請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78913完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃義侑(Yi-You Huang) | |
| dc.contributor.author | Wei-Ting Kung | en |
| dc.contributor.author | 龔煒婷 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:28:44Z | - |
| dc.date.available | 2023-08-23 | |
| dc.date.copyright | 2018-08-23 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-18 | |
| dc.identifier.citation | [1] Swiss Medica Clinic. Diabetic foot - Stem cells treatment clinic.Swiss Medica21 - regenerative medicine clinical center. Retrieved from: http://www.startstemcells.com/diabetic-foot-treatment.html.
[2] Miller KJ, Brown DA, Ibrahim MM, Ramchal TD, Levinson H. MicroRNAs in skin tissue engineering. Adv Drug Deliv Rev. 2015;88:16-36. [3] Gurtner, G. C.,Werner, S., Barrandon Y. , Longaker M. T. Wound Repair and Regeneration. Nature. 2008;453 (7193), 314−321. [4] Kasiewicz LN, Whitehead KA . Recent advances in biomaterials for the treatment of diabetic foot ulcers. Biomater Sci. 2017 26;5(10):1962-1975. [5] Schultz GS, Sibbald RG, Falanga V, Ayello EA, Dowsett C, Harding K, Romanelli M, Stacey MC, Teot L, Vanscheidt W. Wound bed preparation: a systematic approach to wound management. Wound Repair Regen. 2003;11:S1–28. [6] Jacqueminet S, Hartemann-Heurtier A, Izzillo R, Cluzel P, Golmard JL, Ha Van G, Koskas F, Grimaldi A. Percutaneous transluminal angioplasty in severe diabetic foot ischemia: outcomes and prognostic factors. Diabetes Metab. 2005;31(4 Pt 1):370-5. [7] Niederauer MQ, Michalek JE, Armstrong DG. A Prospective, Randomized, Double-Blind Multicenter Study Comparing Continuous Diffusion of Oxygen Therapy to Sham Therapy in the Treatment of Diabetic Foot Ulcers. J Diabetes Sci Technol. 2017;11(5):883-891. [8] Karri VV, Kuppusamy G, Talluri SV, Mannemala SS, Kollipara R, Wadhwani AD, Mulukutla S, Raju KR, Malayandi R. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int J Biol Macromol. 2016 ;93(Pt B):1519-1529. [9] Li X, Liu Y, Zhang J, You R, Qu J, Li M. Functionalized silk fibroin dressing with topical bioactive insulin release for accelerated chronic wound healing. Mater Sci Eng C Mater Biol Appl. 2017(1);72:394-404. [10] Laiva AL, O'Brien FJ, Keogh MB. Innovations in gene and growth factor delivery systems for diabetic wound healing. J Tissue Eng Regen Med. 2018;12(1):296-312. [11] De Mayo T, Conget P, Becerra-Bayona S, Sossa CL, Galvis V, Arango-Rodríguez ML. The role of bone marrow mesenchymal stromal cell derivatives in skin wound healing in diabetic mice. PLoS ONE 2017;12(6): e0177533 . [12] Bruggeman KF, Wang Y, Maclean FL,Parish CL, Williams RJ, Nisbet DR. Temporally controlled growth factor delivery from a self-assembling peptide hydrogel and electrospun nanofibre composite scaffold. Nanoscale. 2017;9,13661-13669. [13] Lv F, Wang J, Xu P, Han Y, Ma H, Xu H, Chen S, Chang J, Ke Q, Liu M, Yi Z, Wu C. A conducive bioceramic/polymer composite biomaterial for diabetic wound healing. Acta Biomater. 2017;15;60:128-143. [14] Shen YI, Cho H, Papa AE, Burke JA, Chan XY, Duh EJ, Gerecht S. Engineered human vascularized constructs accelerate diabetic wound healing. Biomaterials. 2016;102:107-19. [15] Langer R, Vacanti JP. Tissue engineering. Science. 1993 14;260(5110):920-6. [16] Hyldig K, Riis S, Pennisi CP, Zachar V, Fink T. Implications of Extracellular Matrix Production by Adipose Tissue-Derived Stem Cells for Development of Wound Healing. Therapies.Int J Mol Sci. 2017;31;18(6). [17] Terada S1, Sato M, Sevy A, Vacanti JP. Tissue engineering in the twenty-first century. Yonsei Med J. 2000;41(6):685-91. [18] Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends in biotechnology. 1998;16:224-30. [19] Carletti E, Motta A, Migliaresi C. Scaffolds for tissue engineering and 3D cell culture. Methods Mol Biol. 2011;695:17-39. [20] Sharif S, Ai J, Azami M, Verdi J, Atlasi MA, Shirian S, Samadikuchaksaraei A. Collagen-coated nano-electrospun PCL seeded with human endometrial stem cells for skin tissue engineering applications. J Biomed Mater Res Part B Appl Biomater. 2018;106(4):1578-1586. [21] Pinzón-García AD, Cassini-Vieira P, Ribeiro CC, de Matos Jensen CE, Barcelos LS, Cortes ME, Sinisterra RD .Efficient cutaneous wound healing using bixin-loaded PCL nanofibers in diabetic mice. J Biomed Mater Res B Appl Biomater. 2017;105(7):1938-1949. [22] Kim K, Lee JY, Kim H, Shin J, Shin Y, Yoo YT, and Kim HY. Fabrication of electropsun PLGA and small Intestine submucosa-blended nanofibrous membranes and their biocompatibility for Wound Healing. Fibers and polymers. 2017;18(2),231-239. [23] Navone SE, Pascucci L, Dossena M, Ferri A, Invernici G, Acerbi F, Cristini S, Bedini G, Tosetti V, Ceserani V, Bonomi A, Pessina A, Freddi G, Alessandrino A, Ceccarelli P, Campanella R, Marfia G, Alessandri G, Parati EA. Decellularized silk fibroin scaffold primed with adipose mesenchymal stromal cells improves wound healing in diabetic mice. Stem Cell Res Ther. 2014;14;5(1):7. [24] Ju HW, Lee OJ, Lee JM, Moon BM, Park HJ, Park YR, Lee MC, Kim SH, Chao JR, Ki CS, Park CH .Wound healing effect of electrospun silk fibroin nanomatrix in burn-model. Int J Biol Macromol.2016;85:29-39. [25] Karuppuswamy P, Venugopal JR, Navaneethan B, Laivaa AL, Sridhar S, Ramakrishna S. Functionalized hybrid nanofibers to mimic native ECM for tissue engineering applications. Applied Surface Science. 2014;322,162-168. [26] Chouhan D, Janani G, Chakraborty B, Nandi SK, Mandal BB. Functionalized PVA-silk blended nanofibrous mats promote diabetic wound healing via regulation of extracellular matrix and tissue remodelling. J Tissue Eng Regen Med. 2018;12(3):1559-1570. [27] Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends in biotechnology. 1998;16:224-30. [28] Liu Y, Li X, Qu X, Zhu L, He J, Zhao Q, et al. The fabrication and cell culture of three-dimensional rolled scaffolds with complex micro-architectures. Biofabrication. 2012;4:015004. [29] Robson MC. The role of growth factors in the healing of chronic wounds. Wound Repair Regen.1997;5(1):12-7. [30] G.S. Schultz, A. Wysocki. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen. 2009; 17(2):153-62. [31] Uchiyama A, Motegi SI, Sekiguchi A, Fujiwara C, Perera B, Ogino S, Yokoyama Y, Ishikawa O. Mesenchymal stem cells-derived MFG-E8 accelerates diabetic cutaneous wound healing. J Dermatol Sci. 2017;86(3):187-197. [32] Folkman J. Angiogenesis. Annu Rev Med. 2006;57:1–18. [33] Tahergorabi Z, Khazaei M. Imbalance of Angiogenesis in Diabetic Complications: The Mechanisms. Int J Prev Med. 2012;3(12):827-38. [34] Hillen F, Griffioen AW. Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev. 2007;26(3-4):489-502 . [35] K.E. Johnson, T.A. Wilgus. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv. Wound Care (New Rochelle) 3 .2014; 647–661. [36] Siepmann, Juergen, Siegel, Ronald A., Rathbone, Michael J. Fundamentals and Applications of Controlled Release Drug Delivery .2012.ISBN: 978-1-4614-0881-9. [37] Sieveking DP, Ng MK. Cell therapies for therapeutic angiogenesis: back to the bench. Vascular Medicine. 2009; 14: 153–166. [38] Giacca M, Zacchigna S. VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond. Gene Ther. 2012;19(6):622-9. [39] José A. Andrades SC, Pedro Jiménez-Palomo, José Ma López Puertas, Plácido Zamora Navas, Enrique Guerado, Manuel Monleón, María C. Araque and José Becerra. Skeletal Regeneration by Mesenchymal Stem Cells: What Else?. Regenerative Medicine and Tissue Engineering - Cells and Biomaterials: InTech. 2011. [40] Priscilla S. Briquez, Lindsay E. Clegg, Mikaël M. Martino, Feilim Mac Gabhann & Jeffrey A. Hubbell . Design principles for therapeutic angiogenic materials. Nature Reviews Materials .2016;1. [41] Seo Y, Jung Y, Kim SH. Decellularized Heart ECM Hydrogel using Supercritical Carbon Dioxide for Improved Angiogenesis. Acta Biomater. 2018;67:270-281. [42] Fercana GR, Yerneni S, Billaud M, Hill JC, VanRyzin P, Richards TD, Sicari BM, Johnson SA, Badylak SF, Campbell PG, Gleason TG, Phillippi JA. Perivascular extracellular matrix hydrogels mimic native matrix microarchitecture and promote angiogenesis via basic fibroblast growth factor. Biomaterials. 2017;123:142-154. [43] GaoY, Jin W, Li Y, Wan L, Wang C ,Lin C, Chen X F, Lei B and Mao C. A highly bioactive bone extracellular matrix-biomimetic nanofibrous system with rapid angiogenesis promotes diabetic wound healing. J. Mater. Chem. B.2017,5, 7285-7296 . [44] Zhang XN, Ma ZJ, Wang Y, Sun B, Guo X, Pan CQ, Chen LM. Angelica Dahurica ethanolic extract improves impaired wound healing by activating angiogenesis in diabetes. PLoS One.2017;12(5):e0177862. [45] Wang Y, Han G, Guo B, Huang J .Hyaluronan oligosaccharides promote diabetic wound healing by increasing angiogenesis. Pharmacol Rep.2016;68(6):1126-1132. [46] Icli B, Nabzdyk CS, Lujan-Hernandez J, Cahill M, Auster ME, Wara AK, Sun X, Ozdemir D, Giatsidis G, Orgill DP, Feinberg MW. Regulation of impaired angiogenesis in diabetic dermal wound healing by microRNA-26a. J Mol Cell Cardiol. 2016;91:151-9. [47] Goodwin AM. In vitro assays of angiogenesis for assessment of angiogenic and anti-angiogenic agents. Microvasc Res. 2007;74:172–83. [48] Zhang YX, Li Q, Youn J,Cai H. PTP1B in Calpain-dependent Feedback Regulation of VEGFR2 in Endothelial Cells: Implication in VEGF-dependent Angiogenesis and Diabetic Wound Healing. The FASEB Journal. 2016;30,1. [49] Yan W, Liu H, Deng X, Jin Y, Wang N, Chu J .Acellular dermal matrix scaffolds coated with connective tissue growth factor accelerate diabetic wound healing by increasing fibronectin through PKC signalling pathway. J Tissue Eng Regen Med. 2018;12(3):e1461-e1473. [50] R.W. Tarnuzzer, G.S. Schultz. Biochemical analysis of acute and chronic wound Environments. Wound Repair Regen. 1996;4, 321–325. [51] R.J. Bodnar. Chemokine regulation of angiogenesis during wound healing. Adv. Wound Care (New Rochelle) .2015;4,641–650. [52] Wei X , Yang X, Han ZP, Qu FF, Shao L, Shi YF. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacologica Sinica .2013; 34: 747–754. [53] Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal Stem Cells Enhance Wound Healing Through Differentiation and Angiogenesis. Stem Cells 2007;25(10) 2648 –2659. [54] Milan PB, Lotfibakhshaiesh N, Joghataie MT, Ai J, Pazouki A, Kaplan DL, Kargozar S, Amini N, Hamblin MR, Mozafari M, Samadikuchaksaraei A. Accelerated wound healing in a diabetic rat model using decellularized dermal matrix and human umbilical cord perivascular cells . Acta Biomaterilia .2016;45:234-246. [55] Ruodan Xu, Huiling Zhao, Hanif Muhammad, Mingdong Dong , Flemming Besenbacher & Menglin Chen. Dual-delivery of FGF-2/CTGF from Silk Fibroin/PLCL-PEO Coaxial Fibers Enhances MSC Proliferation and Fibrogenesis. Scientific Reports. 2017;7: 8509. [56] Formhals A. Process and apparatus for preparing artificial threads. US Patent Specification. 1934. [57] Reneker DH, Yarin AL, Fong H, Koombhongse S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics .2000;87:4531-47. [58] S. Babitha, Lakra Rachita, K. Karthikeyan, Ekambaram Shoba, Indrakumar Janani, Balan Poornima, K. Purna Sai .Electrospun protein nanofibers in healthcare: A review. International Journal of Pharmaceutics . 2017;523 , 52–90. [59] Electrospinning/electrospraying schematic with variations for different processing outcomes. 2012. Retrieved from: https://en.wikipedia.org/wiki/File:Electrospinning_Image_for_Wikipedia.tif. [60] McCullen SD, Miller PR, Gittard SD, Gorga RE, Pourdeyhimi B, Narayan RJ, et al. In situ collagen polymerization of layered cell-seeded electrospun scaffolds for bone tissue engineering applications. Tissue engineering Part C, Methods . 2010;16:1095-105. [61] Xu Y, Wu J, Wang H, Li H, Di N, Song L, et al. Fabrication of electrospun poly(L-lactide-co-epsilon-caprolactone)/collagen nanoyarn network as a novel, three-dimensional, macroporous, aligned scaffold for tendon tissue engineering. Tissue engineering Part C, Methods. 2013;19:925-36. [62] Wu Y, Wang Z, Ying Hsi Fuh J, San Wong Y, Wang W, San Thian E .Direct E-jet printing of three-dimensional fibrous scaffold for tendon tissue engineering. J Biomed Mater Res B Appl Biomater. 2017;105(3):616-627. [63] Gong W, Lei D, Li S, Huang P, Qi Q, Sun Y, Zhang Y, Wang Z, You Z, Ye X, Zhao Q. Hybrid small-diameter vascular grafts: Anti-expansion effect of electrospun poly ε-caprolactone on heparin-coated decellularized matrices. Biomaterials .2016;76:359-70. [64]Tan Z, Wang H, Gao X, Liu T, Tan Y Composite vascular grafts with high cell infiltration by co-electrospinning. Mater Sci Eng C Mater Biol Appl. 2016;1;67:369-377. [65] Zhou J, Cao C, Ma X, Lin J. Electrospinning of silk fibroin and collagen for vascular tissue engineering. International journal of biological macromolecules. 2010;47:514-9. [66] Yang Y, Zhu X, Cui W, Li X, Jin Y. Electrospun Composite Mats of Poly[(D,L-lactide)-co-glycolide] and Collagen with High Porosity as Potential Scaffolds for Skin Tissue Engineering. Macromolecular Materials and Engineering . 2009;294:611-9. [67] Park YR, Ju HW, Lee JM, Kim DK, Lee OJ, Moon BM, Park HJ, Jeong JY, Yeon YK, Park CH. Three-dimensional electrospun silk-fibroin nanofiber for skin tissue engineering. Int J Biol Macromol. 2016;93(Pt B):1567-157. [68] Subramanian A, Vu D, Larsen GF, Lin HY. Preparation and evaluation of the electrospun chitosan/PEO fibers for potential applications in cartilage tissue engineering. Journal of biomaterials science Polymer edition. 2005;16:861-73. [69] Wang S, Ghezzi CE, Gomes R, Pollard RE, Funderburgh JL, Kaplan DL. In vitro 3D corneal tissue model with epithelium, stroma, and innervation. Biomaterials. 2017;112:1-9. [70] W. Gao, L. Sun, X. Fu, Z. Lin, W. Xie, W. Zhang, F. Zhao and X. Chen. Enhanced diabetic wound healing by electrospun core-sheath fibers loaded with dimethyloxalylglycine. J. Mater. Chem. B. 2018,6, 277-288. [71] Yin H, Ding G, Shi X, Guo W, Ni Z, Fu H, Fu Z .A bioengineered drug-Eluting scaffold accelerated cutaneous wound healing In diabetic mice. Colloids Surf B Biointerfaces. 2016 ;1;145:226-231. [72] Song DW, Kim SH, Kim HH, Lee KH, Ki CS, Park YH. Multi-biofunction of antimicrobial peptide-immobilized silk fibroin nanofiber membrane: Implications for wound healing. Acta Biomater. 2016 ;15;39:146-155. [73] Kim TH, Jung Y, Kim SH .Nanofibrous Electrospun Heart Decellularized Extracellular Matrix-Based Hybrid Scaffold as Wound Dressing for Reducing Scarring in Wound Healing. Tissue Eng Part A. 2018;24(9-10):830-848. [74] Buddy Ratner, Allan Hoffman, Frederick Schoen, Jack Lemons. Biomaterials Science (3rd Edition)-An Introduction to Materials in Medicine. 2013. ISBN: 978-0-12-374626-9. [75] K.S. Midwood, L.V. Williams, J.E. Schwarzbauer. Tissue repair and the dynamics of the extracellular matrix, Int. J. Biochem. Cell Biol. 2004;36, 1031–1037. [76] Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233-43. [77] Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science. 2009;324:1673-7. [78] Vepari C, Kaplan DL. Silk as a Biomaterial. Progress in polymer science. 2007;32:991-1007. [79] Howard, Kenneth A, Vorup-Jensen, Thomas, Peer, Dan. Nanomedicine, Chapter11- The Use of Silk in Nanomedicine Applications.2016. ISBN: 978-1-4939-3634-2. [80] M.A. Koperska, D. Pawcenis, J. Bagniuk, M.M. Zaitz, M. Missori, T. Łojewski, J. Łojewska. Degradation markers of fibroin in silk through infrared spectroscopy. Polymer Degradation and Stability. 2014;105,185-196. [81] E.M. Pritchard, X. Hu, V. Finley, C.K. Kuo, D.L. Kaplan. Effect of Silk Protein Processing on Drug Delivery from Silk Films. Macromolecular Bioscience. 2013;13(3) ,311-320. [82] Yucel T, Lovett ML, Kaplan DL. Silk-based biomaterials for sustained drug delivery. Journal of controlled release : Official Journal of the Controlled Release Society. 2014;190:381-97. [83] Y. Cao, B. Wang. Biodegradation of Silk Biomaterials. International journal of molecular sciences. 2009; 10(4) 1514-1524. [84] Patel H, Chen J, Das KC, Kavdia M. Hyperglycemia induces differential change in oxidative stress at gene expression and functional levels in HUVEC and HMVEC. Cardiovasc Diabetol. 2013;12:142. [85] Vepari C, Kaplan DL. Silk as a Biomaterial. Progress in polymer science. 2007;32:991-1007. [86] Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng. 2011;13:27-53. [87] Pati F, Cho DW. Bioprinting of 3D Tissue Models Using Decellularized Extracellular Matrix Bioink. Methods Mol Biol. 2017;1612:381-390. [88] Yang MC, Chi NH, Chou NK, Huang YY, Chung TW, Chang YL, Liu HC, Shieh MJ, Wang SS. The influence of rat mesenchymal stem cell CD44 surface markers on cell growth, fibronectin expression, and cardiomyogenic differentiation on silk fibroin – Hyaluronic acid cardiac patches. Biomaterials .2010;31(5) 854-862. [89] 蔡佳憲、黃義侑。以PDMS薄膜及微孔洞始去細胞之真皮支架上形成真皮乳頭微球陣列應用在毛囊重建工程之研究。國立臺灣大學醫學工程學研究所。2016 [90] Freytes DO, Martin J, Velankar SS, Lee AS, Badylak SF. Preparation and prheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials. 2008;29(11):1630-7. [91] Cilurzo F, Gennari CG, Selmin F, Marotta LA, Minghetti P, Montanari L. An investigation into silk fibroin conformation in composite materials intended for drug delivery. I Int J Pharm.2011; 29;414(1-2):218-24. [92] X. Hu, D. Kaplan, P. Cebe. Determining Beta-Sheet Crystallinity in Fibrous Proteins by Thermal Analysis and Infrared Spectroscopy. Macromolecules.2006; 39(18) 6161-6170. [93] J.A. Kluge, B.T. Kahn, J.E. Brown, F.G. Omenetto, D.L. Kaplan. Optimizing Molecular Weight of Lyophilized Silk As a Shelf-Stable Source Material. ACS Biomaterials Science & Engineering.2016;2(4)595-605. [94] Kim UJ, Park J, Kim HJ, Wada M, Kaplan DL. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials. 2005;26(15):2775-85. [95] K Zhao, H Hao, J Liu, C Tong, Y Cheng, Z Xie, L Zang, Y Mu, W Han. Bone marrow-derived mesenchymal stem cells ameliorate chronic high glucose-induced β-cell injury through modulation of autophagy. Cell Death and Disease .2015;6, 1885. [96] Wentzel P, Ejdesjö A, Eriksson UJ. Maternal diabetes in vivo and high glucose in vitro diminish GAPDH activity in rat embryos. Diabetes. 2003;52(5):1222-8. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78913 | - |
| dc.description.abstract | 不易痊癒之糖尿病慢性傷口常導致反覆感染發炎,嚴重者甚至有截肢、死亡的風險。現今已具多種糖尿病傷口癒合的研究及臨床治療,但有龐大開銷和需時間配合等缺點,且效果和治療方式仍有改進的空間。血管增生在急慢性傷口修復和人體生長發育中扮演重要的腳色,能透過細胞與細胞外基質之作用調控加速再生復原之速度,並協助維持生理平衡。
因此,本研究結合具機械強度和彈性的聚幾內酯 (PCL)、增加親水性之蠶絲蛋白 (Silk Fibroin,SF)、從新生鼠皮或大鼠血管經去細胞所得之細胞外基質(Extracellular matrix,ECM),經電紡技術製成具高、低孔洞率之仿生結構複合型慢性傷口修復支架。並透過移植纖維母細胞、角質細胞、血管內皮細胞與間質幹細胞觀察材料中所具不同來源之去細胞基質於一般和糖尿病環境培養下,對細胞生長之調控。 經ATR-FTIR、SEM、接觸角、MTT等分析,可見具親水性及生物相容性的複合型支架為仿生微奈米結構可供細胞生長,且高孔洞率組別能使細胞長入形成3D架構;In vitro實驗培養人類角質細胞、血管內皮細胞、間質幹細胞於一般環境或糖尿病模型後,藉由支架內去細胞基質與細胞間作用可見細胞增生,且Confocal與螢光顯微鏡結果顯示,角質細胞和血管內皮細胞於相對應加入皮膚或血管之去細胞基質組別有較佳的細胞增生情形,證明細胞基質來源對不同種細胞增生之調控;而間質幹細胞於有加入去細胞基質的高孔洞率支架皆有良好生長情形; In vivo實驗,於大鼠於背部開創傷口貼附複合型支架,經天數觀察顯示高孔洞率PCL/SF/PEG-Vessel(PSG-V)組別有透過血管增生而達傷口修復之最佳成果,且載附幹細胞與去細胞基質之複合型支架能加速傷口癒合之成效。 本研究製備之高孔洞率複合型支架,能夠於只使用去細胞基質中微量生物活性物質之情況下調控各種細胞之增生機制,並誘導血管增生達到慢性傷口治療,且載附幹細胞之支架能加速癒合之速率;透過加入不同組織來源之去細胞基質,能對特定組織、器官的細胞做生長調控。結果顯示,此複合型電紡支架對未來於組織工程、血管增生及一般或慢性傷口修復之應用具有發展潛力。 | zh_TW |
| dc.description.abstract | Unrecoverable diabetes chronic wounds often cause recurrent infections, inflammations, and even a risk of amputation or death in severe cases. Nowadays, various studies and clinical treatments for diabetic wound ulcers are in development, but there are some shortcomings such as huge overhead and time coordination . It still has room for improvement in effects and treatments methods.
Angiogenesis plays an important role in acute or chronic wound repair. It acts through the interaction between cells and extracellular matrix(ECM) to regulate, accelerate the speed of regeneration and help maintain physiological balance. Therefore, the biomimetic hybrid scaffolds with high or low porosity are prepared by electrospinning technology, which combines poly-caprolactone(PCL) with mechanical strength and elasticity, silk fibroin(SF) for increasing hydrophilic, and decellularized ECM from skins of newborn rats and blood vessels of rats. The material characteristic analysis show that the high porosity and biocompatible hybrid scaffold is hydrophilic and has biomimetic micro-nano structure, which provides sufficient surface area for cell to grow into 3D architecture. In vitro cell culture experiments indicate that keratinocytes and vascular endothelial cells have better cell proliferation in the ECM group corresponding to the skin or blood vessels, which proves that the source of extracellular matrix regulates the proliferation of different kinds of cells. Additionally, mesenchymal stem cells grow well in hybrid scaffolds with decellularized ECM. In vivo experiments, we attached hybrid scaffold on the wounds of rats, after seven days, high porosity PCL/SF/PSG-Vessel (PSG-V) scaffold achieves the best results of wound healing through angiogenesis .And the mesenchymal stem cells and decellularized matrix –drived hybrid scaffold can accelerate the wound healing ratio. In conclusion, the high-porosity hybrid electrospinning scaffold prepared in this study can regulate the proliferation mechanism of various cells by using only trace amounts of biologically active substances in the decellularized matrix, and induce vascular proliferation to achieve chronic wound healing. Besides, we can regulate the specific cell proliferation by adding extracellular matrix from different tissue sources. This investigation demonstrate that the hybrid electrospinning scaffolds have potential applications in tissue engineering, angiogenesis and general or chronic wound healing treatments. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:28:44Z (GMT). No. of bitstreams: 1 ntu-107-R05548035-1.pdf: 3219708 bytes, checksum: 248d709efe8f1f33d3b63d5c4c661104 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II AbstractIV 目錄 VI 圖目錄 X 表目錄 XII 第一章 緒論 1 1.1 糖尿病慢性傷口 1 1.2慢性傷口之治療 1 1.2.1慢性傷口修復 1 1.2.2現今慢性傷口修復之治療方法 3 1.2.3 組織工程 (Tissue Engineering) 4 1.3血管新生 (Angiogenesis) 6 1.3.1血管新生療法 6 1.3.2 血管新生於慢性傷口修復之運用 7 1.4幹細胞療法 8 1.4.1幹細胞 8 1.4.2幹細胞於慢性傷口修復之運用 9 1.5靜電紡絲 (Electrospinning) 10 1.5.1 靜電紡絲法 10 1.5.2靜電紡絲於慢性傷口修復之應用 11 1.6複合型支架 (Hybrid Scaffold) 11 1.6.1細胞外基質 (Extracellular matrix, ECM) 11 1.6.2蠶絲蛋白 (Silk fibroin, SF, S) 12 1.6.3聚己內酯 (Polycaprolactone, PCL, P) 15 1.7去細胞法 (Decellularization) 15 第二章 研究概述 17 2.1 研究動機與目的 17 2.2 研究方法概述 18 2.3 實驗流程圖 19 第三章 實驗材料與方法 20 3.1實驗藥品 20 3.2實驗儀器 22 3.3材料製備 24 3.3.1蠶絲蛋白製備 24 3.3.2去細胞基質取得 25 3.3.3去細胞基質萃取液製備 27 3.3.4靜電紡絲支架製備 28 3.4材料性質分析 30 3.4.1掃描式電子顯微鏡(Scanning Electron Microscope ,SEM)觀察 30 3.4.2 全反射傅立葉轉換紅外線光譜儀(ATR-FTIR)材料分析 31 3.4.2.1蠶絲蛋白結晶度計算 31 3.4.2.2 蠶絲蛋白分子量 32 3.4.3 親疏水性接觸角測試(Water Contact Angle) 33 3.4.4 膨潤性(Swelling ratio)與含水量(Water uptake)測試 34 3.4.5 去細胞基質分析 35 3.4.5.1 DNA 含量測試 35 3.4.5.2 Collagen 定量測試 36 3.4.5.3 GAG 含量測試 37 3.4.6組織切片處理 38 3.5 In vitro體外細胞培養實驗 39 3.5.1 細胞培養 39 3.5.2共軛焦顯微鏡(Confocal Microscope) /螢光顯微鏡(Olympus) 觀察支架中細胞生長型態 41 3.5.2.1 PKH26細胞紅螢光染色 41 3.5.2.2 Hoechst 33342細胞核藍色螢光染色 42 3.5.2.3 DAPI細胞核藍色螢光染色 42 3.5.3免疫細胞化學(Immunocytochemistry , ICC) 42 3.5.4生物相容性實驗(MTT) 44 3.6 In vivo體內動物實驗 45 3.7 統計分析 46 第四章 實驗結果與討論 47 4.1蠶絲蛋白性質分析 47 4.2去細胞法之細胞外基質 48 4.2.1新生鼠皮/成鼠血管之去細胞處理 48 4.2.2去細胞基質型態及性質分析 49 4.3 靜電紡絲支架之特性分析及功能鑑定 51 4.3.1複合型電紡支架結構型態 51 4.3.2複合型電紡支架材料分析-官能基 56 4.3.3 電紡支架之材料親疏水性測試 58 4.3.4 複合型電紡支架之孔洞率與吸水性測試 59 4.3.5 複合型電紡支架膨潤性與含水量測試 61 4.4 細胞培養之分析及觀察 63 4.4.1低孔洞率複合型支架--細胞生長型態觀察 63 4.4.2低孔洞率支架 --生物相容性與細胞增生 66 4.4.3高孔洞率複合型支架--細胞生長型態觀察 68 4.4.4高孔洞率支架 --生物相容性與細胞增生 72 4.4.5高孔洞率與低孔洞率支架細胞相容性比較 73 4.5 In vivo動物實驗 74 第五章 結論 75 參考文獻 76 | |
| dc.language.iso | zh-TW | |
| dc.subject | 糖尿病傷口修復 | zh_TW |
| dc.subject | 靜電紡絲 | zh_TW |
| dc.subject | 去細胞化 | zh_TW |
| dc.subject | 細胞外基質 | zh_TW |
| dc.subject | 蠶絲蛋白 | zh_TW |
| dc.subject | 血管新生 | zh_TW |
| dc.subject | 間質幹細胞 | zh_TW |
| dc.subject | Mesenchymal stem cells | en |
| dc.subject | Angiogenesis | en |
| dc.subject | Chronic wound healing | en |
| dc.subject | Electrospinning | en |
| dc.subject | Decellularization | en |
| dc.subject | Extracellular matrix | en |
| dc.subject | Silk fibroin | en |
| dc.title | 具血管新生功能之複合型電紡支架於慢性傷口修復之應用 | zh_TW |
| dc.title | Fabrication of Hybrid Electrospinning Nano-Scaffold with Angiogenesis Function for Chronic Wound Healing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鍾次文,黃意真 | |
| dc.subject.keyword | 血管新生,糖尿病傷口修復,靜電紡絲,去細胞化,細胞外基質,蠶絲蛋白,間質幹細胞, | zh_TW |
| dc.subject.keyword | Angiogenesis,Chronic wound healing,Electrospinning,Decellularization,Extracellular matrix,Silk fibroin,Mesenchymal stem cells, | en |
| dc.relation.page | 86 | |
| dc.identifier.doi | 10.6342/NTU201802899 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-08-23 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-R05548035-1.pdf 未授權公開取用 | 3.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
