Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78917
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余明俊(Ming-Jiun Yu)
dc.contributor.authorShih-Han Suen
dc.contributor.author蘇詩涵zh_TW
dc.date.accessioned2021-07-11T15:29:02Z-
dc.date.available2025-08-20
dc.date.copyright2020-09-10
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.citation1. Akram, M. and A. Hamid, A comprehensive review on water balance. Biomedicine Preventive Nutrition, 2013. 3(2): p. 193-195.
2. Jéquier, E. and F. Constant, Water as an essential nutrient: the physiological basis of hydration. European Journal of Clinical Nutrition, 2010. 64(2): p. 115-123.
3. Ikeda, M. and T. Matsuzaki, Regulation of aquaporins by vasopressin in the kidney. Vitam Horm, 2015. 98: p. 307-37.
4. Gruber, C.W., M. Muttenthaler, and M. Freissmuth, Ligand-based peptide design and combinatorial peptide libraries to target G protein-coupled receptors. Curr Pharm Des, 2010. 16(28): p. 3071-88.
5. Wilson, J.L., C.A. Miranda, and M.A. Knepper, Vasopressin and the regulation of aquaporin-2. Clin Exp Nephrol, 2013. 17(6): p. 751-64.
6. Noda, Y. and S. Sasaki, Regulation of aquaporin-2 trafficking and its binding protein complex. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2006. 1758(8): p. 1117-1125.
7. Park, E.J. and T.H. Kwon, A Minireview on Vasopressin-regulated Aquaporin-2 in Kidney Collecting Duct Cells. Electrolyte Blood Press, 2015. 13(1): p. 1-6.
8. Wall, S.M., et al., Kinetics of urea and water permeability activation by vasopressin in rat terminal IMCD. Am J Physiol, 1992. 262(6 Pt 2): p. F989-98.
9. Kwon, T.H., J. Frøkiær, and S. Nielsen, Regulation of aquaporin-2 in the kidney: A molecular mechanism of body-water homeostasis. Kidney Res Clin Pract, 2013. 32(3): p. 96-102.
10. Knepper, M.A., T.H. Kwon, and S. Nielsen, Molecular physiology of water balance. N Engl J Med, 2015. 372(14): p. 1349-58.
11. Nielsen, S., et al., Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proceedings of the National Academy of Sciences, 1993. 90(24): p. 11663.
12. Hasler, U., et al., Long term regulation of aquaporin-2 expression in vasopressin-responsive renal collecting duct principal cells. J Biol Chem, 2002. 277(12): p. 10379-86.
13. Matsumura, Y., et al., Transcriptional regulation of aquaporin-2 water channel gene by cAMP. J Am Soc Nephrol, 1997. 8(6): p. 861-7.
14. Valenti, G., et al., Minireview: Aquaporin 2 Trafficking. Endocrinology, 2005. 146(12): p. 5063-5070.
15. Frick, A., et al., X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking. Proc Natl Acad Sci U S A, 2014. 111(17): p. 6305-10.
16. Ranieri, M., et al., Vasopressin-aquaporin-2 pathway: recent advances in understanding water balance disorders. F1000Res, 2019. 8.
17. Kavanagh, C. and N.S. Uy, Nephrogenic Diabetes Insipidus. Pediatr Clin North Am, 2019. 66(1): p. 227-234.
18. Arima, H., et al., Central diabetes insipidus. Nagoya J Med Sci, 2016. 78(4): p. 349-358.
19. Turkkahraman, D., et al., AVP-NPII gene mutations and clinical characteristics of the patients with autosomal dominant familial central diabetes insipidus. Pituitary, 2015. 18(6): p. 898-904.
20. Umenishi, F., et al., cAMP regulates vasopressin-induced AQP2 expression via protein kinase A-independent pathway. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2006. 1758(8): p. 1100-1105.
21. Lin, S.T., et al., Transcription Factor Elf3 Modulates Vasopressin-Induced Aquaporin-2 Gene Expression in Kidney Collecting Duct Cells. Front Physiol, 2019. 10: p. 1308.
22. Grassmeyer, J., et al., Elf5 is a principal cell lineage specific transcription factor in the kidney that contributes to Aqp2 and Avpr2 gene expression. Developmental Biology, 2017. 424(1): p. 77-89.
23. Sever, R. and C.K. Glass, Signaling by nuclear receptors. Cold Spring Harb Perspect Biol, 2013. 5(3): p. a016709.
24. Zhang, X.Y., B. Wang, and Y.F. Guan, Nuclear Receptor Regulation of Aquaporin-2 in the Kidney. Int J Mol Sci, 2016. 17(7).
25. Kuo, K.T., C.W. Yang, and M.J. Yu, Dexamethasone enhances vasopressin-induced aquaporin-2 gene expression in the mpkCCD cells. Am J Physiol Renal Physiol, 2018. 314(2): p. F219-F229.
26. Yasui, M., et al., Development of urinary concentrating capacity: role of aquaporin-2. Am J Physiol, 1996. 271(2 Pt 2): p. F461-8.
27. Chen, M., et al., Dexamethasone increases aquaporin-2 protein expression in ex vivo inner medullary collecting duct suspensions. Front Physiol, 2015. 6: p. 310.
28. Timmermans, S., J. Souffriau, and C. Libert, A General Introduction to Glucocorticoid Biology. 2019. 10(1545).
29. Riggs, D.L., et al., The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo. Embo j, 2003. 22(5): p. 1158-67.
30. Picard, D. and K.R. Yamamoto, Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. Embo j, 1987. 6(11): p. 3333-40.
31. Ben-Or, S. and A. Chrambach, Transformation of the glucocorticoid receptor in the cell-free cytosol of the neural retina of the chick embryo: changes in the size and charge of the receptor complex during transformation suggest a multistage process. J Steroid Biochem, 1988. 29(1): p. 47-56.
32. Vandevyver, S., L. Dejager, and C. Libert, Comprehensive Overview of the Structure and Regulation of the Glucocorticoid Receptor. Endocrine Reviews, 2014. 35(4): p. 671-693.
33. Oakley, R.H. and J.A. Cidlowski, The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J Allergy Clin Immunol, 2013. 132(5): p. 1033-44.
34. Kuo, T., et al., Genome-wide analysis of glucocorticoid receptor-binding sites in myotubes identifies gene networks modulating insulin signaling. Proceedings of the National Academy of Sciences, 2012. 109(28): p. 11160.
35. Presman, D.M., et al., DNA binding triggers tetramerization of the glucocorticoid receptor in live cells. Proc Natl Acad Sci U S A, 2016. 113(29): p. 8236-41.
36. Briones-Orta, M.A., et al., Prediction of transcription factor bindings sites affected by SNPs located at the osteopontin promoter. Data Brief, 2017. 14: p. 538-542.
37. Wingender, E., et al., TFClass: expanding the classification of human transcription factors to their mammalian orthologs. Nucleic Acids Res, 2018. 46(D1): p. D343-d347.
38. Manke, T., H.G. Roider, and M. Vingron, Statistical modeling of transcription factor binding affinities predicts regulatory interactions. PLoS Comput Biol, 2008. 4(3): p. e1000039.
39. Zhao, X., D.Y. Hwang, and H.Y. Kao, The Role of Glucocorticoid Receptors in Podocytes and Nephrotic Syndrome. Nucl Receptor Res, 2018. 5.
40. Zhao, X., et al., α Actinin 4 (ACTN4) Regulates Glucocorticoid Receptor-mediated Transactivation and Transrepression in Podocytes. J Biol Chem, 2017. 292(5): p. 1637-1647.
41. Ramsköld, D., et al., An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS Comput Biol, 2009. 5(12): p. e1000598.
42. Tingskov, S.J., et al., Vasopressin-Independent Regulation of Aquaporin-2 by Tamoxifen in Kidney Collecting Ducts. 2019. 10(948).
43. Lee, J.W., et al., Single-tubule RNA-Seq uncovers signaling mechanisms that defend against hyponatremia in SIADH. Kidney Int, 2018. 93(1): p. 128-146.
44. Lin, Q., et al., Sirtuin1 (SIRT1) Regulates Tumor Necrosis Factor-alpha (TNF-α-Induced) Aquaporin-2 (AQP2) Expression in Renal Medullary Collecting Duct Cells Through Inhibiting the NF-κB Pathway. Med Sci Monit Basic Res, 2016. 22: p. 165-174.
45. Jung, H.J. and T.H. Kwon, New insights into the transcriptional regulation of aquaporin-2 and the treatment of X-linked hereditary nephrogenic diabetes insipidus. Kidney Res Clin Pract, 2019. 38(2): p. 145-158.
46. Poulsen, S.B., et al., Role of adenylyl cyclase 6 in the development of lithium-induced nephrogenic diabetes insipidus. JCI Insight, 2017. 2(7): p. e91042.
47. Sandoval, P.C., et al., Systems-level analysis reveals selective regulation of Aqp2 gene expression by vasopressin. Scientific Reports, 2016. 6(1): p. 34863.
48. Zhu, X., et al., Glucocorticoids Reverse Diluted Hyponatremia Through Inhibiting Arginine Vasopressin Pathway in Heart Failure Rats. J Am Heart Assoc, 2020. 9(10): p. e014950.
49. Saito, T., et al., Vasopressin-dependent upregulation of aquaporin-2 gene expression in glucocorticoid-deficient rats. Am J Physiol Renal Physiol, 2000. 279(3): p. F502-8.
50. Liu, C., et al., Inhibition of dehydration-induced water intake by glucocorticoids is associated with activation of hypothalamic natriuretic peptide receptor-A in rat. PLoS One, 2010. 5(12): p. e15607.
51. Honda, K., The biological role of actinin-4 (ACTN4) in malignant phenotypes of cancer. Cell Bioscience, 2015. 5(1): p. 41.
52. Feng, D., C. DuMontier, and M.R. Pollak, The role of alpha-actinin-4 in human kidney disease. Cell Biosci, 2015. 5: p. 44.
53. Yu, H., et al., α-Actinin4 nuclear translocation mediates gonadotropin-releasing hormone stimulation of follicle-stimulating hormone β-subunit gene transcription in LβT2 cells. FEBS Letters, 2012. 586(10): p. 1466-1471.
54. Aksenova, V., et al., Actin-binding protein alpha-actinin 4 (ACTN4) is a transcriptional co-activator of RelA/p65 sub-unit of NF-kB. Oncotarget, 2013. 4(2): p. 362-72.
55. Chakraborty, S., et al., Alpha-actinin 4 potentiates myocyte enhancer factor-2 transcription activity by antagonizing histone deacetylase 7. J Biol Chem, 2006. 281(46): p. 35070-80.
56. Radin, M.J., et al., Aquaporin-2 regulation in health and disease. Vet Clin Pathol, 2012. 41(4): p. 455-70.
57. Bledsoe, R.K., et al., Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell, 2002. 110(1): p. 93-105.
58. Faust, D., et al., Culturing primary rat inner medullary collecting duct cells. J Vis Exp, 2013(76).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78917-
dc.description.abstract抗利尿激素 (vasopressin,簡稱AVP) 會藉由調控第二型水通道蛋白 (aquaporin-2,簡稱AQP2) 來促進腎臟集尿管中的水分再吸收,AVP刺激下,會增加集尿管細胞中整體AQP2的表現量,並且觸發AQP2往細胞尖頂膜 (apical membrane) 運送,因而增加集尿管細胞的水分通透性。我們先前的研究發現,糖皮質激素受體 (glucocorticoid receptor,簡稱GR) 的活化劑地塞米松 (dexamethasone) 會增加集尿管細胞mpkCCD中AVP誘導的AQP2基因表現,代表GR在AVP刺激下AQP2基因表現上扮演著重要的角色。然而,GR是如何增加AVP誘導的AQP2基因表現並不清楚,在本篇研究中,我們提供可以支持兩個GR調控AVP刺激下AQP2基因表現機制的證據。首先,AVP刺激下,GR的活化輔助因子-輔肌動蛋白4 (-actinin 4) 會進入細胞核內,並協助GR增加AQP2的啟動子活性。第二,GR會維持參與「抗利尿激素調控之水分再吸收」路徑中基因的表現,並抑制參與「雌激素 (estrogen) 訊息傳遞路徑」、「腫瘤壞死因子 (tumor necrosis factor, 簡稱TNF) 訊息傳遞路徑」和「乙型轉化因子 (transforming growth factor-beta, 簡稱TGF-) 訊息傳遞路徑」之基因的表現,這些訊息路徑已知會抑制AQP2基因表現。綜合以上結果,在mpkCCD細胞中,GR會藉由-actinin 4的協助而加強AVP誘導的AQP2基因表現,並維持參與AVP反應和AQP2基因表現之基因的表現。zh_TW
dc.description.abstractVasopressin (AVP) is an antidiuretic hormone that induces water reabsorption by regulating a water channel protein, aquaporin-2 (AQP2), in the kidney collecting ducts. AVP increases overall AQP2 gene expression and triggers AQP2 apical trafficking, thereby increasing water permeability in the collecting duct cells. Our previous study showed that dexamethasone, a glucocorticoid receptor (GR) agonist, enhanced AVP-induced AQP2 gene expression in the collecting duct mpkCCD cells, indicative of a role of GR in AVP-induced AQP2 gene expression. However, how GR mediates AVP-induced AQP2 gene expression was unknown. Here, we provide evidence supporting two mechanisms of GR-mediated AVP-induced AQP2 gene expression. First, in response to AVP, the GR co-activator -actinin 4 translocated into the nucleus and assisted GR to increase AQP2 promoter activity. Second, GR maintained expression of genes involved in “vasopressin-regulated water reabsorption” and repressed expression of genes involved in “estrogen signaling pathway”, “TNF signaling pathway”, and “TGF- signaling pathway” known to suppress AQP2 gene expression. Taken together, these results implicated that GR, assisted by -actinin 4, potentiates AVP-induced AQP2 gene expression and maintains transcriptome profile that permits AVP responses and AQP2 gene expression in the mpkCCD cells.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:29:02Z (GMT). No. of bitstreams: 1
U0001-1808202015102700.pdf: 3174264 bytes, checksum: 02eecfd1ba7a9bfec96cf1bb0b95828d (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書 i
中文摘要 ii
Abstract iii
Contents v
Introduction 1
Materials and Methods 7
Results 19
Glucocorticoid receptor knockdown reduced dDAVP-induced AQP2 mRNA level 19
The 1,000bp region upstream to the AQP2 transcription start site was sufficient to mediate GR-enhanced dDAVP-induced promoter activity 20
dDAVP did not induce GR nuclear translocation 21
dDAVP induced ACTN4 nuclear translocation 22
GR knockdown altered transcriptome profile in the mpkCCD cells 23
GR knockdown reduced Avpr2 and Adcy6 mRNA levels 24
Tamoxifen did not increase AQP2 mRNA level in the mpkCCD cells 26
Discussion 28
Figures and Legends 33
Figure 1. Glucocorticoid receptor knockdown reduced dDAVP-induced AQP2 mRNA level. 33
Figure 2. The 1,000bp region upstream to the AQP2 transcription start site was sufficient to mediate GR-enhanced dDAVP-induced promoter activity. 35
Figure 3. dDAVP did not induce GR nuclear translocation. 37
Figure 4. dDAVP induced ACTN4 nuclear translocation. 38
Figure 5. GR knockdown altered transcriptome profile in the mpkCCD cells. 39
Figure 6. GR knockdown reduced Avpr2 and Adcy6 mRNA levels. 40
Figure 7. Three KEGG pathways negatively correlated with AQP2 gene expression. 43
Figure 8. Tamoxifen did not increase AQP2 mRNA level in the mpkCCD cells. 44
Tables 46
Table 1. KEGG pathway analysis of the positive regulators 46
Table 2. KEGG pathway analysis of the negative regulators 49
Table 3. Expression of genes involved in vasopressin-regulated water reabsorption pathway in the control vs. GR knockdown cells based on RNA-seq analysis 51
Table 4. Relative gene expression from RNA-seq and qRT-PCR analysis 54
References 55
dc.language.isozh-TW
dc.subject抗利尿激素zh_TW
dc.subjecta-輔肌動蛋白4zh_TW
dc.subject基因表現zh_TW
dc.subject糖皮質激素受體zh_TW
dc.subject第二型水通道蛋白zh_TW
dc.subjectgene expressionen
dc.subjectaquaporin-2en
dc.subjecta-actinin 4en
dc.subjectglucocorticoid receptoren
dc.subjectvasopressinen
dc.title糖皮質激素受體在腎臟集尿管細胞中參與並維持抗利尿激素之反應
zh_TW
dc.titleGlucocorticoid Receptor Mediates and Maintains Vasopressin Responses in the Kidney Collecting Duct Cellsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張明富(Ming-Fu Chang),林水龍(Shuie-Liong Lin)
dc.subject.keyword抗利尿激素,第二型水通道蛋白,糖皮質激素受體,a-輔肌動蛋白4,基因表現,zh_TW
dc.subject.keywordvasopressin,aquaporin-2,glucocorticoid receptor,a-actinin 4,gene expression,en
dc.relation.page59
dc.identifier.doi10.6342/NTU202003980
dc.rights.note有償授權
dc.date.accepted2020-08-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
dc.date.embargo-lift2025-08-20-
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
U0001-1808202015102700.pdf
  未授權公開取用
3.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved