請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78918完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳美如 | zh_TW |
| dc.contributor.author | 黃暐涵 | zh_TW |
| dc.contributor.author | Wei-Han Huang | en |
| dc.date.accessioned | 2021-07-11T15:29:07Z | - |
| dc.date.available | 2024-02-28 | - |
| dc.date.copyright | 2018-10-09 | - |
| dc.date.issued | 2018 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Ahmad, S.S., J. Glatzle, K. Bajaeifer, S. Buhler, T. Lehmann, I. Konigsrainer, J.P. Vollmer, B. Sipos, S.S. Ahmad, H. Northoff, A. Konigsrainer, and D. Zieker. 2013. Phosphoglycerate kinase 1 as a promoter of metastasis in colon cancer. International journal of oncology. 43:586-590.
Ai, J., H. Huang, X. Lv, Z. Tang, M. Chen, T. Chen, W. Duan, H. Sun, Q. Li, R. Tan, Y. Liu, J. Duan, Y. Yang, Y. Wei, Y. Li, and Q. Zhou. 2011. FLNA and PGK1 are two potential markers for progression in hepatocellular carcinoma. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 27:207-216. Alwine, J.C. 2012. The Human Cytomegalovirus Assembly Compartment: A Masterpiece of Viral Manipulation of Cellular Processes That Facilitates Assembly and Egress. PLoS Pathogens. 8:e1002878. Arvin, A., G. Campadelli-Fiume, E. Mocarski, P.S. Moore, B. Roizman, R. Whitley, and K. Yamanishi. 2007. Human herpesviruses: Biology, therapy, and immunoprophylaxis. 1-1410 pp. Asai, R., A. Kato, K. Kato, M. Kanamori-Koyama, K. Sugimoto, T. Sairenji, Y. Nishiyama, and Y. Kawaguchi. 2006. Epstein-Barr virus protein kinase BGLF4 is a virion tegument protein that dissociates from virions in a phosphorylation-dependent process and phosphorylates the viral immediate-early protein BZLF1. Journal of Virology. 80:5125-5134. Baer, R., A.T. Bankier, M.D. Biggin, P.L. Deininger, P.J. Farrell, T.J. Gibson, G. Hatfull, G.S. Hudson, S.C. Satchwell, C. Seguin, and et al. 1984. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature. 310:207-211. Bailey, R.E. 1994. Diagnosis and treatment of infectious mononucleosis. American family physician. 49:879-888. Bernstein, B.E., and W.G. Hol. 1998. Crystal structures of substrates and products bound to the phosphoglycerate kinase active site reveal the catalytic mechanism. Biochemistry. 37:4429-4436. Briggs, M.W., and D.B. Sacks. 2003. IQGAP proteins are integral components of cytoskeletal regulation. EMBO Reports. 4:571-574. Brill, S., S. Li, C.W. Lyman, D.M. Church, J.J. Wasmuth, L. Weissbach, A. Bernards, and A.J. Snijders. 1996. The Ras GTPase-activating-protein-related human protein IQGAP2 harbors a potential actin binding domain and interacts with calmodulin and Rho family GTPases. Molecular and cellular biology. 16:4869-4878. Cepeda, V., M. Esteban, and A. Fraile-Ramos. 2010. Human cytomegalovirus final envelopment on membranes containing both trans-Golgi network and endosomal markers. Cellular microbiology. 12:386-404. Chang, L.S., J.T. Wang, S.L. Doong, C.P. Lee, C.W. Chang, C.H. Tsai, S.W. Yeh, C.Y. Hsieh, and M.R. Chen. 2012a. Epstein-Barr virus BGLF4 kinase downregulates NF-kappaB transactivation through phosphorylation of coactivator UXT. Journal of Virology. 86:12176-12186. Chang, Y., C.H. Tung, Y.T. Huang, J. Lu, J.Y. Chen, and C.H. Tsai. 1999. Requirement for cell-to-cell contact in Epstein-Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. Journal of Virology. 73:8857-8866. Chang, Y.H., C.P. Lee, M.T. Su, J.T. Wang, J.Y. Chen, S.F. Lin, C.H. Tsai, M.J. Hsieh, K. Takada, and M.R. Chen. 2012b. Epstein-Barr virus BGLF4 kinase retards cellular S-phase progression and induces chromosomal abnormality. PloS one. 7:e39217. Chau, C.M., X.Y. Zhang, S.B. McMahon, and P.M. Lieberman. 2006. Regulation of Epstein-Barr virus latency type by the chromatin boundary factor CTCF. Journal of Virology. 80:5723-5732. Chee, M.S., G.L. Lawrence, and B.G. Barrell. 1989. Alpha-, beta- and gammaherpesviruses encode a putative phosphotransferase. The Journal of general virology. 70 ( Pt 5):1151-1160. Chen, M.-R., S.-J. Chang, H. Huang, and J.-Y. Chen. 2000. A Protein Kinase Activity Associated with Epstein-Barr Virus BGLF4 Phosphorylates the Viral Early Antigen EA-D In Vitro. Journal of Virology. 74:3093-3104. Chiu, Y.F., B. Sugden, P.J. Chang, L.W. Chen, Y.J. Lin, Y.C. Lan, C.H. Lai, J.Y. Liou, S.T. Liu, and C.H. Hung. 2012. Characterization and Intracellular Trafficking of Epstein-Barr Virus BBLF1, a Protein Involved in Virion Maturation. Journal of Virology. 86:9647-9655. Choi, S., and R.A. Anderson. 2016. IQGAP1 is a Phosphoinositide Effector and Kinase Scaffold. Advances in biological regulation. 60:29-35. Chua, H.H., T.H. Yeh, Y.P. Wang, Y.T. Huang, T.S. Sheen, Y.C. Lo, Y.C. Chou, and C.H. Tsai. 2008. Upregulation of discoidin domain receptor 2 in nasopharyngeal carcinoma. Head Neck. 30:427-436. Clippinger, A.J., T.G. Maguire, and J.C. Alwine. 2011. Human cytomegalovirus infection maintains mTOR activity and its perinuclear localization during amino acid deprivation. Journal of Virology. 85:9369-9376. Das, S., and P.E. Pellett. 2011. Spatial relationships between markers for secretory and endosomal machinery in human cytomegalovirus-infected cells versus those in uninfected cells. Journal of Virology. 85:5864-5879. Das, S., A. Vasanji, and P.E. Pellett. 2007. Three-dimensional structure of the human cytomegalovirus cytoplasmic virion assembly complex includes a reoriented secretory apparatus. Journal of Virology. 81:11861-11869. Davis, F.M., T.Y. Tsao, S.K. Fowler, and P.N. Rao. 1983. Monoclonal antibodies to mitotic cells. Proceedings of the National Academy of Sciences of the United States of America. 80:2926-2930. Di Paolo, G., and P. De Camilli. 2006. Phosphoinositides in cell regulation and membrane dynamics. Nature. 443:651-657. Fabregat, A., K. Sidiropoulos, P. Garapati, M. Gillespie, K. Hausmann, R. Haw, B. Jassal, S. Jupe, F. Korninger, S. McKay, L. Matthews, B. May, M. Milacic, K. Rothfels, V. Shamovsky, M. Webber, J. Weiser, M. Williams, G. Wu, L. Stein, H. Hermjakob, and P. D'Eustachio. 2016. The Reactome pathway Knowledgebase. Nucleic acids research. 44:D481-487. Gershburg, E., M. Marschall, K. Hong, and J.S. Pagano. 2004. Expression and localization of the Epstein-Barr virus-encoded protein kinase. Journal of Virology. 78:12140-12146. Gershburg, E., and J.S. Pagano. 2008. Conserved herpesvirus protein kinases. Biochimica et biophysica acta. 1784:203-212. Gonnella, R., A. Farina, R. Santarelli, S. Raffa, R. Feederle, R. Bei, M. Granato, A. Modesti, L. Frati, H.J. Delecluse, M.R. Torrisi, A. Angeloni, and A. Faggioni. 2005. Characterization and intracellular localization of the Epstein-Barr virus protein BFLF2: interactions with BFRF1 and with the nuclear lamina. Journal of Virology. 79:3713-3727. Grogan, E., H. Jenson, J. Countryman, L. Heston, L. Gradoville, and G. Miller. 1987. Transfection of a rearranged viral DNA fragment, WZhet, stably converts latent Epstein-Barr viral infection to productive infection in lymphoid cells. Proceedings of the National Academy of Sciences of the United States of America. 84:1332-1336. Henaff, D., K. Radtke, and R. Lippe. 2012. Herpesviruses exploit several host compartments for envelopment. Traffic (Copenhagen, Denmark). 13:1443-1449. Hornbeck, P.V., B. Zhang, B. Murray, J.M. Kornhauser, V. Latham, and E. Skrzypek. 2015. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic acids research. 43:D512-520. Hudewentz, J., G.W. Bornkamm, and H. Zur Hausen. 1980. Effect of the diterpene ester TPA on Epstein-Barr virus antigen- and DNA synthesis in producer and nonproducer cell lines. Virology. 100:175-178. Hung, C.H., L.W. Chen, W.H. Wang, P.J. Chang, Y.F. Chiu, C.C. Hung, Y.J. Lin, J.Y. Liou, W.J. Tsai, C.L. Hung, and S.T. Liu. 2014. Regulation of autophagic activation by Rta of Epstein-Barr virus via the extracellular signal-regulated kinase pathway. Journal of Virology. 88:12133-12145. Imamura, H., K.P. Nhat, H. Togawa, K. Saito, R. Iino, Y. Kato-Yamada, T. Nagai, and H. Noji. 2009. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proceedings of the National Academy of Sciences of the United States of America. 106:15651-15656. Jacob, T., C. Van den Broeke, and H.W. Favoreel. 2011. Viral serine/threonine protein kinases. Journal of Virology. 85:1158-1173. Johannsen, E., M. Luftig, M.R. Chase, S. Weicksel, E. Cahir-McFarland, D. Illanes, D. Sarracino, and E. Kieff. 2004. Proteins of purified Epstein-Barr virus. Proceedings of the National Academy of Sciences of the United States of America. 101:16286. Johnson, M., M. Sharma, M.G. Brocardo, and B.R. Henderson. 2011. IQGAP1 translocates to the nucleus in early S-phase and contributes to cell cycle progression after DNA replication arrest. The international journal of biochemistry & cell biology. 43:65-73. Johnson, M., M. Sharma, and B.R. Henderson. 2009. IQGAP1 regulation and roles in cancer. Cellular signalling. 21:1471-1478. Junying, J., K. Herrmann, G. Davies, D. Lissauer, A. Bell, J. Timms, G.M. Reynolds, S.G. Hubscher, L.S. Young, G. Niedobitek, and P.G. Murray. 2003. Absence of epstein–barr virus DNA in the tumor cells of european hepatocellular carcinoma. Virology. 306:236-243. Kawaguchi, Y., K. Kato, M. Tanaka, M. Kanamori, Y. Nishiyama, and Y. Yamanashi. 2003. Conserved Protein Kinases Encoded by Herpesviruses and Cellular Protein Kinase cdc2 Target the Same Phosphorylation Site in Eukaryotic Elongation Factor 1δ. Journal of Virology. 77:2359-2368. Kudoh, A., T. Daikoku, Y. Ishimi, Y. Kawaguchi, N. Shirata, S. Iwahori, H. Isomura, and T. Tsurumi. 2006. Phosphorylation of MCM4 at sites inactivating DNA helicase activity of the MCM4-MCM6-MCM7 complex during Epstein-Barr virus productive replication. Journal of Virology. 80:10064-10072. Lee, C.P., J.Y. Chen, J.T. Wang, K. Kimura, A. Takemoto, C.C. Lu, and M.R. Chen. 2007. Epstein-Barr virus BGLF4 kinase induces premature chromosome condensation through activation of condensin and topoisomerase II. Journal of Virology. 81:5166-5180. Lee, C.P., Y.H. Huang, S.F. Lin, Y. Chang, Y.H. Chang, K. Takada, and M.R. Chen. 2008. Epstein-Barr virus BGLF4 kinase induces disassembly of the nuclear lamina to facilitate virion production. Journal of Virology. 82:11913-11926. Lee, M.A., M.E. Diamond, and J.L. Yates. 1999. Genetic evidence that EBNA-1 is needed for efficient, stable latent infection by Epstein-Barr virus. Journal of Virology. 73:2974-2982. Li, X., Y. Jiang, J. Meisenhelder, W. Yang, D.H. Hawke, Y. Zheng, Y. Xia, K. Aldape, J. He, T. Hunter, L. Wang, and Z. Lu. 2016. Mitochondria-Translocated PGK1 Functions as a Protein Kinase to Coordinate Glycolysis and the TCA Cycle in Tumorigenesis. Molecular Cell. 61:705-719. Li, Z., S.H. Kim, J.M. Higgins, M.B. Brenner, and D.B. Sacks. 1999. IQGAP1 and calmodulin modulate E-cadherin function. The Journal of biological chemistry. 274:37885-37892. Li, Z., D.E. McNulty, K.J. Marler, L. Lim, C. Hall, R.S. Annan, and D.B. Sacks. 2005. IQGAP1 promotes neurite outgrowth in a phosphorylation-dependent manner. The Journal of biological chemistry. 280:13871-13878. Luka, J., B. Kallin, and G. Klein. 1979. Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology. 94:228-231. Martel-Renoir, D., V. Grunewald, R. Touitou, G. Schwaab, and I. Joab. 1995. Qualitative analysis of the expression of Epstein-Barr virus lytic genes in nasopharyngeal carcinoma biopsies. The Journal of general virology. 76 ( Pt 6):1401-1408. Mettenleiter, T.C. 2002. Herpesvirus Assembly and Egress. Journal of Virology. 76:1537-1547. Mettenleiter, T.C., B.G. Klupp, and H. Granzow. 2009. Herpesvirus assembly: an update. Virus research. 143:222-234. Moar, M.H., and G. Klein. 1978. Detection of Epstein-Barr virus (EBV) DNA sequences using in situ hybridization. Biochim et Biophys Acta. 519:49-64. Noritake, J., M. Fukata, K. Sato, M. Nakagawa, T. Watanabe, N. Izumi, S. Wang, Y. Fukata, and K. Kaibuchi. 2004. Positive Role of IQGAP1, an Effector of Rac1, in Actin-Meshwork Formation at Sites of Cell-Cell Contact. Molecular Biology of the Cell. 15:1065-1076. Noritake, J., T. Watanabe, K. Sato, S. Wang, and K. Kaibuchi. 2005. IQGAP1: a key regulator of adhesion and migration. Journal of cell science. 118:2085-2092. Owen, D., L.J. Campbell, K. Littlefield, K.A. Evetts, Z. Li, D.B. Sacks, P.N. Lowe, and H.R. Mott. 2008. The IQGAP1-Rac1 and IQGAP1-Cdc42 interactions: interfaces differ between the complexes. The Journal of biological chemistry. 283:1692-1704. Owen, D.J., C.M. Crump, and S.C. Graham. 2015. Tegument Assembly and Secondary Envelopment of Alphaherpesviruses. Viruses. 7:5084-5114. Park, J., D. Lee, T. Seo, J. Chung, and J. Choe. 2000. Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) open reading frame 36 protein is a serine protein kinase. The Journal of general virology. 81:1067-1071. Pattle, S.B., and P.J. Farrell. 2006. The role of Epstein-Barr virus in cancer. Expert opinion on biological therapy. 6:1193-1205. Prasanth, K.R., C. Chuang, and P.D. Nagy. 2017. Co-opting ATP-generating glycolytic enzyme PGK1 phosphoglycerate kinase facilitates the assembly of viral replicase complexes. PLoS Pathogens. 13:e1006689. Qian, X., X. Li, Q. Cai, C. Zhang, Q. Yu, Y. Jiang, J.H. Lee, D. Hawke, Y. Wang, Y. Xia, Y. Zheng, B.H. Jiang, D.X. Liu, T. Jiang, and Z. Lu. 2017. Phosphoglycerate Kinase 1 Phosphorylates Beclin1 to Induce Autophagy. Molecular Cell. 65:917-931 e916. Ragoczy, T., L. Heston, and G. Miller. 1998. The Epstein-Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes. Journal of Virology. 72:7978-7984. Rameh, L.E., and A.M. Mackey. 2016. IQGAP1 makes PI(3)K signalling as easy as PIP, PIP2, PIP3. Nature Cell Biology. 18:1263. Sanchez, V., K.D. Greis, E. Sztul, and W.J. Britt. 2000a. Accumulation of Virion Tegument and Envelope Proteins in a Stable Cytoplasmic Compartment during Human Cytomegalovirus Replication: Characterization of a Potential Site of Virus Assembly. Journal of Virology. 74:975-986. Sanchez, V., E. Sztul, and W.J. Britt. 2000b. Human cytomegalovirus pp28 (UL99) localizes to a cytoplasmic compartment which overlaps the endoplasmic reticulum-golgi-intermediate compartment. Journal of Virology. 74:3842-3851. Sarisky, R.T., Z. Gao, P.M. Lieberman, E.D. Fixman, G.S. Hayward, and S.D. Hayward. 1996. A replication function associated with the activation domain of the Epstein-Barr virus Zta transactivator. Journal of Virology. 70:8340-8347. Takada, K. 1984. Cross-linking of cell surface immunoglobulins induces Epstein-Barr virus in Burkitt lymphoma lines. International journal of cancer. 33:27-32. Tsurumi, T., M. Fujita, and A. Kudoh. 2005. Latent and lytic Epstein-Barr virus replication strategies. Reviews in medical virology. 15:3-15. Valencia, S.M., and L.M. Hutt-Fletcher. 2012. Important but differential roles for actin in trafficking of Epstein-Barr virus in B cells and epithelial cells. Journal of Virology. 86:2-10. Wang, J.T., S.L. Doong, S.C. Teng, C.P. Lee, C.H. Tsai, and M.R. Chen. 2009. Epstein-Barr virus BGLF4 kinase suppresses the interferon regulatory factor 3 signaling pathway. Journal of Virology. 83:1856-1869. Wang, J.T., P.W. Yang, C.P. Lee, C.H. Han, C.H. Tsai, and M.R. Chen. 2005. Detection of Epstein-Barr virus BGLF4 protein kinase in virus replication compartments and virus particles. The Journal of general virology. 86:3215-3225. Wang, S., T. Watanabe, J. Noritake, M. Fukata, T. Yoshimura, N. Itoh, T. Harada, M. Nakagawa, Y. Matsuura, N. Arimura, and K. Kaibuchi. 2007. IQGAP3, a novel effector of Rac1 and Cdc42, regulates neurite outgrowth. Journal of cell science. 120:567-577. Weissbach, L., J. Settleman, M.F. Kalady, A.J. Snijders, A.E. Murthy, Y.X. Yan, and A. Bernards. 1994. Identification of a human rasGAP-related protein containing calmodulin-binding motifs. The Journal of biological chemistry. 269:20517-20521. White, C.D., M.D. Brown, and D.B. Sacks. 2009. IQGAPs in cancer: a family of scaffold proteins underlying tumorigenesis. FEBS Letters. 583:1817-1824. Wu, Y., and Y.C. Chen. 2014. Structure and function of IQ-domain GTPase-activating protein 1 and its association with tumor progression (Review). Biomedical reports. 2:3-6. Yang, P.W., S.S. Chang, C.H. Tsai, Y.H. Chao, and M.R. Chen. 2008. Effect of phosphorylation on the transactivation activity of Epstein-Barr virus BMRF1, a major target of the viral BGLF4 kinase. The Journal of general virology. 89:884-895. Yang, T.-Y. 2013. EBV BGLF4 Induces Formation of Viral Cytoplasmic Assembly Compartment Through Rearrangement of Cytoskeleton. Graduate Institute of Microbiology, College of Medicine, National Taiwan University. Young, L.S., L.F. Yap, and P.G. Murray. 2016. Epstein-Barr virus: more than 50 years old and still providing surprises. Nature reviews. Cancer. 16:789-802. Yue, W., E. Gershburg, and J.S. Pagano. 2005. Hyperphosphorylation of EBNA2 by Epstein-Barr virus protein kinase suppresses transactivation of the LMP1 promoter. Journal of Virology. 79:5880-5885. Zhang, D., L.K. Tai, L.L. Wong, L.L. Chiu, S.K. Sethi, and E.S. Koay. 2005. Proteomic study reveals that proteins involved in metabolic and detoxification pathways are highly expressed in HER-2/neu-positive breast cancer. Molecular & cellular proteomics : MCP. 4:1686-1696. Zhang, J.X., H.L. Chen, Y.S. Zong, K.H. Chan, J. Nicholls, J.M. Middeldorp, J.S. Sham, B.E. Griffin, and M.H. Ng. 1998. Epstein-Barr virus expression within keratinizing nasopharyngeal carcinoma. Journal of medical virology. 55:227-233. Zieker, D., I. Konigsrainer, I. Tritschler, M. Loffler, S. Beckert, F. Traub, K. Nieselt, S. Buhler, M. Weller, J. Gaedcke, R.S. Taichman, H. Northoff, B.L. Brucher, and A. Konigsrainer. 2010. Phosphoglycerate kinase 1 a promoting enzyme for peritoneal dissemination in gastric cancer. International journal of cancer. 126:1513-1520. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78918 | - |
| dc.description.abstract | 當EB病毒在細胞核完成DNA複製,帶有病毒DNA的核殼體需要被運送到細胞質進一步組裝披膜蛋白、外套膜並釋出細胞。然而目前EB 病毒細胞質組裝過程的機制並不清楚。實驗室先前的研究中已知在EB病毒複製的晚期,病毒的結構蛋白和重新分佈的細胞胞器會共同聚集在細胞核凹陷處並且與EB病毒激酶BGFL4有共位的現象。因此,本研究試圖進一步觀察當EB病毒再活化時,細胞質組裝區域 (cytoplasmic assembly compartment) 的形成及探討參與幫助病毒顆粒組裝包裹的病毒及細胞因子。已知EB病毒激酶BGLF4能夠誘導細胞骨架重排排列,當EB 病毒在鼻咽癌上皮NA細胞株中再活化時,細胞骨架蛋白IQGAP1會重新分布至核凹陷處,並與BGLF4有共位現象。本研究透過共軛焦顯微鏡,也發現BGLF4能夠直接改變內生性IQGAP1在細胞中的分布情形,並且BGLF4與IQGAP1相互作用並非透過直接磷酸化IQGAP1的方式進行。當利用siRNA降低IQGAP1表現量時,EB病毒的DNA複製和病毒顆粒的釋出也跟著降低,代表IQGAP1在EB病毒DNA複製時扮演重要的角色。此外,在質譜分析中,也發現表現GFP-BGLF4時,與IQGAP1相互作用的蛋白質發生變化,顯示BGLF4能夠調控IQGAP1的功能,例如,磷酸甘油酸激酶 (Phosphoglycerate kinase 1, PGK1) 會與IQGAP1被共同免疫沉澱。PGK1為參與在醣解路徑當中一個能產生ATP能量的蛋白質,並且能與許多細胞內胞器的膜有交互作用。當EB病毒再活化時,PGK1會重新分佈到核凹陷處並與IQGAP1有部分共位現象。當利用shRNA降低PGK1表現量時,病毒顆粒的釋出量隨之減低,顯示PGK1在EB病毒成熟過程中扮演重要的角色。綜言之,當EB病毒再活化時,會形成EB病毒特別的細胞質組裝區域,並且IQGAP1與PGK1等細胞因子會聚集至此區域當中。至於PGK1細胞質組裝區域形成的區域中所扮演的角色,有待未來進一步澄清。 | zh_TW |
| dc.description.abstract | After viral genome replication and encapsidation in the nucleus, EBV nucleocapsids needed to translocate into the cytoplasm for subsequent tegumentation and maturation. In our previous study, the viral capsid, tegument proteins, glycoproteins, and redistributed cytoplasmic organelles were clustered at the perinuclear concave region and colocalized with EBV viral kinase BGFL4 during the late stage of viral replication. Therefore, we aimed to further observed the specialized viral cytoplasmic assembly compartment in EBV replicating cells and to characterize the key viral and cellular factors involved in the virus maturation process. It is known that the BGLF4 induces cytoskeleton rearrangement and IQGAP1 redistribution to the perinuclear concave region in EBV reactivated nasopharyngeal carcinoma NA cells. Here, we further show that expression of BGLF4 induces the redistribution endogenous of IQGAP1 to perinuclear region directly in confocal images. BGLF4 does not alter the SP/TP phosphorylation on IQGAP1 in transient transfected cells. Knockdown of IQGAP1 by siRNA shows downregulated EBV DNA replication and virion secretion, suggesting IQGAP1 plays a crucial role in EBV lytic DNA replication. In Mass analysis, the interactome of IQGAP1 is changed in the presence of BGLF4, suggesting BGLF4 modulates the function of IQGAP1. Among the interacting proteins, Phosphoglycerate kinase 1 (PGK1), which is an ATP-generating enzyme in the glycolytic pathway and partitions in various cellular organelle membranes, is found to be associated with IQGAP1. PGK1 is redistributed to perinuclear concave region and partially colocalized with IQGAP1 at late stage of virus replication. Furthermore, knockdown of PGK1 by shRNA shows downregulation of EBV virion secretion. Results here reveal that a specialized viral cytoplasmic assembly compartment is formed after EBV reactivation, and IQGAP1 and PGK1 redistribute to this site. Thus, the function of PGK1 in viral assembly compartment needs be further clarified. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:29:07Z (GMT). No. of bitstreams: 1 ntu-107-R05445116-1.pdf: 3785515 bytes, checksum: 1a3430f98c026b31f47bdf45082f9c12 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員審定書 ………………………………….……………….…………………….I
誌謝 ………………………………………………………………….…………….……II 中文摘要 ……………………………………………………………..…………….…..III Abstract …………………………………………………………….……………….…..IV Contents …………………………………………………………………………………V 1. Introduction ……..…………………………….……………………………………..1 1.1. Epstein-Barr Virus………………………………………………………………...1 1.1.1. The classification, characterization and associated diseases of EBV………..1 1.1.2. The life cycle of EBV………………………………………………………..2 1.1.3. EBV viral protein kinase BGLF4…………………………………………….3 1.2. The assembly strategy of herpesvirus viral particles……………………………5 1.2.1. Primary and secondary envelopment process………………………………...5 1.2.2. The viral cytoplasmic assembly compartment formation……………………5 1.3. The cytoskeleton scaffold protein IQGAP1………………………………………6 1.3.1. IQGAPs family……………………………………………………………….6 1.3.2. The distribution and general functions of IQGAP1…………………………..7 1.3.3. The interplay of IQGAP1 and phosphoinositide………………………..…….9 1.4. PGK1 protein……………………………………………………………………...9 1.4.1. Characteristics of PGK1………………………………….……………...…..9 1.4.2. The association of PGK1 and virus………………………………………….10 1.5. Specific aims………………………………………………………………...……10 2. Materials and Methods……………………………………………………………..12 2.1. Cell culture………………………………………………………………………...12 2.2. Plasmid…………………………………………………………………………….12 2.3. Cell transfection…………………………………………………………………..13 2.4. Western blot analysis……………………………………………………………..13 2.5. Co-immunoprecipitation assay…………………………………………………..14 2.6. Immunofluorescence assay……………………………………………………….15 2.7. Subcellular fractionation…………………………………………………………16 2.7.1. Hypotonic buffer fractionation………………………………….…………..16 2.7.2. Qproteome Cell compartment kit fractionation…………………………….17 2.8. Proteomics analysis……………………………………………………………….18 2.9. shRNA lentivirus infection………………………………………………………..18 2.10. Quantitative real-time PCR (q-PCR) analysis……..…………………………..19 2.10.1. EBV intracellular DNA extraction……..………………………………….19 2.10.2. Secreted EBV particles isolation and DNA extraction….…………………19 2.10.3. Quantitative real-time PCR……………..…………………………………20 2.11. Transmission electron microscopy (TEM) analysis……………………………20 3. Results……………………………………………………………………………….22 3.1. A specialized viral cytoplasmic assembly compartment is formed upon EBV reactivation………………………………………………………………………..22 3.2. EBV nucleocapsids appear in a vesicle-like structure at the perinuclear concave region in Rta reactivated NA cells………………………………………………….23 3.3. EBV reactivation induces the redistribution of IQGAP1 to the perinuclear concave region……………………………………………………………………………....23 3.4. BGLF4 kinase induces the change of endogenous IQGAP1 redistribution in transiently transfected HeLa cells…………………………………………..……...24 3.5. BGLF4 does not change SP/TP phosphorylation on IQGAP1……….……………..26 3.6. Knockdown of IQGAP1 represses EBV DNA replication and virion secretion in NA cells………………………………………………………………………………...27 3.7. Knockdown of IQGAP1 does not change the clustering of BBLF1 at the perinuclear concave region upon EBV reactivation…………………………………………….27 3.8. A proteomic analysis of IQGAP1 interactome in GFP-BGLF4 transiently transfected HeLa cells…………………………………………………………………….…….28 3.9. PGK1 does not co-immunoprecipitate with IQGAP1……………………………...29 3.10. IQGAP1 and PGK1 are partially colocalized in the perinuclear concave region in Rta reactivation NA cells……………...………………………………………….30 3.11. Knockdown of PGK1 represses EBV virion secretion in transfected NA cells……31 3.12. BGLF4 induces PGK1 redistribution in transiently transfected HeLa cells.…..…31 3.13. Recruitment of PGK1 is independent of IQGAP1 in IQGAP1-knockdown (IQGAP1-KD) NA cells…………………………………………………...……….32 4. Discussion…………………………………………………………………….……...33 4.1. The EBV viral cytoplasmic assembly compartment is similar to that of HCMV…...33 4.2. The role of IQGAP1 in EBV replicating cells……………………………………..34 4.3. The possible role of PGK1 in viral cytoplasmic assembly compartment…………..35 5. Figures and Tables……………………………………………………………….....38 Fig. 1. EBV reactivation induces the gradual changes of nuclear shapes and clustering of viral proteins and cis-Golgi marker GM130 in the perinuclear concave region………..38 Fig. 2. EBV reactivation induces viral proteins and GM130 redistribution to the perinuclear concave region……………………………………………………………..40 Fig. 3. EBV nucleocapsids appear in a vesicle-like structure at the perinuclear concave region in Rta reactivated NA cells…….……………………………………..………….41 Fig. 4. EBV reactivation induces the redistribution of IQGAP1 to the perinuclear concave region…………………………………………………………….……………………..42 Fig. 5. BGLF4 induces the redistribution of endogenous IQGAP1 in HeLa cells...........43 Fig. 6. BGLF4 does not change the subcellular distribution of IQGAP1 in HeLa cells…44 Fig. 7. There is no significant MPM-2 signal on IQGAP1 in GFP-BGLF4 expressing HeLa cells………………………………………………………………………………45 Fig. 8. Knockdown of IQGAP1 represses the viral replication in Rta reactivated cells…46 Fig. 9. Knockdown of IQGAP1 does not change the clustering of BBLF1 at the perinuclear concave region…………………………………………….……………….47 Fig. 10. BGLF4 does not induces PGK1 to be co-immunoprecipitate with IQGAP1…...48 Fig. 11. EBV reactivation induces the redistribution of PGK1 to the perinuclear concave region…………………………………………………………………………………...49 Fig. 12. IQGAP1 and PGK1 are partially colocalized in the perinuclear concave region in EBV reactivated NA cells……………………………………………………………….50 Fig. 13. Knockdown of PGK1 represses EBV virion secretion in transfected NA cells…51 Fig. 14. BGLF4 induces PGK1 redistribution in transiently transfected HeLa cells…….52 Fig. 15. Knockdown of IQGAP1 does not change the clustering of PGK1 at perinuclear concave region upon EBV reactivation………………………………...……………….53 Fig. 16. A hypothetic model for the viral and cellular components in EBV cytoplasmic assembly compartment component……………………………………………………..54 Table 1. The functional pathway analysis of IQGAP1 interactome in GFP-BGLF4 expressing HeLa cells…………………………………………………………………..55 6. Supplemental Data………………………………………………………………….58 Supplementary Fig. 1. Protein structure of and specific domain-interacting partners of IQGAP1…………………………………………………………………………….…..58 Supplementary Fig. 2. SDS-PAGE preparation for Mass spectrum analysis…………..59 References………………………………………………...……………………………60 | - |
| dc.language.iso | en | - |
| dc.subject | 磷酸甘油酸激? | zh_TW |
| dc.subject | EB病毒 | zh_TW |
| dc.subject | 細胞質組裝區域 | zh_TW |
| dc.subject | PGK1 | en |
| dc.subject | EBV | en |
| dc.subject | cytoplasmic assembly compartment | en |
| dc.title | 探討病毒蛋白質與細胞因子參與在EB病毒細胞質組裝區域之研究 | zh_TW |
| dc.title | Characterization of viral proteins and cellular factors involved in EBV cytoplasmic assembly compartment | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 106-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張麗冠;李重霈;張鑫 | zh_TW |
| dc.contributor.oralexamcommittee | ;; | en |
| dc.subject.keyword | EB病毒,細胞質組裝區域,磷酸甘油酸激?, | zh_TW |
| dc.subject.keyword | EBV,cytoplasmic assembly compartment,PGK1, | en |
| dc.relation.page | 66 | - |
| dc.identifier.doi | 10.6342/NTU201803945 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2018-08-17 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 微生物學研究所 | - |
| dc.date.embargo-lift | 2023-10-09 | - |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-2.pdf 未授權公開取用 | 3.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
