請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78909完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 傅立成(Li-Chen Fu) | |
| dc.contributor.author | Chun-Tang Yang | en |
| dc.contributor.author | 楊竣棠 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:28:26Z | - |
| dc.date.available | 2021-08-23 | |
| dc.date.copyright | 2018-08-23 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-19 | |
| dc.identifier.citation | [1] Dirk Helbing and Péter Molnár. Social force model for pedestrian dynamics. Phys. Rev. E 51, 1988.
[2] Thibault Kruse, Amit Kumar Pandey, Rachid Alami, and Alexandra Kirsch. Human-aware robot navigation: A survey. Robotics and Autonomous Systems, 61(12):1726 – 1743, 2013. [3] Edward Twitchell Hall. The hidden dimension. 1966. [4] Pacchierotti, Elena & Christensen, Henrik & Jensfelt, Patric. (2005). Embodied Social Interaction for Service Robots in Hallway Environments. 25. 293-304. 10.1007/978-3-540-33453-8_25. [5] C. P. Lam, C. T. Chou, K. H. Chiang and L. C. Fu, 'Human-Centered Robot Navigation—Towards a Harmoniously Human–Robot Coexisting Environment,' in IEEE Transactions on Robotics, vol. 27, no. 1, pp. 99-112, Feb. 2011. [6] Javier Minguez and L. Montano, 'Nearness diagram (ND) navigation: collision avoidance in troublesome scenarios,' in IEEE Transactions on Robotics and Automation, vol. 20, no. 1, pp. 45-59, Feb. 2004. [7] Kessler J., Schroeter C., Gross HM. (2011) Approaching a Person in a Socially Acceptable Manner Using a Fast Marching Planner. In: Jeschke S., Liu H., Schilberg D. (eds) Intelligent Robotics and Applications. ICIRA 2011. [8] M. Luber, L. Spinello, J. Silva and K. O. Arras, 'Socially-aware robot navigation: A learning approach,' 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, 2012, pp. 902-907. [9] W. Chi, H. Kono, Y. Tamura, A. Yamashita, H. Asama and M. Q. H. Meng, 'A human-friendly robot navigation algorithm using the risk-RRT approach,' 2016 IEEE International Conference on Real-time Computing and Robotics (RCAR), Angkor Wat, 2016, pp. 227-232. [10] A. Bellarbi, S. Kahlouche, N. Achour and N. Ouadah, 'A social planning and navigation for tour-guide robot in human environment,' 2016 8th International Conference on Modelling, Identification and Control (ICMIC), Algiers, 2016, pp. 622-627. [11] A. K. Pandey and R. Alami, 'A framework towards a socially aware Mobile Robot motion in Human-Centered dynamic environment,' 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, 2010, pp. 5855-5860. [12] S. B. Liu, H. Roehm, C. Heinzemann, I. Lütkebohle, J. Oehlerking and M. Althoff, 'Provably safe motion of mobile robots in human environments,' 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, 2017, pp. 1351-1357. [13] Y. Tamura, T. Fukuzawa and H. Asama, 'Smooth collision avoidance in human-robot coexisting environment,' 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, 2010, pp. 3887-3892. [14] Zanlungo, Francesco & Ikeda, Tetsushi & Kanda, Takayuki. (2011). Social force model with explicit collision prediction. EPL (Europhysics Letters). 93. 68005. 10.1209/0295-5075/93/68005. [15] G. Ferrer, A. Garrell and A. Sanfeliu, 'Robot companion: A social-force based approach with human awareness-navigation in crowded environments,' 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, 2013, pp. 1688-1694. [16] D. Katagami and S. Yamada, “Active teaching for an interactive learning robot,” in IEEE ROMAN, 2003, pp. 181–186 [17] G. Ferrer and A. Sanfeliu, 'Behavior estimation for a complete framework for human motion prediction in crowded environments,' 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, 2014, pp. 5940-5945. [18] G. Ferrer and A. Sanfeliu, 'Proactive kinodynamic planning using the Extended Social Force Model and human motion prediction in urban environments,' 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, 2014, pp. 1730-1735. [19] B. S. B. Dewantara, 'Building a socially acceptable navigation and behavior of a mobile robot using Q-learning,' 2016 International Conference on Knowledge Creation and Intelligent Computing (KCIC), Manado, 2016, pp. 88-93. [20] K. Mombaur, J. P. Laumond and E. Yoshida, 'An optimal control model unifying holonomic and nonholonomic walking,' Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots, Daejeon, 2008, pp. 646-653. [21] Hughes, Rowan & Ondrej, Jan & Dingliana, John. (2014). Holonomic Collision Avoidance for Virtual Crowds. 10.2312/sca.20141128. [22] Tan-Viet-Anh Truong. Unifying nonholonomic and holonomic behaviors in human locomotion. Automatic. Institut National Polytechnique de Toulouse - INPT, 2010. [23] S. A. Yang, E. Gamborino, C. T. Yang and L. C. Fu, 'A study on the social acceptance of a robot in a multi-human interaction using an F-formation based motion model,' 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, 2017, pp. 2766-2771. [24] A. Khelloufi, N. Achour, R. Passama and A. Cherubini, 'Tentacle-based moving obstacle avoidance for omnidirectional robots with visibility constraints,' 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, 2017, pp. 1331-1336. [25] Vinciarelli, A., Pantic, M., Bourlard, H., & Pentland, A. (2008). Social signal processing: state-of-the-art and future perspectives of an emerging domain. ACM Multimedia. [26] J. Mumm and B. Mutlu, 'Human-robot proxemics: Physical and psychological distancing in human-robot interaction,' 2011 6th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Lausanne, 2011, pp. 331-338. [27] A. Gaschler, S. Jentzsch, M. Giuliani, K. Huth, J. de Ruiter and A. Knoll, 'Social behavior recognition using body posture and head pose for human-robot interaction,' 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, 2012, pp. 2128-2133. [28] Rios-Martinez, Jorge & Spalanzani, Anne & Laugier, Christian. (2014). From Proxemics Theory to Socially-Aware Navigation: A Survey. International Journal of Social Robotics. 7. 137-153. 10.1007/s12369-014-0251-1. [29] P. Althaus, H. Ishiguro, T. Kanda, T. Miyashita and H. I. Christensen, 'Navigation for human-robot interaction tasks,' Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE International Conference on, 2004, pp. 1894-1900 Vol.2. [30] J.T. Butler, A. Agah, Psychological effects of behavior patterns of a mobile personal robot, Autonomous Robots 10 (2) (2001) 185–202. [31] Dautenhahn, K., Walters, M.L., Woods, S.N., Koay, K.L., Nehaniv, C.L., Sisbot, E.A., Alami, R., & Siméon, T. (2006). How may I serve you? a robot companion approaching a seated person in a helping context. HRI. [32] Koay, Kheng & Sisbot, Emrah & Syrdal, Dag Sverre & Walters, Michael & Dautenhahn, Kerstin & Alami, Rachid. (2007). Exploratory Study of a Robot Approaching a Person in the Context of Handing Over an Object. AAAI Spring Symposium - Technical Report. 18-24. [33] Y. F. Chen, M. Everett, M. Liu and J. P. How, 'Socially aware motion planning with deep reinforcement learning,' 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, 2017, pp. 1343-1350. [34] Harmish Khambhaita, Jorge Rios-Martinez, Rachid Alami. Head-Body Motion Coordination for Human Aware Robot Navigation. 9th International workshop on Human-Friendlly Robotics (HFR 2016), Sep 2016, Génes, Italy. 8p., 2016. [35] T. Matthew Ciolek and Adam Kendon. Environment and the Spatial Arrangement of Conversational Encounters. Sociological Inquiry, 50(3-4):237–271, 1980. [36] J. Rios-Martinez, A. Spalanzani and C. Laugier, 'Understanding human interaction for probabilistic autonomous navigation using Risk-RRT approach,' 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, 2011, pp. 2014-2019. [37] A. Vega-Magro, L. Manso, P. Bustos, P. Núñez and D. G. Macharet, 'Socially acceptable robot navigation over groups of people,' 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Lisbon, 2017, pp. 1182-1187. [38] Truong, Xuan-Tung & Ngo, Trung Dung. (2016). Dynamic Social Zone based Mobile Robot Navigation for Human Comfortable Safety in Social Environments. International Journal of Social Robotics. 8. 10.1007/s12369-016-0352-0. [39] K. O. Arras, O. M. Mozos and W. Burgard, 'Using Boosted Features for the Detection of People in 2D Range Data,' Proceedings 2007 IEEE International Conference on Robotics and Automation, Roma, 2007, pp. 3402-3407. [40] J. Xavier, M. Pacheco, D. Castro, A. Ruano and U. Nunes, 'Fast Line, Arc/Circle and Leg Detection from Laser Scan Data in a Player Driver,' Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, pp. 3930-3935. [41] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing, 50(2):174–188, Feb 2002. [42] Z. Cao, T. Simon, S. E. Wei and Y. Sheikh, 'Realtime Multi-person 2D Pose Estimation Using Part Affinity Fields,' 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 1302-1310. [43] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015 [44] D. Mehta, G. Ferrer and E. Olson, 'Autonomous navigation in dynamic social environments using Multi-Policy Decision Making,' 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, 2016, pp. 1190-1197. [45] Buchmueller, S., Weidmann, U. (2006): Parameters of Pedestrians, Pedestrian Traffic and Walking Facilities, IVT-Report Nr. 132, Institut for Transport Planning and Systems (IVT), Swiss Federal Institute of Technology Zurich (ETHZ) [46] Moussaïd M, Perozo N, Garnier S, Helbing D, Theraulaz G (2010) The Walking Behaviour of Pedestrian Social Groups and Its Impact on Crowd Dynamics. PLOS ONE 5(4): e10047 [47] L. Hughes, Roger. (2003). The Flow of Human Crowds. Annu. Rev. Fluid Mech.. 35. 169-182. 10.1146/annurev.fluid.35.101101.161136. [48] Roger L. Hughes, A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, Volume 36, Issue 6, 2002. [49] Erving Goffman. Behavior in public places: Notes on the social organization of gatherings, volume 91194. Free Pr, 1966. [50] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and A. Y. Ng, 'ROS: an open-source Robot Operating System,' in Proc. Open-Source Software workshop of the International Conference on Robotics and Automation (ICRA), 2009 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78909 | - |
| dc.description.abstract | 此篇論文提出一個基於情境感知的智慧機器人全向性移動導航,隨著近年機器人研究與現實應用,機器人與人共享空間的機會有了飛躍的成長,如何在未知且複雜的有人環境中,感知障礙物的位置與人的移動做出應對的移動行為成為機器人導航的目標。從社交研究中可得知,人的移動是為全向性的,我們基於此全向性的移動能力去定義機器人的行為從而達到自然的移動方式,接著利用雷射測距儀與相機作為感測器,偵測環境與人的行為資訊與情境。在感測情境上,使用雷射測距儀得到的資料建立環境模型,確立障礙物與人的距離和方位,同時利用相機的影像資訊取得人的面向與身體朝向,建立更精確的個人人類模型,再以個人模型組成群組模型為人潮流動做分析,而以此環境模型與人類模型作為情境,機器人將執行合適的導航行為。在機器人與環境、人的互動中,我們引用社交力的概念,此社交力可分為社交吸引力與社交排斥力,藉由社交力的總和驅使機器人移動,社交力的大小與方向將藉由人、物與機器人的相對關係決定,而與以往社交力不同,我們加入全向性移動的特性,提出延伸的旋轉社交力,進而得以考慮社交移動中的舒適度、自然性。最後,在多人且居家環境中的模擬與實驗驗證情境感知之全向性導航的可靠性與可行性。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:28:26Z (GMT). No. of bitstreams: 1 ntu-107-R03943140-1.pdf: 3514128 bytes, checksum: a4f6016c40337bf7bbc137463c427569 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES ix Chapter 1 1 1.1 Motivation 1 1.2 Related Works 3 1.2.1 Human Comfort 3 1.2.2 Natural Motions 6 1.2.3 Behavior of Sociability 11 1.3 Objectives 13 1.4 Thesis Organization 15 Chapter 2 16 2.1 Omnidirectional Mobile Robot 16 2.1.1 Hardware Design 16 2.1.2 Omnidirectional Movement 19 2.2 Human Tracking System 21 2.2.1 Human Detection and Tracking 21 2.2.2 Human Skeleton Keypoints Estimation 25 2.3 Social Force Model 27 2.4 Gap Analyzing 29 2.5 Multi-Policy Decision Making 31 2.5.1 Multi-Policy Decision Making 31 2.5.2 The Cost Function 33 Chapter 3 34 3.1 System Architecture 34 3.2 Human Model Construction 37 3.2.1 Individual Model Construction 37 3.2.2 Dynamic Group Model Construction 40 3.3 Extended Social Force Model 47 3.3.1 Observation and Discussion of Social Force Model 48 3.3.2 Rotation Social Force 50 3.4 Robot Behavior Design 53 3.4.1 Go-Forward Behavior 54 3.4.2 Follow Agent Behavior 55 3.4.3 Wall Following Behavior 57 3.4.4 Stop Behavior 58 3.5 Socially-Aware MDPM-based Motion Planner 58 Chapter 4 61 4.1 Implementation 61 4.2 Experiment 1 (Human and Group Model Construction) 62 4.3 Experiment 2 (Agent/Group Following Behavior) 67 4.4 Experiment 3 (Wall Following Behavior) 69 4.5 Experiment 4 (Stop Behavior) 72 4.6 Evaluation and Discussion 76 Chapter 5 76 REFERENCE 78 | |
| dc.language.iso | zh-TW | |
| dc.subject | 人機互動 | zh_TW |
| dc.subject | 全向性移動 | zh_TW |
| dc.subject | 情境感知 | zh_TW |
| dc.subject | omnidirectional movement | en |
| dc.subject | socially aware | en |
| dc.subject | humna-robot interaction | en |
| dc.title | 使用延伸社交力模型之社交感知全向性移動機器人導航應用於多人環境 | zh_TW |
| dc.title | Socially-Aware Navigation of Omnidirectional Mobile Robot with Extended Social Force Model in Multi-Human Environment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 施吉昇(Chi-Sheng Shih),林沛群(Pei-Chun Lin),簡忠漢(Jong-Hann Jean),王傑智(Chieh-Chih Wang) | |
| dc.subject.keyword | 情境感知,全向性移動,人機互動, | zh_TW |
| dc.subject.keyword | omnidirectional movement,humna-robot interaction,socially aware, | en |
| dc.relation.page | 84 | |
| dc.identifier.doi | 10.6342/NTU201804006 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-R03943140-1.pdf 未授權公開取用 | 3.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
