Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78927
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林清富(Ching-Fuh Lin)
dc.contributor.authorPo-Jui Huangen
dc.contributor.author黃柏瑞zh_TW
dc.date.accessioned2021-07-11T15:29:48Z-
dc.date.available2023-08-23
dc.date.copyright2018-08-23
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citation[1] 楊軍昌, '周原出土西周陽燧的技術研究' 《文物》, 1997年, 第7期, 85-87頁。
[2] W. Herschel, 'Experiments on the Refrangibility of the Invisible Rays of the Sun. By William Herschel, LL. D. F. R. S. ' Philosophical Transactions of the Royal Society of London, vol. 90, no. 0, pp. 284-292, 1800.
[3] Stáhlavská, A. (1973). 'The use of spectrum analytical methods in drug analysis. 1. Determination of alkaline metals using emission flame photometry.' Pharmazie, vol. 28, no. 4, pp. 238-239.
[4] J. M. Hollas, 'Modern spectroscopy.' Chichester: Wiley, pp. 247-2550, 2004.
[5] B. Welz and M. Sperling, 'atomic absorption spectroscopy.' John Wiley & Sons, pp. 62-64, 2008.
[6] Sands, D. E. (1969). 'Introduction to crystallography.' Courier Corporation.
[7] Bowley, H. J., Gerrard, D. L., Louden, J. D., & Turrell, G. (2012). 'Practical raman spectroscopy.' Springer Science & Business Media.
[8] A. Watts, 'A Window on Water Vapor and Planetary Temperature – Part 2', Watts Up With That?, 2018. [Online]. Available: https://wattsupwiththat.com/2008/ 06/21/a-window-on-water-vapor-and-planetary-temperature-part-2/. [Accessed: 22- Jun- 2018].
[9] '二氧化碳對人體的影響-Lime 萊寶', Cleanuplime.com, 2018. [Online]. Available: http://www.cleanuplime.com/knowledge/detail/64. [Accessed: 22- Jun- 2018].
[10] W. Schottky, 'Vereinfachte und erweiterte Theorie der Randschicht-gleichrichter', Zeitschrift fur Physik, vol. 118, no. 9-10, pp. 539-592, 1942.
[11] N. Mott, 'Note on the contact between a metal and an insulator or semi-conductor', Mathematical Proceedings of the Cambridge Philosophical Society, vol. 34, no. 04, p. 568, 1938.
[12] Sze, S. M., & Ng, K. K. (2006). 'Physics of semiconductor devices', John wiley & sons.
[13] Anderson, B., & Anderson, R. (2004). 'Fundamentals of semiconductor devices', McGraw-Hill, Inc., pp.317-333.
[14] R. Tung, 'Schottky barrier height—do we really understand what we measure', Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 11, no. 4, p. 1546, 1993.
[15] V. Mikhelashvili, G. Eisenstein and R. Uzdin, 'Extraction of Schottky diode parameters with a bias dependent barrier height', Solid-State Electronics, vol. 45, no. 1, pp. 143-148, 2001.
[16] I. Jyothi, H. Yang, K. Shim, V. Janardhanam, S. Kang, H. Hong and C. Choi, 'Temperature Dependency of Schottky Barrier Parameters of Ti Schottky Contacts to Si-on-Insulator', MATERIALS TRANSACTIONS, vol. 54, no. 9, pp. 1655-1660, 2013.
[17] M. Yeganeh and S. Rahmatollahpur, 'Barrier height and ideality factor dependency on identically produced small Au/p-Si Schottky barrier diodes', Journal of Semiconductors, vol. 31, no. 7, p. 074001, 2010.
[18] A. Turut, M. Saglam, H. Efeoglu, N. Yalcin, M. Yildirim and B. Abay, 'Interpreting the nonideal reverse bias C-V characteristics and importance of the dependence of Schottky barrier height on applied voltage', Physica B: Condensed Matter, vol. 205, no. 1, pp. 41-50, 1995.
[19] H. Fan and A. Ramdas, 'Infrared Absorption and Photoconductivity in Irradiated Silicon', Journal of Applied Physics, vol. 30, no. 8, pp. 1127-1134, 1959.
[20] R. J. Archer and J. Cohen, 'Schottky Barrier Monolithic Detector Having Ultrathin Metal Layer, ' U.S. Patent 3,757,123, 1973.
[21] M. Kimata, M. Denda, T. Fukumoto, N. Tsubouchi, S. Uematsu, H. Shibata, T. Higuchi, T. Saheki, R. Tsunoda and T. Kanno, 'Platinum Silicide Schottky-Barrier IR-CCD Image Sensors', Japanese Journal of Applied Physics, vol. 21, no. 1, p. 231, 1982.
[22] C. Scales and P. Berini, 'Thin-Film Schottky Barrier Photodetector Models', IEEE Journal of Quantum Electronics, vol. 46, no. 5, pp. 633-643, 2010.
[23] M. Casalino, L. Sirleto, L. Moretti and I. Rendina, 'A silicon compatible resonant cavity enhanced photodetector working at 1.55 µm', Semiconductor Science and Technology, vol. 23, no. 7, p. 075001, 2008.
[24] 'Nanoparticles', Beautiful Chemistry, 2018. [Online]. Available: https://www. beautifulchemistry.net/nanoparticles/. [Accessed: 22- Jun- 2018].
[25] R. Wood, 'On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum', Proceedings of the Physical Society of London, vol. 18, no. 1, pp. 269-275, 1902.
[26] U. Fano, 'The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves)', Journal of the Optical Society of America, vol. 31, no. 3, p. 213, 1941.
[27] A. Hessel and A. Oliner, 'A New Theory of Wood’s Anomalies on Optical Gratings', Applied Optics, vol. 4, no. 10, p. 1275, 1965.
[28] E. Kretschmann and H. Raether, 'Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light', Zeitschrift für Naturforschung A, vol. 23, no. 12, 1968.
[29] A. Otto, 'Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection', Zeitschrift für Physik A Hadrons and nuclei, vol. 216, no. 4, pp. 398-410, 1968.
[30] T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio and P. Wolff, 'Extraordinary optical transmission through sub-wavelength hole arrays', Nature, vol. 391, no. 6668, pp. 667-669, 1998.
[31] F. Marquier, J. Greffet, S. Collin, F. Pardo and J. Pelouard, 'Resonant transmission through a metallic film due to coupled modes', Optics Express, vol. 13, no. 1, p. 70, 2005.
[32] J. Porto, F. García-Vidal and J. Pendry, 'Transmission Resonances on Metallic Gratings with Very Narrow Slits', Physical Review Letters, vol. 83, no. 14, pp. 2845-2848, 1999.
[33] F. Garcia-Vidal, L. Martin-Moreno, T. Ebbesen and L. Kuipers, 'Light passing through subwavelength apertures', Reviews of Modern Physics, vol. 82, no. 1, pp. 729-787, 2010.
[34] C. Lawrence Wu and S. Ng, 'Self-assembly Gold Nanoislands for Localized Surface Plasmon Resonance Biosensing', MRS Proceedings, vol. 1566, 2013.
[35] J. Cao, E. Galbraith, T. Sun and K. Grattan, 'Comparison of Surface Plasmon Resonance and Localized Surface Plasmon Resonance-based optical fibre sensors', Journal of Physics: Conference Series, vol. 307, p. 012050, 2011.
[36] I. Pockrand and A. Otto, 'Surface enhanced Raman scattering (SERS): Annealing the silver substrate', Solid State Communications, vol. 38, no. 12, pp. 1159-1163, 1981.
[37] Z. Xu, 'Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced Raman spectroscopy', Journal of Nanophotonics, vol. 5, no. 1, p. 053526, 2011.
[38] Q. Li, Y. Du, H. Tang, X. Wang, G. Chen, J. Iqbal, W. Wang and W. Zhang, 'Ultra sensitive surface-enhanced Raman scattering detection based on monolithic column as a new type substrate', Journal of Raman Spectroscopy, vol. 43, no. 10, pp. 1392-1396, 2012.
[39] Y. Gao, H. Cansizoglu, K. Polat, S. Ghandiparsi, A. Kaya, H. Mamtaz, A. Mayet, Y. Wang, X. Zhang, T. Yamada, E. Devine, A. Elrefaie, S. Wang and M. Islam, 'Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes', Nature Photonics, vol. 11, no. 5, pp. 301-308, 2017.
[40] M. Nazirzadeh, F. Atar, B. Turgut and A. Okyay, 'Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection', Scientific Reports, vol. 4, no. 1, 2014.
[41] C. Tan, S. Jang and Y. Lee, 'Localized surface plasmon resonance with broadband ultralow reflectivity from metal nanoparticles on glass and silicon subwavelength structures', Optics Express, vol. 20, no. 16, p. 17448, 2012.
[42] S. Paterson, S. Thompson, A. Wark and R. de la Rica, 'Gold Suprashells: Enhanced Photothermal Nanoheaters with Multiple Localized Surface Plasmon Resonances for Broadband Surface-Enhanced Raman Scattering', The Journal of Physical Chemistry C, vol. 121, no. 13, pp. 7404-7411, 2017.
[43] L. Tang, S. Kocabas, S. Latif, A. Okyay, D. Ly-Gagnon, K. Saraswat and D. Miller, 'Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna', Nature Photonics, vol. 2, no. 4, pp. 226-229, 2008.
[44] P. Muhlschlegel, 'Resonant Optical Antennas', Science, vol. 308, no. 5728, pp. 1607-1609, 2005.
[45] R. Brückner, A. Zakhidov, R. Scholz, M. Sudzius, S. Hintschich, H. Fröb, V. Lyssenko and K. Leo, 'Phase-locked coherent modes in a patterned metal–organic microcavity', Nature Photonics, vol. 6, no. 5, pp. 322-326, 2012.
[46] W. Huang, H. Hsiao, M. Tang and S. Lee, 'Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement', Applied Physics Letters, vol. 109, no. 6, p. 063107, 2016.
[47] W. Ye, W. Zhang, S. Wang, Z. Qi, Z. Luo, C. Chen and J. Dai, 'Effect of sapphire substrate on the localized surface plasmon resonance of aluminum triangular nanoparticles', Optics Communications, vol. 395, pp. 175-182, 2017.
[48] G. Kim and J. Ha, 'Effect of adsorbate electrophilicity and spiky uneven surfaces on single gold nanourchin-based localized surface plasmon resonance sensors', Chemical Physics Letters, vol. 697, pp. 38-42, 2018.
[49] S. Sugumaran, M. Jamlos, M. Ahmad, C. Bellan and D. Schreurs, 'Nanostructured materials with plasmonic nanobiosensors for early cancer detection: A past and future prospect', Biosensors and Bioelectronics, vol. 100, pp. 361-373, 2018.
[50] M. Knight, H. Sobhani, P. Nordlander and N. Halas, 'Photodetection with Active Optical Antennas', Science, vol. 332, no. 6030, pp. 702-704, 2011.
[51] K. Lin, H. Chen, Y. Lai and C. Yu, 'Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths', Nature Communications, vol. 5, no. 1, 2014.
[52] 2018. [Online]. Available: https://plasma.oxinst.com/campaigns/technology/pecvd. [Accessed: 29- Jun- 2018].
[53] Suss.com, 2018. [Online]. Available: https://www.suss.com/tw/products-solutions/mask-aligner/mjb4. [Accessed: 29- Jun- 2018].
[54] 2018. [Online]. Available: https://plasma.oxinst.com/campaigns/technology/rie-pe. [Accessed: 29- Jun- 2018].
[55] 'V-770 UV-visible/NIR spectrophotometer | JASCO', JASCO Inc., 2018. [Online]. Available: https://jascoinc.com/products/spectroscopy/uv-visible-nir-spectrophoto meters/models/v-770-uv-visible-nir-spectrophotometer/. [Accessed: 29- Jun- 2018].
[56] 鄭竣中, '可見光/紅外光偵測器技術之研究' 國立台灣大學光電工程學研究所碩士論文, 2016年8月。
[57] 莊閎傑, '矽基紅外光譜偵測關鍵技術之研究' 國立台灣大學光電工程學研究所碩士論文, 2017年7月。
[58] A. Dweydari and C. Mee, 'Work function measurements on (100) and (110) surfaces of silver', Physica Status Solidi (a), vol. 27, no. 1, pp. 223-230, 1975.
[59] G. Mattei, L. Quagliano and M. Pagannone, 'Surface-Enhanced Raman Scattering (SERS) on Silver Surfaces Activated by a Simple Chemical Treatment', Europhysics Letters (EPL), vol. 11, no. 4, pp. 373-378, 1990.
[60] K. Byun, S. Yoon and D. Kim, 'Effect of surface roughness on the extinction-based localized surface plasmon resonance biosensors', Applied Optics, vol. 47, no. 31, p. 5886, 2008.
[61] S. Morimine, S. Norimoto, T. Shimoaka and T. Hasegawa, 'Surface Selection Rule of Infrared Diffuse Reflection Spectrometry for Analysis of Molecular Adsorbates on a Rough Surface of a Nonabsorbing Medium', Analytical Chemistry, vol. 86, no. 9, pp. 4202-4208, 2014.
[62] T. Armaroli, T. Bécue and S. Gautier, 'Diffuse Reflection Infrared Spectroscopy (Drifts): Application to the in Situ Analysis of Catalysts', Oil & Gas Science and Technology, vol. 59, no. 2, pp. 215-237, 2004.
[63] U. Chettiar, P. Nyga, M. Thoreson, A. Kildishev, V. Drachev and V. Shalaev, 'FDTD modeling of realistic semicontinuous metal films', Applied Physics B, vol. 100, no. 1, pp. 159-168, 2010.
[64] Gobrecht, H. 'PJ Holmes, The Electrochemistry of Semiconductors. Academic Press, London und New York, 1962; Band X aus der Reihe „Physical Chemistry” ︁. 396 Seiten, 134 Abbildungen, 32 Tabellen, 772 Literaturhinweise. Preis: 84 s.' Berichte der Bunsengesellschaft für physikalische Chemie, vol. 66(8‐9), pp. 769-769, 1962.
[65] Y. Fan, P. Han, P. Liang, Y. Xing, Z. Ye and S. Hu, 'Differences in etching characteristics of TMAH and KOH on preparing inverted pyramids for silicon solar cells', Applied Surface Science, vol. 264, pp. 761-766, 2013.
[66] I. Barycka and I. Zubel, 'Silicon anisotropic etching in KOH-isopropanol etchant', Sensors and Actuators A: Physical, vol. 48, no. 3, pp. 229-238, 1995.
[67] 'Wet-Chemical Etching and Cleaning of Silicon,' Virginia Semiconductor, Inc., Virginia, USA, January, 2003.
[68] J. Zhu, H. Zhu, H. Xu, Z. Weng and H. Wu, 'Ge-based mid-infrared blocked-impurity-band photodetectors', Infrared Physics & Technology, vol. 92, pp. 13-17, 2018.
[69] A. Soibel, C. Hill, S. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Ting and S. Gunapala, 'Room temperature performance of mid-wavelength infrared InAsSb nBn detectors', Infrared Physics & Technology, vol. 70, pp. 121-124, 2015.
[70] C. Guo, Y. Sun, Z. Jia, Z. Jiang, Y. Lv, H. Hao, X. Han, Y. Dong, D. Jiang, G. Wang, Y. Xu, T. Wang, J. Tian, Z. Wu and Z. Niu, 'Visible-extended mid-infrared wide spectrum detector based on InAs/GaSb type-Ⅱ superlattices (T2SL)', Infrared Physics & Technology, vol. 89, pp. 147-153, 2018.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78927-
dc.description.abstract二十一世紀是高科技產業急速起飛的一個世紀,在我們的生活周遭充斥著高科技下的產物,諸如手機及各式穿戴裝置等,這些高科技產品的出現帶給人們極大的便利,但同時人們生活的環境也因科技工業的蓬勃發展逐漸惡化,如同時常佔據新聞版面的空污、汙水排放及食安等問題,也因為這樣人們越來越注重生活的安全、健康與品質。為了因應這樣的環境變化,即時偵測便開始顯得重要,而現今的偵測設備多半有體積過大、昂貴或是精準度不高等問題,因此本論文意在開發一種紅外光偵測器,有利於隨身攜帶、偵測種類多元且精準度高之微型光譜儀系統。
本論文以寬頻紅外波段偵測做為目的,並以矽基金屬半導體光二極體作為主體進行偵測,以不同的基板類型及金半接觸電極並搭配不同的入射方式進行嘗試,成功研製出電性穩定且於1550奈米波段下有極高光電響應之近紅外光偵測元件。接著,我們引入局域表面電漿共振的現象,利用正倒立金字塔具漸變式腔體長度的方式誘發寬頻的共振,並利用COMSOL模擬軟體進行模擬,而後成功利用氫氧化鉀蝕刻的方式,製作出週期為4至12微米不等之倒立金字塔陣列結構及週期4至6微米微米不等之正立金字塔陣列結構。最後將金半光二極體與正倒立金字塔進行結合,藉由局域表面電共振強化元件的光電響應及偵測範圍,在1.55微米光通訊波段以週期4微米之正立金字塔陣列元件得到1878.9 nA/mW的響應強度,而在4.16微米波段部分,利用金字塔局限的效應,藉由光場在金字塔金屬腔壁上共振並產生熱能以進行偵測,並於週期6微米之正立金字塔陣列元件得到最大電流變化率4.609×10-1 nA/ms,成功研製出超寬頻之矽基金半光偵測器。
zh_TW
dc.description.abstractWith high-tech industry taking off rapidly in 21st century, we are surrounded by high-tech products such as mobile phones and various wearable devices which bring a lot of convenience to the people. However, with the development of technology industry flourishes, the environment is getting worse. Therefore, people pay more attention to the safety, health and the quality of living. In order to solve the changes in environmental, instant detection has become vary important. Nonetheless, most of the detection equipment has some problems, like a large volume, expensive or not accurate. In this thesis, a mid-infrared detector is demonstrated for the concept of the miniature spectrometer system which is portable, multi-detection high precision.
In our study, the Si-based metal-semiconductor diode to detect the infrared light source is studied. Through the metal selection, fabrication process and measurement method, the performance of the device is enhanced. The photodetector, which has stable IV characteristics and high sensitivity at 1550 nm laser signal, is developed. Then, the phenomenon of localized surface plasmon resonance (LSPR) is explored through the upright/inverted pyramid to induce the broadband resonance and the simulation software (COMSOL) is used to simulate the distribution of electromagnetic field. Afterwards, the periodic upright/inverted pyramid array structures are successfully manufactured by using a potassium hydroxide etching method. Finally, the metal-semiconductor photodiode and the periodic upright/inverted pyramid array structure are combined to achieve the broadband infrared detectors by the phenomenon of localized surface plasmon resonance. The results show that the response of 4 µm UPA device can reach 1878.9 nA/mW at 1550 nm laser signal and the current variation rate of 6 µm UPA device can reach 4.609×10-1 nA/ms at 4.16 µm light source. In summary, the broadband infrared detector is successfully developed.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:29:48Z (GMT). No. of bitstreams: 1
ntu-107-R05941068-1.pdf: 9611860 bytes, checksum: d3e7385a7d90e8ea06edeba0db8fd3ae (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 I
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VII
表目錄 XIII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 4
1.3 論文大綱 7
第二章 基礎理論及文獻回顧 8
2.1 蕭特基二極體 8
2.1.1 金屬半導體接面 8
2.1.2 半導體能隙吸收機制 11
2.1.3 內部光激發吸收機制 12
2.2 局域性表面電將共振 13
2.3 製程及量測設備介紹 16
2.3.1 電漿輔助化學氣相沉積系統 16
2.3.2 黃光微影系統 17
2.3.3 反應式離子蝕刻系統 18
2.3.4 分光光譜儀 19
2.3.5 熱蒸鍍系統 20
2.3.6 電子束蒸鍍系統 21
第三章 平面型金屬半導體光偵測器 22
3.1 前言 22
3.2 入射金屬薄膜式銅/P型矽基金屬半導體光偵測器 24
3.2.1 元件結構及製作流程 24
3.2.2 元件量測及分析 26
3.3 銀/N型矽基金屬半導體光偵測器 32
3.3.1 元件結構及製作流程 32
3.3.2 元件量測及分析 34
3.3.3 入射矽基板式銀/n型矽基金屬半導體光偵測器量測及分析 37
3.4 結論 45
第四章 矽基奈微米金字塔陣列結構模擬及製作 47
4.1 前言 47
4.2 奈微米金字塔結構模擬 49
4.2.1 倒立金字塔結構電磁場模擬 49
4.2.2 正立金字塔結構電磁場模擬 57
4.3 氫氧化鉀非等向性濕式蝕刻 61
4.4 倒立金字塔陣列(IPA)結構製作 64
4.4.1 IPA結構製作流程 64
4.4.2 不同週期之IPA結構製作及其分析 66
4.5 正立金字塔陣列(UPA)結構製作 74
4.5.1 UPA結構製作流程 74
4.5.2 不同週期之IPA結構製作及其分析 75
4.6 結論 80
第五章 金字塔型金屬半導體光偵測器 81
5.1 前言 81
5.2 中紅外光量測系統架構 82
5.3 倒立金字塔陣列(IPA)型金屬半導體光偵測器 83
5.3.1 元件結構及製作流程 83
5.3.2 元件量測及分析 84
5.4 正立金字塔陣列(UPA)型金屬半導體光偵測器 96
5.4.1 元件結構及製作流程 96
5.4.2 元件量測及分析 97
5.5 結論 106
第六章 結論與未來展望 108
6.1 結論 108
6.2 未來展望 111
參考文獻 112
dc.language.isozh-TW
dc.subject內部光激發吸收zh_TW
dc.subject金半接面zh_TW
dc.subject紅外光偵測zh_TW
dc.subject局域表面電漿共振zh_TW
dc.subject正倒立金字塔奈微米陣列結構zh_TW
dc.subjectCOMSOL Multiphysicszh_TW
dc.subject矽基蕭特基二極體zh_TW
dc.subjectCOMSOL Multiphysicsen
dc.subjectinfrared detecten
dc.subjectSchottky diodeen
dc.subjectmetal–semiconductor junctionen
dc.subjectinternal photoemission absorptionen
dc.subjectlocalized surface plasmon resonanceen
dc.subjectupright/inverted pyramid array structureen
dc.title矽基超寬頻紅外光譜偵測器之研究zh_TW
dc.titleThe Study of Si-based Ultra-Broadband
Infrared Detector
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李嗣涔(Si-Chen Lee),林致廷(Chih-Ting Lin)
dc.subject.keyword紅外光偵測,矽基蕭特基二極體,金半接面,內部光激發吸收,局域表面電漿共振,正倒立金字塔奈微米陣列結構,COMSOL Multiphysics,zh_TW
dc.subject.keywordinfrared detect,Schottky diode,metal–semiconductor junction,internal photoemission absorption,localized surface plasmon resonance,upright/inverted pyramid array structure,COMSOL Multiphysics,en
dc.relation.page118
dc.identifier.doi10.6342/NTU201803883
dc.rights.note有償授權
dc.date.accepted2018-08-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
dc.date.embargo-lift2023-08-23-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-R05941068-1.pdf
  未授權公開取用
9.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved