請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78916完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳中明(Chung-Ming Chen) | |
| dc.contributor.author | Chia-Chen Li | en |
| dc.contributor.author | 李佳真 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:28:58Z | - |
| dc.date.available | 2028-12-31 | |
| dc.date.copyright | 2018-08-24 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-17 | |
| dc.identifier.citation | [1] Gierada, D. S., Pilgram, T. K., Ford, M., Fagerstrom, R. M., Church, T. R., Nath, H., ... Strollo, D. C. (2008). Lung cancer: interobserver agreement on interpretation of pulmonary findings at low-dose CT screening. Radiology, 246(1), 265-272. [2] 行政院衛生署統計 http://www.mohw.gov.tw. [3] Siegel, R. L., Miller, K. D., Jemal, A. (2015). Cancer statistics, 2015. CA: a cancer journal for clinicians, 65(1), 5. [4] Detterbeck, F. C., Boffa, D. J., Kim, A. W., Tanoue, L. T. (2017). The eighth edition lung cancer stage classification. Chest, 151(1), 193-203. [5] Baldwin, D. R. (2015). Prediction of risk of lung cancer in populations and in pulmonary nodules: significant progress to drive changes in paradigms. [6] Nesbitt, J. C., Putnam Jr, J. B., Walsh, G. L., Roth, J. A., Mountain, C. F. (1995). Survival in early-stage non-small cell lung cancer. The Annals of thoracic surgery, 60(2), 466-472. [7] Gao, J. W., Rizzo, S., Ma, L. H., Qiu, X. Y., Warth, A., Seki, N., ... Lv, T. F. (2017). Pulmonary ground-glass opacity: computed tomography features, histopathology and molecular pathology. Translational lung cancer research, 6(1), 68. [8] Kumar, D., Wong, A., Clausi, D. A. (2015, June). Lung nodule classification using deep features in CT images. In 2015 12th Conference on Computer and Robot Vision (pp. 133-138). IEEE. [9] Ost, D., Fein, A. M., Feinsilver, S. H. (2003). The solitary pulmonary nodule. New England Journal of Medicine, 348(25), 2535-2542. [10] Valente, I. R. S., Cortez, P. C., Neto, E. C., Soares, J. M., de Albuquerque, V. H. C., Tavares, J. M. R. (2016). Automatic 3D pulmonary nodule detection in CT images: a survey. Computer methods and programs in biomedicine, 124, 91-107. [11] Suzuki, K., Armato III, S. G., Li, F., Sone, S., Doi, K. (2003). Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low‐dose computed tomography. Medical physics, 30(7), 1602-1617. [12] Gierada, D. S., Pilgram, T. K., Ford, M., Fagerstrom, R. M., Church, T. R., Nath, H., ... Strollo, D. C. (2008). Lung cancer: interobserver agreement on interpretation of pulmonary findings at low-dose CT screening. Radiology, 246(1), 265-272. [13] Miller, A. (2001). High-Resolution CT of the Chest: Comprehensive Atlas. Chest, 120(3), 1045. [14] Li, F., Sone, S., Abe, H., MacMahon, H., Armato, S. G., Doi, K. (2002). Lung cancers missed at low-dose helical CT screening in a general population: comparison of clinical, histopathologic, and imaging findings. Radiology, 225(3), 673-683. [15] Doi, K. (2007). Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Computerized medical imaging and graphics, 31(4-5), 198-211. [16] Gillies, R. J., Kinahan, P. E., Hricak, H. (2016). Radiomics: images are more than pictures, they are data. Radiology, 278(2), 563-577. [17] Tang, H., Kim, D. R., Xie, X. (2018, April). Automated pulmonary nodule detection using 3d deep convolutional neural networks. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (pp. 523-526). IEEE. [18] Aresta, G., Cunha, A., Campilho, A. (2017, March). Detection of juxta-pleural lung nodules in computed tomography images. In Medical Imaging 2017: Computer-Aided Diagnosis (Vol. 10134, p. 101343N). International Society for Optics and Photonics. [19] John, J., Mini, M. G. (2016). Multilevel thresholding based segmentation and feature extraction for pulmonary nodule detection. Procedia Technology, 24, 957-963. [20] Firmino, M., Angelo, G., Morais, H., Dantas, M. R., Valentim, R. (2016). Computer-aided detection (CADe) and diagnosis (CADx) system for lung cancer with likelihood of malignancy. Biomedical engineering online, 15(1), 1-17. [21] Santos, A. M., de Carvalho Filho, A. O., Silva, A. C., de Paiva, A. C., Nunes, R. A., Gattass, M. (2014). Automatic detection of small lung nodules in 3D CT data using Gaussian mixture models, Tsallis entropy and SVM. Engineering applications of artificial intelligence, 36, 27-39. [22] Lu, L., Tan, Y., Schwartz, L. H., Zhao, B. (2015). Hybrid detection of lung nodules on CT scan images. Medical physics, 42(9), 5042-5054. [23] Farahani, F. V., Ahmadi, A., Zarandi, M. F. (2015, August). Lung nodule diagnosis from CT images based on ensemble learning. In 2015 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) (pp. 1-7). IEEE. [24] Jiang, H., Ma, H., Qian, W., Gao, M., Li, Y. (2017). An automatic detection system of lung nodule based on multigroup patch-based deep learning network. IEEE journal of biomedical and health informatics, 22(4), 1227-1237. [25] Xie, H., Yang, D., Sun, N., Chen, Z., Zhang, Y. (2019). Automated pulmonary nodule detection in CT images using deep convolutional neural networks. Pattern Recognition, 85, 109-119. [26] Setio, A. A. A., Ciompi, F., Litjens, G., Gerke, P., Jacobs, C., Van Riel, S. J., ... van Ginneken, B. (2016). Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE transactions on medical imaging, 35(5), 1160-1169. [27] Huang, X., Shan, J., Vaidya, V. (2017, April). Lung nodule detection in CT using 3D convolutional neural networks. In 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) (pp. 379-383). IEEE. [28] Ding, J., Li, A., Hu, Z., Wang, L. (2017, September). Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 559-567). Springer, Cham. [29] Dou, Q., Chen, H., Yu, L., Qin, J., Heng, P. A. (2016). Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection. IEEE Transactions on Biomedical Engineering, 64(7), 1558-1567. [30] Monkam, P., Qi, S., Xu, M., Han, F., Zhao, X., Qian, W. (2018). CNN models discriminating between pulmonary micro-nodules and non-nodules from CT images. Biomedical engineering online, 17(1), 96. [31] Liao, F., Liang, M., Li, Z., Hu, X., Song, S. (2019). Evaluate the malignancy of pulmonary nodules using the 3-d deep leaky noisy-or network. IEEE transactions on neural networks and learning systems, 30(11), 3484-3495. [32] Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., Fei-Fei, L. (2009, June). Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248-255). [33] Deng, L. (2012). The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Processing Magazine, 29(6), 141-142. [34] Armato III, S. G., Giger, M. L., MacMahon, H. (2001). Automated detection of lung nodules in CT scans: preliminary results. Medical physics, 28(8), 1552-1561. [35] Mergo, P. J., Hanneman, K., Zhang, L. (2014). sters. [36] Brown, M. S., Mcnitt-Gray, M. F., Mankovich, N. J., Goldin, J. G., Hiller, J., Wilson, L. S., Aberie, D. R. (1997). Method for segmenting chest CT image data using an anatomical model: preliminary results. IEEE transactions on medical imaging, 16(6), 828-839. [37] Yanagawa, M., Tanaka, Y., Kusumoto, M., Watanabe, S., Tsuchiya, R., Honda, O., ... Tomiyama, N. (2010). Automated assessment of malignant degree of small peripheral adenocarcinomas using volumetric CT data: correlation with pathologic prognostic factors. Lung Cancer, 70(3), 286-294. [38] Hanson, K., Newton, T. H., Potts, D. G. (1981). Radiology of the skull and Brain, Vol. 5: Technical Aspects of Computed Tomography. St. Louis: The CV Mosby Company, 3941-54. [39] Glorot, X., Bordes, A., Bengio, Y. (2011, June). Deep sparse rectifier neural networks. In Proceedings of the fourteenth international conference on artificial intelligence and statistics (pp. 315-323). [40] Hertz, J., Krogh, A., Palmer, R. G., Horner, H. (1991). Introduction to the theory of neural computation. PhT, 44(12), 70. [41] Zeiler, M. D., Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818-833). Springer, Cham. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78916 | - |
| dc.description.abstract | 過去數十年來,肺癌持續高居國內十大死因之首,為了達到早期診斷,電腦斷層掃描影像已成為肺癌篩檢的主要工具之一。然而,電腦斷層影像為三維影像,包含多張不同切面,若單由放射科醫師逐張判讀,容易產生結節較小、影像對比度過低、或結節所在位置而被忽略;另一方面,不同的放射科醫師判讀的結果可能呈現不同,根據美國國家肺癌篩檢試驗中心(NLST)研究顯示,16位放射科醫師診斷相同之影像案例,兩兩醫師間的偵測結節之平均一致度僅82%[1]。 為了減少潛在的人為誤差並提高判讀之效率,許多專家學者已致力於發展電腦輔助偵測系統(CADe),而近來CADe的發展主要致力於基於機器學習的方法與基於深度學習的方法兩類。以機器學習為基礎之演算法,其困難在於提取特徵前分割結果之重現性與正確性;其次,機器學習之特徵的提取必須仰賴大量的經驗以及有效的工程技術,得以從影像中提取出有鑑別力之特徵;相較於深度學習,深度學習能有效從已標記的訓練數據中自行學習影像特徵,其優點是不必對影像進行分割,能直接輸入原始影像可避免由分割方法的不同而造成的差異影響結果,將有潛力解決機器學習所遇到之挑戰。但為了充分利用深度學習,需要仰賴大量的數據以確保參數被訓練完整,然而和自然影像相比,自然影像擁有大量影像數據可提供深度學習進行訓練,相對於現有醫學影像中肺部結節的影像資料顯得十分不足。 因此,為解決上述問題,本研究提出以深度學習架構引入醫師在臨床上之先驗知識的結節偵測模型Multiple Window Convolutional neural network (Multi-Window CNN),本研究使用morphology-based方法生成結節候選點,接著所有候選點使用4種不同的Window,包含CT影像原始HU值、Lung Window、Abdomen Window、及Bone Window,應用4種不同Window做為輸入影像,在3層CNN的架構下自動化提取特徵,藉由結合此類臨床之先驗知識,以提供更多的灰階資訊強化整體深度學習網路之效能;另一方面也增加了訓練樣本的數量,以克服醫學影像數據取得不易的問題。研究結果採用兩不同之測試樣本,包括LIDC-IDRI及NTUH資料庫,其結節偵測率分別為93.8%,76.1%,平均誤報率為3.6,3.7。 | zh_TW |
| dc.description.abstract | For more than a decade, lung cancer has claimed the first spots as the leading causes of death in Taiwan. The thoracic computed tomography (CT) has become a major screening tool for the diagnosis of lung cancer to achieve early detection. However, a CT scan is three-dimensional, which contains multiple slices. Implementation of lung cancer screening is a challenge for radiologists. A critical issue is that nodules may be ignored because of their small size, implicit location, or in low images contrast. Another is that the screening result may vary between radiologists. For example, in a National Lung Screening Trial (NLST) study, the average percentage of reader pairs in agreement on the screening result per case among 16 radiologists was only 82%. To reduce potential human error and improve the efficiency of image reading, many researchers have been made for Computer aided detection (CADe) approaches. In the past few years, machine learning-based and convolutional neural networks methods are widely used. The difficulty of algorithms based on machine learning is that the machine learning-based method lies in the reproducibility and correctness of the lesion segmentation before feature extraction. Secondly, the feature extraction of machine learning must rely on the experience and engineering technology to extract the discriminating features from the image; and for deep learning, it provides the potential to merge the extraction of relevant features with the classification procedure automatically. It can process raw image directly which means, there should be no need for pre-processing, such as segmentation. It will have the potential to solve the challenges encountered by machine learning. However, in order to ensure the huge number of parameters needed to be tuned by the learning model, deep learning approaches require a large amount of labeled training dataset. Compared with natural images, natural images have a large amount of image data that can provide deep learning for training, however, it may be difficult to meet in the medical domain where the expert annotation is expensive and the diseases (e.g., lesions) are scarce in the datasets. Therefore, in order to solve the above stated problems, we proposed a three-dimension convolutional neural network based on multiple CT observation window setting inputs, namely Multi-Window CNN, was proposed for lung nodule detection, which was inspired by the way of nodule screening of radiologists. In this study, a set of nodule candidates was generated by using a morphology-based method. All candidates VOI were set into 4 different window settings, including full dynamic window, lung window, bone window, and abdomen window. Applying the 3 layers multi-channel CNN architecture fed with 4 different windows to extract the features. It provides the network more grey-level information, on the other hand, it also increases the training sample quantity, in order to overcome the problem of difficult access to medical images. We applied two different datasets, including LIDC-IDRI and NTUH database. The sensitivities of the proposed Multi-Window CNN algorithm were 93.8% and 76.1%, respectively with 3.6 and 3.7 FPs/scan in the LIDC dataset and NTUH dataset. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:28:58Z (GMT). No. of bitstreams: 1 U0001-1708201811160800.pdf: 6358968 bytes, checksum: 8f646d1e1ffaed15497d79d81f39c057 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 中文摘要 ii ABSTRACT iii 目錄 v 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1. 研究背景 1 1.1.1 肺癌介紹及診斷方式 1 1.1.2 肺部結節之電腦輔助偵測 4 1.2. 研究動機與目的 6 第二章 文獻回顧 8 2.1. 基於機器學習之結節偵測 8 2.2. 基於深度學習之結節偵測 10 2.2.1 卷積神經網路之結節偵測應用 10 2.2.2 肺部結節偵測競賽2017 Data Science Bowl (DSB)之冠軍:N-Net 13 第三章 多灰階動態範圍通道深度學習影像特徵演算法之研究材料與方法 15 3.1. 研究材料 15 3.2. 多灰階動態範圍通道之結節偵測模型演算法流程 16 3.3. 結節候選區域之生成 16 3.3.1 候選區域之選取 16 3.3.2 候選區域之影像擷取範圍調整 (NC-VOI Resize) 20 3.3.3 資料增量 (Augmentation) 22 3.4. 多灰階動態範圍通道之深度學習 (Multi-Window CNN) 23 3.4.1 多灰階動態範圍 (Multiple Window) 24 3.4.2 卷積神經網路之架構 (Convolutional neural network) 25 3.4.3 Multi-Window CNN之參數設計 30 3.4.4 網路模型之可視化 (Visualization) 31 3.5. 成效評估 (Performance evaluation) 33 第四章 結果與討論 34 4.1. 訓練及測試樣本 34 4.2. 研究結果 35 4.2.1 Multi-Window CNN結節偵測模型之performance:LIDC-IDRI與NTUH資料庫 35 4.2.2 NC-VOI之Resize結果比較:LIDC-IDRI與NTUH資料庫 36 4.2.3 Multi-Window CNN結節偵測模型之可視化 39 4.2.4 結節偵測結果之比較:Multi-Window CNN vs. N-Net 41 4.3. 結論 44 參考文獻 45 | |
| dc.language.iso | zh-TW | |
| dc.subject | 卷積神經網路 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 多灰階動態 | zh_TW |
| dc.subject | 電腦輔助偵測 | zh_TW |
| dc.subject | 電腦斷層掃描 | zh_TW |
| dc.subject | 肺結節 | zh_TW |
| dc.subject | Multiple window | en |
| dc.subject | Computer-aided detection (CADe) | en |
| dc.subject | Computed tomography | en |
| dc.subject | Convolutional neural network | en |
| dc.subject | Deep learning | en |
| dc.subject | Lung nodule | en |
| dc.title | 肺部電腦斷層影像之結節偵測:多灰階動態範圍通道之深度學習 | zh_TW |
| dc.title | Nodule Detection in Pulmonary CT Images:Multiple Window Convolutional Neural Network | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李佳燕(Chia-Yen Lee),莊競程(Ching-Cheng Chuang) | |
| dc.subject.keyword | 肺結節,電腦斷層掃描,電腦輔助偵測,多灰階動態,深度學習,卷積神經網路, | zh_TW |
| dc.subject.keyword | Lung nodule,Computed tomography,Computer-aided detection (CADe),Multiple window,Deep learning,Convolutional neural network, | en |
| dc.relation.page | 47 | |
| dc.identifier.doi | 10.6342/NTU201803938 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2028-12-31 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708201811160800.pdf 未授權公開取用 | 6.21 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
