura, K., and Shimotohno, K. (1994). Production of two phosphoproteins from the NS5A region of the hepatitis C viral genome. Biochem Biophys Res Commun 205, 320-326.
Kenan, D.J., Query, C.C., and Keene, J.D. (1991). RNA recognition: towards identifying determinants of specificity. Trends Biochem Sci 16, 214-220.
Kim, J.L., Morgenstern, K.A., Lin, C., Fox, T., Dwyer, M.D., Landro, J.A., Chambers, S.P., Markland, W., Lepre, C.A., O'Malley, E.T., et al. (1996). Crystal Structure of the Hepatitis C Virus NS3 Protease Domain Complexed with a Synthetic NS4A Cofactor Peptide. Cell 87, 343-355.
Krecic, A.M., and Swanson, M.S. (1999). hnRNP complexes: composition, structure, and function. Current Opinion in Cell Biology 11, 363-371.
Li, K., Foy, E., Ferreon, J.C., Nakamura, M., Ferreon, A.C.M., Ikeda, M., Ray, S.C., Gale, M., and Lemon, S.M. (2005a). Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proceedings of the National Academy of Sciences of the United States of America 102, 2992-2997.
Li, X.D., Sun, L., Seth, R.B., Pineda, G., and Chen, Z.J. (2005b). Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc Natl Acad Sci U S A 102, 17717-17722.
Niepmann, M., Petersen, A., Meyer, K., and Beck, E. (1997). Functional involvement of polypyrimidine tract-binding protein in translation initiation complexes with the internal ribosome entry site of foot-and-mouth disease virus. J Virol 71, 8330-8339.
Oberstrass, F.C., Auweter, S.D., Erat, M., Hargous, Y., Henning, A., Wenter, P., Reymond, L., Amir-Ahmady, B., Pitsch, S., Black, D.L., et al. (2005). Structure of PTB bound to RNA: specific binding and implications for splicing regulation. Science 309, 2054-2057.
Otto, G.A., and Puglisi, J.D. (2004). The pathway of HCV IRES-mediated translation initiation. Cell 119, 369-380.
Pestova, T.V., Shatsky, I.N., Fletcher, S.P., Jackson, R.J., and Hellen, C.U. (1998). A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev 12, 67-83.
Pizzi, E., Tramontano, A., Tomei, L., La Monica, N., Failla, C., Sardana, M., Wood, T., and De Francesco, R. (1994). Molecular model of the specificity pocket of the hepatitis C virus protease: implications for substrate recognition. Proceedings of the National Academy of Sciences 91, 888-892.
Sawicka, K., Bushell, M., Spriggs, K.A., and Willis, A.E. (2008). Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem Soc Trans 36, 641-647.
Shimakami, T., Hijikata, M., Luo, H., Ma, Y.Y., Kaneko, S., Shimotohno, K., and Murakami, S. (2004). Effect of interaction between hepatitis C virus NS5A and NS5B on hepatitis C virus RNA replication with the hepatitis C virus replicon. Journal of virology 78, 2738-2748.
Shiryaev, S.A., Thomsen, E.R., Cieplak, P., Chudin, E., Cheltsov, A.V., Chee, M.S., Kozlov, I.A., and Strongin, A.Y. (2012). New details of HCV NS3/4A proteinase functionality revealed by a high-throughput cleavage assay. PloS one 7, e35759-e35759.
Simmonds, P., Bukh, J., Combet, C., Deléage, G., Enomoto, N., Feinstone, S., Halfon, P., Inchauspé, G., Kuiken, C., Maertens, G., et al. (2005). Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology 42, 962-973.
Simpson, P.J., Monie, T.P., Szendröi, A., Davydova, N., Tyzack, J.K., Conte, M.R., Read, C.M., Cary, P.D., Svergun, D.I., Konarev, P.V., et al. (2004). Structure and RNA Interactions of the N-Terminal RRM Domains of PTB. Structure 12, 1631-1643.
Sp Ngberg, K., and Schwartz, S. (1999). Poly(C)-binding protein interacts with the hepatitis C virus 5' untranslated region. J Gen Virol 80 ( Pt 6), 1371-1376.
Spellman, R., and Smith, C.W.J. (2006). Novel modes of splicing repression by PTB. Trends in Biochemical Sciences 31, 73-76.
Thomas, D.L. (2013). Global control of hepatitis C: where challenge meets opportunity. Nature Medicine 19, 850-858.
Tischendorf, J.J., Beger, C., Korf, M., Manns, M.P., and Kruger, M. (2004). Polypyrimidine tract-binding protein (PTB) inhibits Hepatitis C virus internal ribosome entry site (HCV IRES)-mediated translation, but does not affect HCV replication. Arch Virol 149, 1955-1970.
Venkatramana, M., Ray, P.S., Chadda, A., and Das, S. (2003). A 25 kDa cleavage product of polypyrimidine tract binding protein (PTB) present in mouse tissues prevents PTB binding to the 5' untranslated region and inhibits translation of hepatitis A virus RNA. Virus Res 98, 141-149.
Wang, L., Jeng, K.-S., and Lai, M.M.C. (2011). Poly(C)-binding protein 2 interacts with sequences required for viral replication in the hepatitis C virus (HCV) 5' untranslated region and directs HCV RNA replication through circularizing the viral genome. Journal of virology 85, 7954-7964.
Waterhouse, A.M., Procter, J.B., Martin, D.M.A., Clamp, M., and Barton, G.J. (2009). Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189-1191.
WHO (2018). New hepatitis data highlight need for urgent global response (Geneva: WHO).
Wollerton, M.C., Gooding, C., Robinson, F., Brown, E.C., Jackson, R.J., and Smith, C.W. (2001). Differential alternative splicing activity of isoforms of polypyrimidine tract binding protein (PTB). Rna 7, 819-832.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78939-
dc.description.abstractC型肝炎起因於C型肝炎病毒(HCV),且為造成肝癌的主因。約有30%的C型肝炎病毒感染者在沒有治療的情況下會自發性的痊癒,剩下70%的患者則會逐漸演變為慢性C型肝炎。根據估計,世界上約有7100萬人有慢性C型肝炎,然而現今並無有效的疫苗足以對抗C型肝炎病毒。C型肝炎病毒的基因體為一條單股、正股的RNA,並能夠直接被轉譯成蛋白質。過去研究顯示,宿主蛋白質例如聚嘧啶束結合蛋白(PTBP1)可能調控C型肝炎病毒的蛋白轉譯及RNA複製。選擇性剪接(alternative splicing)造成的三種PTBP1同功型蛋白(isoform)在人類細胞中被發現,且所有的PTBP1同功型蛋白都具有4個RNA 辨認模體(RNA recognition motifs, RRMs),其可以結合到特定具有多個尿嘧啶/胞嘧啶的RNA序列。最短的PTBP1同功型蛋白c,具有531個胺基酸。而同功型蛋白b及c則在RRM2及RRM3之間分別多了19及26個胺基酸。此外,PTBP1曾被報導能夠在細胞核、細胞質之間穿梭,細胞質中的PTBP1能夠調控細胞RNA及病毒RNA的內核醣體結合位(internal ribosome binding site, IRES)依賴性轉譯。當C型肝炎病毒感染時,細胞中的PTBP1會結合當C型肝炎病毒內核醣體結合位,進而影響了內核醣體結合位依賴性蛋白轉譯。在此,我們聚焦於PTBP1是如何調控C型肝炎病毒的內核醣體結合位依賴性蛋白轉譯,以及哪個/哪些PTBP1的RRM對於C型肝炎病毒的內核醣體結合位依賴性蛋白轉譯是中必要的。為了監控PTBP1對於C型肝炎病毒轉譯的調控,我們建構了具有兩個順反子的報導質體,並利用髮夾環圈相隔。本篇研究中,PTBP1 同功型蛋白a及c都能夠降低C型肝炎病毒的內核醣體結合位依賴性蛋白轉譯;且只保有N端或是C端的PTBP1不能有抑制的作用。過去的研究指出,PTBP1會受到脊髓灰白質炎病毒(小兒麻痺病毒;poliovirus)及A型肝炎病毒(hepatitis A virus, HAV)的蛋白酶切割,進而抑制病毒的內核醣體結合位依賴性蛋白轉譯。從過去文獻得知,較小片段的PTBP1會在含有HCV複製原(replicon)細胞中被引發。在本篇研究中,我們得知PTBP1會與HCV 蛋白酶NS3/4A有交互作用,且PTBP1蛋白量可能受到NS3/4A的負調控。總結而言,PTBP1 同功型蛋白a及c都會抑制C型肝炎病毒的內核醣體結合位依賴性蛋白轉譯,且僅有全長PTBP1而非N端PTBP1或C端PTBP1能夠抑制C型肝炎病毒的內核醣體結合位依賴性蛋白轉譯。我們的研究提供了細胞中的蛋白質PTBP1可能與C型肝炎病毒蛋白質NS3/4A 共同調控C型肝炎病毒的內核醣體結合位依賴性蛋白轉譯的可能性。zh_TW
dc.description.abstractHepatitis C is a major cause of liver cancer and is caused by hepatitis C virus (HCV). About 30% of HCV infection can be cleared without any treatments. The remaining 70% of cases will develop chronic hepatitis C. It is estimated that 71 million people have chronic hepatitis C worldwide. Currently there is no effective vaccine for HCV. The HCV genome is a positive-single-stranded RNA, which can be directly translated into viral proteins. Previous studies have shown that host proteins such as polypyrimidine tract-binding protein 1 (PTBP1) may regulate HCV RNA translation and replication. Three different alternative spliced isoforms of PTBP1 were found in human cells, and all isoforms of PTBP1 contains 4 RNA recognition motifs (RRMs), which bind to a specific RNA sequence with a poly U/UC tract. The shortest PTBP1, isoform c, contains 531 amino acids. While the isoform a and isoform b have additional 26 and 19 amino acid residues between RRM2 and RRM3. PTBP1 has been reported to shuttle between nucleus and cytoplasm. Cytosolic PTBP1 can regulate internal ribosome binding site (IRES)-dependent translation initiation of both cellular and viral RNA. PTBP1 binds to HCV IRES and influences HCV IRES-dependent translation. Here, we focus on how PTBP1 regulates HCV IRES-dependent translation and which RRM(s) of PTBP1 is/are important for HCV IRES-dependent translation. To monitor the PTBP1 effect on HCV translation activity, we constructed a bicistronic reporter plasmid separated by a hairpin loop. In our study, both expression of isoform a and c of PTBP1 decreased HCV IRES translation activity, but both halves of PTBP1 which were truncated at Theronine residue 261 could not inhibit HCV IRES-dependent translation. It has been shown that PTBP1 can be cleaved by proteases of the poliovirus and hepatitis A Virus (HAV), thereby inhibiting the viral IRES-dependent translation. Previous studies have also shown that small fragment of PTBP1 was induced in HCV replicon cells. It is intriguing whether HCV IRES-mediated translation and/or replication of HCV RNA would be influenced by the fragment of PTBP1. In this study, we found that the PTBP1 interacted with the HCV NS3/4A and the protein level of PTBP1 was downregulated by increasing doses of NS3/4A. In conclusion, both PTBP1 isoform a and c could inhibit HCV IRES-dependent translation, and only the full-length PTBP1 but not the N-PTBP1 nor the C-PTBP1 could inhibit the HCV IRES-dependent translation. Our study provides new insights into how the host protein PTBP1 and the viral protein NS3/4A may together regulate HCV IRES-dependent translation.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:30:44Z (GMT). No. of bitstreams: 1
U0001-1808202013523400.pdf: 2484371 bytes, checksum: 0c833cf6fe8a1a4b63000719a6f45851 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 I
中文摘要 II
Abstract IV
Table of Contents VI
List of Figures VIII
List of Tables X
Chapter 1: Introduction 1
1.1 Epidemiology of Hepatitis C Virus (HCV) 1
1.2 Molecular Virology of Hepatitis C Virus (HCV) 2
1.3 HCV NS3/4A Protease Complex 3
1.4 HCV IRES-Dependent Translation Initiation 5
1.5 Interactions between HCV RNA and Cellular Proteins 6
1.6 Polypyrimidine-Tract-Binding Protein 1 (PTBP1) Protein 7
1.7 Relationship between PTBP1 and HCV IRES 10
1.8 Interactions among PTBP1, Viral IRESs and Viral Proteases 11
1.9 Specific Aim of This Study 11
Chapter 2: Materials and Methods 13
2.1 Materials 13
2.1.1 Cell lines 13
2.1.2 Competent cell 13
2.1.3 Plasmids 13
2.1.4 Reagents 14
2.1.5 Enzymes 16
2.1.6 Antibodies 16
2.1.7 Commercial kits 17
2.2 Methods 18
2.2.1 Cell culture 18
2.2.2 Transformation 18
2.2.3 Construction of the bicistronic HCV-IRES reporter plasmids 19
2.2.4 Transfection 20
2.2.5 SDS-PAGE/Immunoblot (Western blot) 21
2.2.6 Co-Immunoprecipitation (Co-IP) 23
2.2.7 Luciferase assay 24
2.2.8 Knockdown of PTBP1 by shRNA 25
2.2.9 Quantification of immunoblotting 26
Chapter 3: Results 28
3.1 Three Different Isoforms of PTBP1 are Present in Human Cells 28
3.2 Engineering the pRHF-HCV IRES Bicistronic Reporter Plasmid 29
3.3 PTBP1 Inhibited the HCV IRES-Dependent Translation in Huh7 Cells 30
3.4 Only Full-Length PTBP1 Inhibited the HCV IRES-Dependent Translation in Huh7 Cells 30
3.5 PTBP1 was Knocked down in Huh7 cells by shRNA 32
3.6 Full-Length PTBP1 Inhibited the HCV IRES-Dependent Translation in PTBP1-Knockdown Huh7 Cells 33
3.7 The Hypothetical Cleavage Site of HCV NS3/4A on PTBP1 35
3.8 The Regulation of PTBP1 at the Protein Levels by HCV NS3/4A 35
Chapter 4: Discussion 37
Chapter 5: References 42
dc.language.isoen
dc.subjectC型肝炎病毒NS3/4A蛋白酶zh_TW
dc.subjectC型肝炎病毒zh_TW
dc.subject雙順反子螢光素酶報導質體zh_TW
dc.subject聚嘧啶束結合蛋白 (PTBP1)zh_TW
dc.subject內核醣體結合位依賴性轉譯zh_TW
dc.subjectIRES-dependent translationen
dc.subjectPolypyrimidine tract-binding protein 1 (PTBP1)en
dc.subjectHepatitis C virus (HCV)en
dc.subjectBicistronic luciferase reporteren
dc.subjectHCV NS3/4A proteaseen
dc.title探討蛋白質PTBP1對C型肝炎病毒核糖體內結合位依賴性轉譯之調控
zh_TW
dc.titleThe Regulation of HCV IRES-Dependent Translation by Polypyrimidine Tract-Binding Protein 1 (PTBP1)
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee余明俊(Ming-Jiun Yu),林靜宜(Jing-yi Lin)
dc.subject.keywordC型肝炎病毒,內核醣體結合位依賴性轉譯,聚嘧啶束結合蛋白 (PTBP1),雙順反子螢光素酶報導質體,C型肝炎病毒NS3/4A蛋白酶,zh_TW
dc.subject.keywordHepatitis C virus (HCV),IRES-dependent translation,Polypyrimidine tract-binding protein 1 (PTBP1),Bicistronic luciferase reporter,HCV NS3/4A protease,en
dc.relation.page75
dc.identifier.doi10.6342/NTU202003965
dc.rights.note有償授權
dc.date.accepted2020-08-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
dc.date.embargo-lift2025-08-19-
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
U0001-1808202013523400.pdf
  未授權公開取用
2.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved