請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78915完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉逸軒(I-Hsuan Liu) | |
| dc.contributor.author | Dee-Shiuh Yang | en |
| dc.contributor.author | 楊迪旭 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:28:54Z | - |
| dc.date.available | 2023-08-23 | |
| dc.date.copyright | 2018-08-23 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-17 | |
| dc.identifier.citation | Armulik, A., A. Abramsson, and C. Betsholtz. 2005. Endothelial/pericyte interactions. Circ Res 97: 512-523.
Basciano, L. et al. 2011. Long term culture of mesenchymal stem cells in hypoxia promotes a genetic program maintaining their undifferentiated and multipotent status. BMC Cell Biology 12: 12. Bouffi, C., C. Bony, G. Courties, C. Jorgensen, and D. Noël. 2010. IL-6-Dependent PGE2 Secretion by Mesenchymal Stem Cells Inhibits Local Inflammation in Experimental Arthritis. PLoS ONE 5: e14247. Cameron, A. R., J. E. Frith, and J. J. Cooper-White. 2011. The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials 32: 5979-5993. Caplan, A. I. 1991. Mesenchymal stem cells. Journal of orthopaedic research : official publication of the Orthopaedic Research Society 9: 641-650. Caplan, Arnold I., and D. Correa. 2011. The MSC: An Injury Drugstore. Cell stem cell 9: 11-15. Chen, J. C., and C. R. Jacobs. 2013. Mechanically induced osteogenic lineage commitment of stem cells. Stem cell research & therapy 4: 107. Chen, Q. et al. 2016. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell death and differentiation 23: 1128-1139. Chen, X. D. 2010. Extracellular matrix provides an optimal niche for the maintenance and propagation of mesenchymal stem cells. Birth Defects Research Part C: Embryo Today: Reviews 90: 45-54. Chen, X. D., V. Dusevich, J. Q. Feng, S. C. Manolagas, and R. L. Jilka. 2007. Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 22: 1943-1956. Cheng, C. C., Y. H. Lee, S. P. Lin, W. C. Huangfu, and I. H. Liu. 2014. Cell-autonomous heparanase modulates self-renewal and migration in bone marrow-derived mesenchymal stem cells. Journal of biomedical science 21: 21. Cierpka, K. et al. 2012. hMSC Production in Disposable Bioreactors with Regards to GMP and PAT. Chemie Ingenieur Technik 85: 67-75. Conway, A., and D. V. Schaffer. 2012. Biophysical regulation of stem cell behavior within the niche. Stem cell research & therapy 3: 50. Crisan, M. et al. 2008. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell stem cell 3: 301-313. Davis, G. E., and D. R. Senger. 2005. Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 97: 1093-1107. Decaris, M. L., B. Y. Binder, M. A. Soicher, A. Bhat, and J. K. Leach. 2012a. Cell-derived matrix coatings for polymeric scaffolds. Tissue engineering. Part A 18: 2148-2157. Decaris, M. L., A. Mojadedi, A. Bhat, and J. K. Leach. 2012b. Transferable cell-secreted extracellular matrices enhance osteogenic differentiation. Acta biomaterialia 8: 744-752. Digirolamo, C. M. et al. 1999. Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107: 275-281. Djouad, F. et al. 2007. Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells 25: 2025-2032. Dominici, M. et al. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8: 315-317. Dos Santos, F. et al. 2010. Ex vivo expansion of human mesenchymal stem cells: a more effective cell proliferation kinetics and metabolism under hypoxia. Journal of cellular physiology 223: 27-35. Dupont, S. et al. 2011. Role of YAP/TAZ in mechanotransduction. Nature 474: 179-183. Ejtehadifar, M. et al. 2015. The Effect of Hypoxia on Mesenchymal Stem Cell Biology. Advanced Pharmaceutical Bulletin 5: 141-149. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. 2006. Matrix elasticity directs stem cell lineage specification. Cell 126: 677-689. Erices, A., P. Conget, and J. J. Minguell. 2000. Mesenchymal progenitor cells in human umbilical cord blood. British journal of haematology 109: 235-242. Fei, X. et al. 2013. Isolation, culture, and identification of amniotic fluid-derived mesenchymal stem cells. Cell biochemistry and biophysics 67: 689-694. Feng, J., A. Mantesso, C. De Bari, A. Nishiyama, and P. T. Sharpe. 2011. Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proceedings of the National Academy of Sciences of the United States of America 108: 6503-6508. Feng, J., A. Mantesso, and P. T. Sharpe. 2010. Perivascular cells as mesenchymal stem cells. Expert opinion on biological therapy 10: 1441-1451. Freytes, D. O., J. Martin, S. S. Velankar, A. S. Lee, and S. F. Badylak. 2008. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials 29: 1630-1637. Friedenstein, A. J., K. V. Petrakova, A. I. Kurolesova, and G. P. Frolova. 1968. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6: 230-247. Goujon, E. 1869. Recherches experimentales sur les proprietes physiologiques de la moelle des os. J de l'Anatomie et de la Physiologie Normales et Pathologiques de l'Homme et des Animaux 6: 399. Heo, S. J., S. E. Szczesny, D. H. Kim, K. S. Saleh, and R. L. Mauck. 2018. Expansion of mesenchymal stem cells on electrospun scaffolds maintains stemness, mechano-responsivity, and differentiation potential. Journal of orthopaedic research : official publication of the Orthopaedic Research Society 36: 808-815. Hocking, A. M. 2015. The Role of Chemokines in Mesenchymal Stem Cell Homing to Wounds. Advances in Wound Care 4: 623-630. Hong, J. H. et al. 2005. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309: 1074-1078. Hong, Y. J. et al. 2011. Decellularized PLGA-based scaffolds and their osteogenic potential with bone marrow stromal cells. Macromolecular Research 19: 1090. Hung, S.-C. et al. 2007. Short-Term Exposure of Multipotent Stromal Cells to Low Oxygen Increases Their Expression of CX3CR1 and CXCR4 and Their Engraftment In Vivo. PLoS ONE 2: e416. Hynes, R. O., and A. Naba. 2012. Overview of the matrisome--an inventory of extracellular matrix constituents and functions. Cold Spring Harbor perspectives in biology 4: a004903. Jaiswal, N., S. E. Haynesworth, A. I. Caplan, and S. P. Bruder. 1997. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. Journal of cellular biochemistry 64: 295-312. Johnstone, B., T. M. Hering, A. I. Caplan, V. M. Goldberg, and J. U. Yoo. 1998. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Experimental cell research 238: 265-272. Jossen, V., C. van den Bos, R. Eibl, and D. Eibl. 2018. Manufacturing human mesenchymal stem cells at clinical scale: process and regulatory challenges. Applied Microbiology and Biotechnology 102: 3981-3994. Jung, S., K. M. Panchalingam, R. D. Wuerth, L. Rosenberg, and L. A. Behie. 2012. Large-scale production of human mesenchymal stem cells for clinical applications. Biotechnology and applied biochemistry 59: 106-120. Kanehira, M. et al. 2012. Targeting lysophosphatidic acid signaling retards culture-associated senescence of human marrow stromal cells. PLoS One 7: e32185. Karnieli, O. 2016. Chapter 6 - Bioreactors and Downstream Processing for Stem Cell Manufacturing. In: J. M. S. Cabral, C. Lobato de Silva, L. G. Chase and M. Margarida Diogo (eds.) Stem Cell Manufacturing. p 141-160. Elsevier, Boston. Kusuma, G. D., S. P. Brennecke, A. J. O'Connor, B. Kalionis, and D. E. Heath. 2017. Decellularized extracellular matrices produced from immortal cell lines derived from different parts of the placenta support primary mesenchymal stem cell expansion. PLoS One 12: e0171488. Lai, Y. et al. 2010. Reconstitution of Marrow-Derived Extracellular Matrix Ex Vivo: A Robust Culture System for Expanding Large-Scale Highly Functional Human Mesenchymal Stem Cells. Stem Cells and Development 19: 1095-1107. Le Blanc, K. et al. 2004. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet (London, England) 363: 1439-1441. Lee, M. K., S. P. Lin, W. C. HuangFu, D. S. Yang, and I. H. Liu. 2017. Endothelial-derived extracellular matrix ameliorate the stemness deprivation during ex vivo expansion of mouse bone marrow-derived mesenchymal stem cells. PLoS One 12: e0184111. Leijten, J. et al. 2014. Metabolic programming of mesenchymal stromal cells by oxygen tension directs chondrogenic cell fate. Proceedings of the National Academy of Sciences of the United States of America 111: 13954-13959. Lennon, D. P., J. M. Edmison, and A. I. Caplan. 2001. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. Journal of cellular physiology 187: 345-355. Li, L., L. Li, Z. Zhang, and Z. Jiang. 2015. Hypoxia promotes bone marrow-derived mesenchymal stem cell proliferation through apelin/APJ/autophagy pathway. Acta biochimica et biophysica Sinica 47: 362-367. Lin, H., G. Yang, J. Tan, and R. S. Tuan. 2012. Influence of decellularized matrix derived from human mesenchymal stem cells on their proliferation, migration and multi-lineage differentiation potential. Biomaterials 33: 4480-4489. Liu, X. B. et al. 2008. Angiopoietin-1 protects mesenchymal stem cells against serum deprivation and hypoxia-induced apoptosis through the PI3K/Akt pathway. Acta pharmacologica Sinica 29: 815-822. Liu, Y. Y. et al. 2017. Hypoxia-preconditioned mesenchymal stem cells ameliorate ischemia/reperfusion-induced lung injury. PLoS One 12: e0187637. Lu, P., K. Takai, V. M. Weaver, and Z. Werb. 2011. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor perspectives in biology 3. Lv, H. et al. 2015. Mechanism of regulation of stem cell differentiation by matrix stiffness. Stem cell research & therapy 6: 103. Mamidi, M. K. et al. 2012. Comparative cellular and molecular analyses of pooled bone marrow multipotent mesenchymal stromal cells during continuous passaging and after successive cryopreservation. Journal of cellular biochemistry 113: 3153-3164. Marinkovic, M. et al. 2016. One size does not fit all: developing a cell-specific niche for in vitro study of cell behavior. Matrix biology : journal of the International Society for Matrix Biology 52-54: 426-441. Mashinchian, O. et al. 2015. Regulation of stem cell fate by nanomaterial substrates. Nanomedicine (London, England) 10: 829-847. Miao, Z. et al. 2006. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell biology international 30: 681-687. Naba, A., K. R. Clauser, and R. O. Hynes. 2015. Enrichment of Extracellular Matrix Proteins from Tissues and Digestion into Peptides for Mass Spectrometry Analysis. Journal of visualized experiments : JoVE: e53057. Narbona-Carceles, J., J. Vaquero, S. Suarez-Sancho, F. Forriol, and M. E. Fernandez-Santos. 2014. Bone marrow mesenchymal stem cell aspirates from alternative sources: is the knee as good as the iliac crest? Injury 45 Suppl 4: S42-47. Ng, C. P. et al. 2014. Enhanced ex vivo expansion of adult mesenchymal stem cells by fetal mesenchymal stem cell ECM. Biomaterials 35: 4046-4057. Ning, H. et al. 2008. The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study. Leukemia 22: 593-599. Owen, M., and A. J. Friedenstein. 1988. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Foundation symposium 136: 42-60. Panchalingam, K. M., S. Jung, L. Rosenberg, and L. A. Behie. 2015. Bioprocessing strategies for the large-scale production of human mesenchymal stem cells: a review. Stem cell research & therapy 6: 225. Papapetropoulos, A. et al. 1999. Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Laboratory investigation; a journal of technical methods and pathology 79: 213-223. Paulsson, M. 1992. Basement membrane proteins: structure, assembly, and cellular interactions. Critical reviews in biochemistry and molecular biology 27: 93-127. Pittenger, M. F. et al. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-147. Ragelle, H. et al. 2017. Comprehensive proteomic characterization of stem cell-derived extracellular matrices. Biomaterials 128: 147-159. Ramalho-Santos, M., S. Yoon, Y. Matsuzaki, R. C. Mulligan, and D. A. Melton. 2002. 'Stemness': transcriptional profiling of embryonic and adult stem cells. Science 298: 597-600. Ren, G. et al. 2008. Mesenchymal Stem Cell-Mediated Immunosuppression Occurs via Concerted Action of Chemokines and Nitric Oxide. Cell stem cell 2: 141-150. Rodrigues, M., L. G. Griffith, and A. Wells. 2010. Growth factor regulation of proliferation and survival of multipotential stromal cells. Stem cell research & therapy 1: 32-32. Roelen, B. A., and P. Dijke. 2003. Controlling mesenchymal stem cell differentiation by TGFBeta family members. Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association 8: 740-748. Ryan, J. M., F. Barry, J. M. Murphy, and B. P. Mahon. 2007. Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clinical and experimental immunology 149: 353-363. Saleh, F. A., M. Whyte, P. Ashton, and P. G. Genever. 2011. Regulation of mesenchymal stem cell activity by endothelial cells. Stem Cells Dev 20: 391-403. Samsonraj, R. M. et al. 2015. Establishing criteria for human mesenchymal stem cell potency. Stem Cells 33: 1878-1891. Sato, K. et al. 2007. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109: 228-234. Sato, Y. et al. 2016. Notch2 Signaling Regulates the Proliferation of Murine Bone Marrow-Derived Mesenchymal Stem/Stromal Cells via c-Myc Expression. PLoS One 11: e0165946. Schaefer, L. et al. 2003. Biglycan, a nitric oxide-regulated gene, affects adhesion, growth, and survival of mesangial cells. The Journal of biological chemistry 278: 26227-26237. Schmittgen, T. D., and K. J. Livak. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nature protocols 3: 1101-1108. Schonherr, E. et al. 1995. Interaction of biglycan with type I collagen. The Journal of biological chemistry 270: 2776-2783. Schwarzbauer, J. E., and D. W. DeSimone. 2011. Fibronectins, their fibrillogenesis, and in vivo functions. Cold Spring Harbor perspectives in biology 3. Sekiya, I. et al. 2002. Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 20: 530-541. Shang, J., H. Liu, J. Li, and Y. Zhou. 2014. Roles of hypoxia during the chondrogenic differentiation of mesenchymal stem cells. Current stem cell research & therapy 9: 141-147. Siegel, G. et al. 2013. Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells. BMC Medicine 11: 146. Somaiah, C. et al. 2015. Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells. PLoS ONE 10: e0145068. Spaggiari, G. M., H. Abdelrazik, F. Becchetti, and L. Moretta. 2009. MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood 113: 6576-6583. Squillaro, T., G. Peluso, and U. Galderisi. 2016. Clinical Trials With Mesenchymal Stem Cells: An Update. Cell transplantation 25: 829-848. Stratman, A. N., and G. E. Davis. 2012. Endothelial cell-pericyte interactions stimulate basement membrane matrix assembly: influence on vascular tube remodeling, maturation, and stabilization. Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada 18: 68-80. Stratman, A. N., A. E. Schwindt, K. M. Malotte, and G. E. Davis. 2010. Endothelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization. Blood 116: 4720-4730. Sun, Y. et al. 2011a. Rescuing replication and osteogenesis of aged mesenchymal stem cells by exposure to a young extracellular matrix. The FASEB Journal 25: 1474-1485. Sun, Y. et al. 2011b. Rescuing replication and osteogenesis of aged mesenchymal stem cells by exposure to a young extracellular matrix. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 25: 1474-1485. Tabera, S. et al. 2008. The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes. Haematologica 93: 1301-1309. Takamoto, T., Y. Hiraoka, and Y. Tabata. 2007. Enhanced proliferation and osteogenic differentiation of rat mesenchymal stem cells in collagen sponge reinforced with different poly(ethylene terephthalate) fibers. Journal of biomaterials science. Polymer edition 18: 865-881. Tang, W. et al. 2008. White fat progenitor cells reside in the adipose vasculature. Science 322: 583-586. Tozetti, P. A. et al. 2017. Expansion strategies for human mesenchymal stromal cells culture under xeno-free conditions. Biotechnology progress 33: 1358-1367. Traktuev, D. O. et al. 2008. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102: 77-85. Tsai, C. C. et al. 2011. Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood 117: 459-469. Tsai, C. C., P. F. Su, Y. F. Huang, T. L. Yew, and S. C. Hung. 2012. Oct4 and Nanog directly regulate Dnmt1 to maintain self-renewal and undifferentiated state in mesenchymal stem cells. Molecular cell 47: 169-182. Valorani, M. G. et al. 2012. Pre-culturing human adipose tissue mesenchymal stem cells under hypoxia increases their adipogenic and osteogenic differentiation potentials. Cell proliferation 45: 225-238. Varelas, X. 2014. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development (Cambridge, England) 141: 1614-1626. von Bahr, L. et al. 2012. Long-term complications, immunologic effects, and role of passage for outcome in mesenchymal stromal cell therapy. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation 18: 557-564. Wagner, W. et al. 2008. Replicative Senescence of Mesenchymal Stem Cells: A Continuous and Organized Process. PLoS ONE 3: e2213. Wei, X. et al. 2013. Mesenchymal stem cells: a new trend for cell therapy. Acta pharmacologica Sinica 34: 747-754. Whitfield, M. J., W. C. Lee, and K. J. Van Vliet. 2013a. Onset of heterogeneity in culture-expanded bone marrow stromal cells. Stem Cell Res 11: 1365-1377. Whitfield, M. J., W. C. J. Lee, and K. J. Van Vliet. 2013b. Onset of heterogeneity in culture-expanded bone marrow stromal cells. Stem Cell Research 11: 1365-1377. Xu, N. et al. 2013. Hypoxia inhibits the differentiation of mesenchymal stem cells into osteoblasts by activation of Notch signaling. Experimental and molecular pathology 94: 33-39. Yang, D. C. et al. 2011. Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST. PLoS One 6: e23965. Yin, Z. et al. 2015. Electrospun scaffolds for multiple tissues regeneration in vivo through topography dependent induction of lineage specific differentiation. Biomaterials 44: 173-185. Young, H. E. et al. 2001. Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. The Anatomical Record 264: 51-62. Yuan, H. T., E. V. Khankin, S. A. Karumanchi, and S. M. Parikh. 2009. Angiopoietin 2 Is a Partial Agonist/Antagonist of Tie2 Signaling in the Endothelium. Molecular and Cellular Biology 29: 2011-2022. Zuk, P. A. et al. 2002. Human adipose tissue is a source of multipotent stem cells. Molecular biology of the cell 13: 4279-4295. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78915 | - |
| dc.description.abstract | 間葉幹細胞 (mesenchymal stem cells,MSCs) 具有自我更新、免疫調節、多系分化及組織再生等功能,為細胞醫療產業極具潛力之角色。然而,能從體內分離出之MSCs數量有限,且細胞在體外培養過程中往往容易隨著繼代過程中逐漸失去原有之幹細胞特性 (stemness),而大大降低與阻礙了其之運用。為了解決體外間葉幹細胞培養不易之問題,在我們先前的研究中發現,MSCs培養於去細胞 (decellularized) 之MS1內皮細胞胞外基質 (extracellular matrix,ECM) (MS1-ECM) 上,經過體外培養數代之後,相較於塑膠培養盤和自身之細胞外基質更能有效維持其幹細胞特性。本實驗中,為了能更有效率及方便利用MS1-ECM作為MSCs體外培養之生物材料,我們首先嘗試利用不同方法,包括:冷凍乾燥、酵素水解及超音波均質等方式處理MS1-ECM,再嘗試將所得之產物以細胞培養液添加物或培養盤塗層 (coating) 等兩種方式給予細胞。將初代MSCs培養於不同處理環境兩代後,藉由免疫調節試驗進行篩選,發現MS1-ECM利用超音波均質後再以培養盤塗層的方式應用,能有效提升MSCs的免疫調節指標基因的表現量。在電子顯微鏡下也可以觀察到,此種製備方式能有效重建原始MS1-ECM 之外觀型態。為了探討此一重建之MS1-ECM (reconstituted MS1-ECM,rECM) 能否為MSCs體外培養時帶來更大的益處,結合現行實務上常見之低氧 (5% O2) 培養條件,以進一步測試 rECM 維持初代MSCs特性之能力,包括:細胞數、細胞型態、表面抗原、自我更新能力及三系分化等。實驗結果發現,MSCs於常氧 (20% O2) 培養兩代後,rECM處理組相較於塑膠培養盤更能顯著維持正常型態、增進其細胞數量與脂肪、硬骨及軟骨的分化潛力,代表rECM的確能有效維持MSCs的特性。另一方面,MSCs於低氧下培養兩代後,較常氧更能顯著的增進細胞數量、自我更新及脂肪與軟骨分化能力,但硬骨分化能力卻顯著降低。此外,我們也發現MSCs若於低氧擴增後再移至常氧培養,似乎會降低細胞分化的潛力。為了進一步探究MS1-ECM中維持MSCs特性之重要分子組成,本研究也藉由蛋白質體學的方式,分析了MS1-ECM與MSC-ECM之蛋白質組成差異,期望能找出對MSCs特性維持的重要分子與其可能之機制與訊號路徑。 | zh_TW |
| dc.description.abstract | Mesenchymal stem cells (MSCs) have great potential for cell therapies. However, the scarcity and loss of stemness during amplification has been a challenge for their application. Our previous study indicated that decellularized extracellular matrix (ECM) derived from microvessel endothelial cell line Mile Sven 1 (MS1) can effectively preserve the MSC stemness including proliferation and differentiation capacities. In this study, we aimed to optimize the preparation and application of this biomaterial. We first tested various methods to harvest and homogenize MS1-ECM including lyophilization, enzymatic digestion and sonication, and also application methods including medium supplementation and plate coating. Screening by the response to interferon gamma stimulation, MSCs amplified on the plate coated by the sonicated MS1-ECM showed a dose-dependently significant increase. Furthermore, scanning electronic micrographs showed that MS1-ECM homogenized by sonication could successfully re-jellify on collagen-1-coated cultured plate and reconstitute the morphology of primary MS1-ECM (rECM). As hypoxia condition had gradually become the mainstream for expanding primary MSCs, we then evaluated the properties of MSCs amplified under normoxic (20% O2) or hypoxic (5% O2) culture conditions with or without rECM, and compared the cell numbers, morphology, immune-phenotypes as well as self-renewal and tri-linage differentiation capacities after two passages to assess the stemness preservation. The results indicated that rECM could better maintain MSCs stemness including proliferation and differentiation potentials compared to plastic plate control under normoxia. The major contents of MS1-ECM and MSC-ECM were further compared by proteomic analysis to dissect the potential factors that are critical for maintaining the stemness of BM-MSCs. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:28:54Z (GMT). No. of bitstreams: 1 ntu-107-R05626014-1.pdf: 14891943 bytes, checksum: 558a902dea8f836ae9d5ddfa44dcce8e (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iv List of figures vi List of tables viii Content ix Chapter 1 Introduction 1 1.1 Mesenchymal stem cells: history, properties and definition 1 1.2 Gold mine for cell therapy 2 1.2.1 MSCs-based cell therapy 2 1.2.2 Immuno-modulation of MSCs 3 1.3 Obstacles for MSCs application 6 1.3.1 Scarcity 6 1.3.2 Loss of stemness 6 1.4 Perivascular origin of MSCs 9 1.4.1 Hypothesis: pericytes as primitive MSCs 9 1.4.2 Interaction between endothelial cells and MSCs 9 1.5 A promise substrate for MSCs expansion: decellularization techniques of extracellular matrix 12 1.5.1 Decellularized-ECM from bone marrow cells 12 1.5.2 Decellularized-ECM from endothelial cells 13 1.5.3 Other sources of decellularized ECM used for MSCs expansion 15 1.6 ECM play an important role in modulating MSCs fates 16 1.6.1 Bio-physical environment of ECM 16 1.6.2 Bio-chemical components of ECM 17 1.7 Green house for MSCs: hypoxia culture condition 18 Chapter 2 Specific aims and experimental design 21 2.1 Aim I--- Finding out and standardize the proper application of MS1-ECM 21 2.2 Aim II--- Evaluation the stemness under normoxia and hypoxia condition with MS1-ECM coating 22 2.3 Aim III--- Proteomic analysis of MSC-ECM and MS1-ECM 23 Chapter 3 Materials and methods 26 3.1 Animals 26 3.2 Isolation and culture of bone marrow-derived mesenchymal stem cells 26 3.3 Culture of Mile Sven 1 (MS1) cell line 30 3.4 Cell passaging 30 3.5 Harvest of primitive decellularized MS1-ECM 30 3.6 Preparation for collagen I-coated 6 well plate 31 3.7 Preparation of decellularized MS1-ECM plates 31 3.8 Homogenization of fresh decellularized MS1-ECM 33 3.9 Protein quantification 33 3.10 Preparation of decellularized MS1-ECM coated plates 34 3.11 Lyophilization of fresh MS1-ECM 34 3.12 Homogenization of lyophilized MS1-ECM 34 3.13 Enzymatic digestion of lyophilized MS1-ECM 35 3.14 Coating MS1-ECM hydrogel on culture plate 35 3.15 Supplementing lyophilized and protease digested MS1-ECM 35 3.16 Immune-modulatory assay 36 3.17 Scanning electron microscope 36 3.18 Quantification of short/long axis ratio 37 3.19 Flow cytometric analysis 37 3.20 Colony-forming Unit (CFU) assay 39 3.21 Adipogenic differentiation 39 3.22 Osteogenic differentiation 40 3.23 Chondrogenic differentiation 41 3.24 Total RNA extraction 41 3.25 Reverse transcription PCR 42 3.26 Quantitative PCR 43 3.27 Proteomic analysis of ECM samples 45 3.28 Statistical analysis 45 Chapter 4 Results 47 4.1 Finding the new preparation method for MS1-ECM 47 4.1.1 Lyophilization and ball milled method 47 4.1.2 Lyophilization and enzymatic digestion method 49 4.1.3 Sonication and plate coating method 51 4.1.4 Assessment of the different preparation to determine the best preparation method 53 4.1.4.1 Sonicated MS1-ECM coating preparation recover the immune-modulation of MSCs 53 4.1.4.2 Sonicated MS1-ECM coating preparation had similar microenvironment of primary MS1-ECM 55 4.1.4.3 Sonicated MS1-ECM coating preparation had dose-effect in response to immune-modulation ability of MSCs 58 4.2 Comparison of sonicated MS1-ECM coating preparation and hypoxia culture in preserve MSC stemness 60 4.2.1 Plastic culture plate could not preserve morphology of MSCs under normoxia condition. 60 4.2.2 Sonicated MS1-ECM coating preparation promoted MSCs expansion under normoxia condition 66 4.2.3 Immune-phenotype of MSCs did not dramatically differ in each groups 68 4.2.4 Hypoxia condition significantly enhanced self-renewal ability of MSCs. 70 4.2.5 MSCs on sonicated MS1-ECM preserved the adipogenic differentiation potential 73 4.2.6 Sonicated MS1-ECM coating preparation preserved osteogenic differentiation potential whereas hypoxia condition decreased it 77 4.2.7 Sonicated MS1-ECM coating preparation preserve chondrogenic potential under normoxia and hypoxia condition 80 4.3 Dissecting and comparing the components of MS1-ECM and MSC-ECM 83 4.3.1 Proteomic composition and characterization of MSC-ECM and MS1-ECM 83 4.3.2 Characterization and quantification of ECM proteins presented in both MSC-ECM and MS1-ECM 86 4.3.3 Characterization and quantification of ECM proteins only presented in MSC-ECM 89 4.3.4 Characterization and quantification of ECM proteins only presented in MS1-ECM 92 Chapter 5 Discussion 94 5.1 Other sources of decellularized ECM used for MSCs expansion 94 5.2 Other preparation methods of ECM for MSCs to enhance their performance 94 5.3 MS1-ECM coating preparation partially recovered the beneficial effects of primary MS1-ECM 95 5.4 Different properties of MSCs reacted to external oxygenic tension change 97 5.5 Application of MS1-ECM coating preparation 99 5.6 Proteomic characterizations and differences between MSC-ECM and MS1-ECM 100 5.7 Quantities or qualities? How to use MS1-ECM as bio-materials for commercial MSCs culture? 101 5.8 Does MS1-ECM properly serve as the real vascular basement membrane niche for MSCs in vitro culture? 102 5.9 Why does sonicated MS1-ECM coating preparation have dose-dependent effect in enhancing the immune-modulatory activities of MSCs? 104 Chapter 6 Conclusion 105 口試問題回答 107 REFERENCE 114 | |
| dc.language.iso | en | |
| dc.subject | 低氧培養 | zh_TW |
| dc.subject | 內皮細胞 | zh_TW |
| dc.subject | 幹細胞 | zh_TW |
| dc.subject | 幹細胞特性 | zh_TW |
| dc.subject | 細胞外基質 | zh_TW |
| dc.subject | 生物材料 | zh_TW |
| dc.subject | 間葉幹細胞 | zh_TW |
| dc.subject | bio-materia | en |
| dc.subject | mesenchymal stem cells | en |
| dc.subject | pericytes | en |
| dc.subject | stem cell niche | en |
| dc.subject | decellularized extracellular matrix | en |
| dc.subject | hypoxia culture | en |
| dc.title | 運用MS1內皮細胞株所衍生之胞外基質作為擴增骨髓間葉幹細胞之生物材料 | zh_TW |
| dc.title | Optimizing the Preparation of MS1 Cells-derived Extracellular Matrix for the Amplification of Bone Marrow-derived Mesenchymal Stem Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃翠琴(Tsui-Chin Huang),皇甫維君(Wei-Chun HuangFu),林?輝(Feng-Huei Lin),林原佑(Yuan-Yu Lin) | |
| dc.subject.keyword | 間葉幹細胞,幹細胞特性,幹細胞,內皮細胞,細胞外基質,低氧培養,生物材料, | zh_TW |
| dc.subject.keyword | mesenchymal stem cells,pericytes,stem cell niche,decellularized extracellular matrix,hypoxia culture,bio-materia, | en |
| dc.relation.page | 126 | |
| dc.identifier.doi | 10.6342/NTU201803944 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-08-23 | - |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-R05626014-1.pdf 未授權公開取用 | 14.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
