Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78936
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor詹世鵬zh_TW
dc.contributor.author王于箴zh_TW
dc.contributor.authorYu-Chen Wangen
dc.date.accessioned2021-07-11T15:30:31Z-
dc.date.available2024-02-28-
dc.date.copyright2018-10-09-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Ha, M. and V.N. Kim, Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol, 2014. 15(8): p. 509-24.
2. Roush, S. and F.J. Slack, The let-7 family of microRNAs. Trends Cell Biol, 2008. 18(10): p. 505-16.
3. Reinhart, B.J., et al., The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000. 403(6772): p. 901-6.
4. Van Wynsberghe, P.M., et al., LIN-28 co-transcriptionally binds primary let-7 to regulate miRNA maturation in Caenorhabditis elegans. Nat Struct Mol Biol, 2011. 18(3): p. 302-8.
5. Rausch, M., et al., A genetic interactome of the let-7 microRNA in C. elegans. Dev Biol, 2015. 401(2): p. 276-86.
6. Ecsedi, M., M. Rausch, and H. Grosshans, The let-7 microRNA directs vulval development through a single target. Dev Cell, 2015. 32(3): p. 335-44.
7. Lee, H., et al., Biogenesis and regulation of the let-7 miRNAs and their functional implications. Protein Cell, 2016. 7(2): p. 100-13.
8. Zhang, H., Y. Li, and M. Lai, The microRNA network and tumor metastasis. Oncogene, 2010. 29(7): p. 937-48.
9. Dangi-Garimella, S., et al., Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J, 2009. 28(4): p. 347-58.
10. Sampson, V.B., et al., MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res, 2007. 67(20): p. 9762-70.
11. Peng, Y., et al., Antiproliferative effects by Let-7 repression of high-mobility group A2 in uterine leiomyoma. Mol Cancer Res, 2008. 6(4): p. 663-73.
12. Kumar, M.S., et al., Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci U S A, 2008. 105(10): p. 3903-8.
13. Sun, T., et al., MicroRNA let-7 regulates 3T3-L1 adipogenesis. Mol Endocrinol, 2009. 23(6): p. 925-31.
14. Cetkovic, H., et al., Nme family of proteins--clues from simple animals. Naunyn Schmiedebergs Arch Pharmacol, 2015. 388(2): p. 133-42.
15. Boissan, M., et al., The mammalian Nm23/NDPK family: from metastasis control to cilia movement. Mol Cell Biochem, 2009. 329(1-2): p. 51-62.
16. Tokarska-Schlattner, M., et al., The nucleoside diphosphate kinase D (NM23-H4) binds the inner mitochondrial membrane with high affinity to cardiolipin and couples nucleotide transfer with respiration. J Biol Chem, 2008. 283(38): p. 26198-207.
17. Mishra, P. and D.C. Chan, Metabolic regulation of mitochondrial dynamics. J Cell Biol, 2016. 212(4): p. 379-87.
18. Boissan, M., et al., Membrane trafficking. Nucleoside diphosphate kinases fuel dynamin superfamily proteins with GTP for membrane remodeling. Science, 2014. 344(6191): p. 1510-5.
19. Vyas, S., E. Zaganjor, and M.C. Haigis, Mitochondria and Cancer. Cell, 2016. 166(3): p. 555-566.
20. Senft, D. and Z.A. Ronai, Regulators of mitochondrial dynamics in cancer. Curr Opin Cell Biol, 2016. 39: p. 43-52.
21. Farkas, Z., et al., The dosage-dependent effect exerted by the NM23-H1/H2 homolog NDK-1 on distal tip cell migration in C. elegans. Lab Invest, 2018. 98(2): p. 182-189.
22. Scott, T.A., et al., Host-Microbe Co-metabolism Dictates Cancer Drug Efficacy in C. elegans. Cell, 2017. 169(3): p. 442-456 e18.
23. Masoudi, N., et al., The NM23-H1/H2 homolog NDK-1 is required for full activation of Ras signaling in C. elegans. Development, 2013. 140(16): p. 3486-95.
24. Amutha, B. and D. Pain, Nucleoside diphosphate kinase of Saccharomyces cerevisiae, Ynk1p: localization to the mitochondrial intermembrane space. Biochem J, 2003. 370(Pt 3): p. 805-15.
25. Lambeth, D.O., et al., Characterization and cloning of a nucleoside-diphosphate kinase targeted to matrix of mitochondria in pigeon. J Biol Chem, 1997. 272(39): p. 24604-11.
26. Troll, H., et al., Separate nuclear genes encode cytosolic and mitochondrial nucleoside diphosphate kinase in Dictyostelium discoideum. J Biol Chem, 1993. 268(34): p. 25469-75.
27. Sweetlove, L.J., et al., Nucleoside diphosphate kinase III is localized to the inter-membrane space in plant mitochondria. FEBS Lett, 2001. 508(2): p. 272-6.
28. Brenner, S., The genetics of Caenorhabditis elegans. Genetics, 1974. 77(1): p. 71-94.
29. Van Wynsberghe, P.M., et al., Analysis of microRNA expression and function. Methods Cell Biol, 2011. 106: p. 219-252.
30. Fraser, A.G., et al., Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature, 2000. 408(6810): p. 325-30.
31. Kamath, R.S., et al., Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 2003. 421(6920): p. 231-7.
32. Kim, H., et al., A co-CRISPR strategy for efficient genome editing in Caenorhabditis elegans. Genetics, 2014. 197(4): p. 1069-80.
33. Mello, C.C., et al., Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J, 1991. 10(12): p. 3959-70.
34. Neff, M.M., et al., dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J, 1998. 14(3): p. 387-92.
35. Dudek, J., P. Rehling, and M. van der Laan, Mitochondrial protein import: common principles and physiological networks. Biochim Biophys Acta, 2013. 1833(2): p. 274-85.
36. Wiedemann, N. and N. Pfanner, Mitochondrial Machineries for Protein Import and Assembly. Annu Rev Biochem, 2017. 86: p. 685-714.
37. Milon, L., et al., The human nm23-H4 gene product is a mitochondrial nucleoside diphosphate kinase. J Biol Chem, 2000. 275(19): p. 14264-72.
38. Ehrenberg, B., et al., Membrane-Potential Can Be Determined in Individual Cells from the Nernstian Distribution of Cationic Dyes. Biophysical Journal, 1988. 53(5): p. 785-794.
39. Scaduto, R.C. and L.W. Grotyohann, Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophysical Journal, 1999. 76(1): p. 469-477.
40. O'Reilly, C.M., et al., Quantitative analysis of spontaneous mitochondrial depolarizations. Biophysical Journal, 2003. 85(5): p. 3350-3357.
41. Pickrell, A.M. and R.J. Youle, The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron, 2015. 85(2): p. 257-73.
42. Palikaras, K., E. Lionaki, and N. Tavernarakis, Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature, 2015. 521(7553): p. 525-8.
43. Kanazawa, T., et al., The C. elegans Opa1 homologue EAT-3 is essential for resistance to free radicals. PLoS Genet, 2008. 4(2): p. e1000022.
44. Rehmsmeier, M., et al., Fast and effective prediction of microRNA/target duplexes. RNA, 2004. 10(10): p. 1507-17.
45. Fernandez-Medarde, A. and E. Santos, Ras in cancer and developmental diseases. Genes Cancer, 2011. 2(3): p. 344-58.
46. Johnson, S.M., et al., RAS is regulated by the let-7 microRNA family. Cell, 2005. 120(5): p. 635-47.
47. Chen, Z., et al., Down-regulation of let-7 microRNA increased K-ras expression in lung damage induced by radon. Environ Toxicol Pharmacol, 2015. 40(2): p. 541-8.
48. He, X.Y., et al., The let-7a microRNA protects from growth of lung carcinoma by suppression of k-Ras and c-Myc in nude mice. J Cancer Res Clin Oncol, 2010. 136(7): p. 1023-8.
49. Lee, S.T., et al., Let-7 microRNA inhibits the proliferation of human glioblastoma cells. J Neurooncol, 2011. 102(1): p. 19-24.
50. Baracca, A., et al., Mitochondrial Complex I decrease is responsible for bioenergetic dysfunction in K-ras transformed cells. Biochim Biophys Acta, 2010. 1797(2): p. 314-23.
51. Ying, H., et al., Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell, 2012. 149(3): p. 656-70.
52. Son, J., et al., Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature, 2013. 496(7443): p. 101-5.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78936-
dc.description.abstract粒線體融合和分裂現象的不平衡參與調控癌症生成,Non-Metastatic 4 (NME4)是位在粒線體的核苷酸二磷酸激酶,其主要參與在粒線體融合的過程中。有趣的是,我們先前的結果顯示在人類細胞中,腫瘤抑制子let-7 miRNA可能調控NME4,使我們想尋找let-7 miRNA與粒線體的關聯性以及其生理上的意義。由於以線蟲研究let-7的功能和表型有許多優點,本篇研究使用線蟲作為模式生物,測定線蟲中NME4同源基因ndk-1是否會受到let-7調控。而我們也確實發現在線蟲中降低ndk-1基因表現會像在人類細胞中降低NME4一樣造成粒線體碎片化,且在mid L4階段的let-7(n2853)線蟲中,碎片化粒線體的比例也顯著下降,我們的實驗結果指出let-7可能影響粒線體型態,而我們的研究也是第一個嘗試探討let-7和粒線體型態功能上的關聯性,這有助於發現新的miRNA對於調控粒線體動態平衡的路徑。zh_TW
dc.description.abstractImbalance of mitochondrial fission and fusion activities has been implicated in carcinogenesis. NME4, a mitochondria-localized nucleoside diphosphate kinase, is involved in mitochondrial fusion process. Interestingly, our previous results showed that the tumor suppressor miRNA let-7 seems to regulate NME4 in human cells, inspiring us to seek possible functional connection for let-7 miRNA to mitochondrial and the biological implication for this connection. In this study, we chose C. elegans as the model organism due to its advantages in studying let-7 function and phenotypes. We seek to determine whether the NME4 homolog ndk-1 in C. elegans is also regulated by let-7. Indeed, like NME4 in human cells, knockdown of ndk-1 in C. elegans caused mitochondrial fragmentation. In addition, we found that fragmentation of mitochondria is significantly reduced in let-7(n2853) mutants at the mid L4 stage. These results suggest that let-7 may play a role in mitochondrial morphology. Our study is the first attempt to examine function relevance of let-7 to mitochondria morphology and will help discover novel pathways for miRNAs to control mitochondrial dynamics.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:30:31Z (GMT). No. of bitstreams: 1
ntu-107-R05445124-1.pdf: 5918100 bytes, checksum: da1b8a783e1af5581c7b50fa150be490 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
Chapter 1 Introduction 1
The let-7 miRNA 1
The role of the let-7 miRNA in C. elegans development 1
The let-7 miRNA is evolutionarily conserved 1
The let-7 miRNA is regarded as a tumor suppressor 2
NME4 may be a novel let-7 target gene 2
NME4 3
The NME family 3
The role of NME4 in mitochondrial fusion 3
Relevance of NME4 and mitochondrial dynamics in cancer 3
Association of NME4 and the let-7 miRNA 4
The C. elegans NME4 homolog ndk-1 4
Mitochondria-associated NDPKs across species 5
Project proposal 5
Chapter 2 Materials and methods 6
E. coli strains 6
C. elegans strains 6
C. elegans culture conditions 7
Synchronous growth 7
RNA interference (RNAi) 7
Slide preparation 8
Genomic DNA extraction 8
RNA extraction 9
Quantitative real-time RT-PCR 10
DNase treatment 10
cDNA synthesis 10
qRT-PCR 11
Construction of plasmids 12
Mitochondrial staining 15
Mitochondrial imaging 15
Mitochondrial morphologies analysis 15
Microinjection 16
Strain crosses 17
Single worm PCR 17
Detection of let-7(n2853) point mutation 18
Chapter 3 Results 19
C. elegans NDK-1 may function similarly to human NME4 that participates in mitochondrial fusion. 19
The let-7 miRNA plays a role in mitochondria dynamics at the mid L4 stage. 21
Mitochondrial dynamic seems to maintain balance in vulva in let-7(n2853) at the mid L4 stage. 22
Chapter 4 Discussion 24
Figures 26
Figure 1 26
Figure 2 29
Figure 3 33
Figure 4 37
References 39
Appendix 44
Appendix 1 44
Appendix 2 45
Appendix 3 47
Appendix 4 48
Appendix 5 51
Appendix 6 54
Appendix 7 56
Appendix 8 58
Appendix 9 59
Appendix 10 60
-
dc.language.isoen-
dc.subjectlet-7微小核醣核酸zh_TW
dc.subjectNDK-1zh_TW
dc.subjectNME4zh_TW
dc.subject核?酸二磷酸激?zh_TW
dc.subjectNDK-1en
dc.subjectlet-7 miRNAen
dc.subjectnucleoside diphosphate kinaseen
dc.subjectNME4en
dc.title測定在線蟲中NME4同源基因ndk-1是否受到let-7微小核糖核酸調控zh_TW
dc.titleDetermine whether the C. elegans NME4 homolog ndk-1 is regulated by the let-7 miRNAen
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee潘俊良;羅時成zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keywordlet-7微小核醣核酸,核?酸二磷酸激?,NME4,NDK-1,zh_TW
dc.subject.keywordlet-7 miRNA,nucleoside diphosphate kinase,NME4,NDK-1,en
dc.relation.page60-
dc.identifier.doi10.6342/NTU201803824-
dc.rights.note未授權-
dc.date.accepted2018-08-17-
dc.contributor.author-college醫學院-
dc.contributor.author-dept微生物學研究所-
dc.date.embargo-lift2023-08-17-
Appears in Collections:微生物學科所

Files in This Item:
File SizeFormat 
ntu-106-2.pdf
  Restricted Access
5.78 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved