Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 腦與心智科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78903
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李旺祚zh_TW
dc.contributor.advisorWang-Tso Leeen
dc.contributor.author鍾伊淳zh_TW
dc.contributor.authorYi-Chun Chungen
dc.date.accessioned2021-07-11T15:28:00Z-
dc.date.available2024-02-28-
dc.date.copyright2018-10-09-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citationAssociation, A. P. (2013). Diagnostic and Statistical Manual of Mental Disorders (5th ed.). Washington, DC.
Cavanna, A. E., & Seri, S. (2013). Tourette's syndrome. Bmj, 347, f4964. doi:10.1136/bmj.f4964
Chen, H.-Y., Hua, M.-S., Chang, B.-S., & Chen, Y.-H. (2011). Development of Factor-Based WISC-IV Tetrads: A Guild to Clinical Practice. Psychological Testing, 58(4), 585-611. doi:10.7108/pt.201112.0028
Chen, S. H., & Huang, C. (1998). Depressive tendency in adolescents with conduct problems. Paper presented at the First International Conference on Child & Adolescent Mental Health,, Hong Kong.
Debes, N. M., Lange, T., Jessen, T. L., Hjalgrim, H., & Skov, L. (2011). Performance on Wechsler intelligence scales in children with Tourette syndrome. Eur J Paediatr Neurol, 15(2), 146-154. doi:10.1016/j.ejpn.2010.07.007
Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage, 53(1), 1-15. doi:10.1016/j.neuroimage.2010.06.010
Draganski, B., Martino, D., Cavanna, A. E., Hutton, C., Orth, M., Robertson, M. M., . . . Frackowiak, R. S. (2010). Multispectral brain morphometry in Tourette syndrome persisting into adulthood. Brain, 133(Pt 12), 3661-3675. doi:10.1093/brain/awq300
Draper, A., Jackson, G. M., Morgan, P. S., & Jackson, S. R. (2016). Premonitory urges are associated with decreased grey matter thickness within the insula and sensorimotor cortex in young people with Tourette syndrome. J Neuropsychol, 10(1), 143-153. doi:10.1111/jnp.12089
Duvernoy, H. M., Cabanis, E.A., Vannson, J.L. (1991). The Human Brain: Surface, Three Dimensional Sectional Anatomy and MRI. Wien: Springer-Verlag.
Fahim, C., Yoon, U., Das, S., Lyttelton, O., Chen, J., Arnaoutelis, R., . . . Evans, A. C. (2010). Somatosensory-motor bodily representation cortical thinning in Tourette: effects of tic severity, age and gender. Cortex, 46(6), 750-760. doi:10.1016/j.cortex.2009.06.008
Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A, 97(20), 11050-11055. doi:10.1073/pnas.200033797
Fischl, B., Liu, A., & Dale, A. M. (2001). Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging, 20(1), 70-80. doi:10.1109/42.906426
Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., . . . Dale, A. M. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341-355.
Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D. H., . . . Dale, A. M. (2004). Automatically parcellating the human cerebral cortex. Cereb Cortex, 14(1), 11-22.
Foa, E. B., Huppert, J. D., Leiberg, S., Langner, R., Kichic, R., Hajcak, G., & Salkovskis, P. M. (2002). The Obsessive-Compulsive Inventory: development and validation of a short version. Psychol Assess, 14(4), 485-496.
Frodl, T., & Skokauskas, N. (2012). Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects. Acta Psychiatr Scand, 125(2), 114-126. doi:10.1111/j.1600-0447.2011.01786.x
G E Alexander, M R DeLong, a., & Strick, P. L. (1986). Parallel Organization of Functionally Segregated Circuits Linking Basal Ganglia and Cortex. Annual Review of Neuroscience, 9(1), 357-381. doi:10.1146/annurev.ne.09.030186.002041
Ganos, C., Kuhn, S., Kahl, U., Schunke, O., Brandt, V., Baumer, T., . . . Munchau, A. (2014). Prefrontal cortex volume reductions and tic inhibition are unrelated in uncomplicated GTS adults. J Psychosom Res, 76(1), 84-87. doi:10.1016/j.jpsychores.2013.10.014
Garraux, G., Goldfine, A., Bohlhalter, S., Lerner, A., Hanakawa, T., & Hallett, M. (2006). Increased midbrain gray matter in Tourette's syndrome. Ann Neurol, 59(2), 381-385. doi:10.1002/ana.20765
Greene, D. J., Church, J. A., Dosenbach, N. U., Nielsen, A. N., Adeyemo, B., Nardos, B., . . . Schlaggar, B. L. (2016). Multivariate pattern classification of pediatric Tourette syndrome using functional connectivity MRI. Dev Sci, 19(4), 581-598. doi:10.1111/desc.12407
Greene, D. J., Williams Iii, A. C., Koller, J. M., Schlaggar, B. L., & Black, K. J. (2017). Brain structure in pediatric Tourette syndrome. Mol Psychiatry, 22(7), 972-980. doi:10.1038/mp.2016.194
Gunduz, A., & Okun, M. S. (2016). A Review and Update on Tourette Syndrome: Where Is the Field Headed? Curr Neurol Neurosci Rep, 16(4), 37. doi:10.1007/s11910-016-0633-x
Jeppesen, S. S., Debes, N. M., Simonsen, H. J., Rostrup, E., Larsson, H. B., & Skov, L. (2014). Study of medication-free children with Tourette syndrome do not show imaging abnormalities. Mov Disord, 29(9), 1212-1216. doi:10.1002/mds.25858
Jovicich, J., Czanner, S., Greve, D., Haley, E., van der Kouwe, A., Gollub, R., . . . Dale, A. (2006). Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. Neuroimage, 30(2), 436-443. doi:10.1016/j.neuroimage.2005.09.046
Leckman, J. F., Riddle, M. A., Hardin, M. T., Ort, S. I., Swartz, K. L., Stevenson, J., & Cohen, D. J. (1989). The Yale Global Tic Severity Scale: initial testing of a clinician-rated scale of tic severity. J Am Acad Child Adolesc Psychiatry, 28(4), 566-573. doi:10.1097/00004583-198907000-00015
Lee, J. S., Yoo, S. S., Cho, S. Y., Ock, S. M., Lim, M. K., & Panych, L. P. (2006). Abnormal thalamic volume in treatment-naive boys with Tourette syndrome. Acta Psychiatr Scand, 113(1), 64-67. doi:10.1111/j.1600-0447.2005.00666.x
Lieberman, J., Chakos, M., Wu, H., Alvir, J., Hoffman, E., Robinson, D., & Bilder, R. (2001). Longitudinal study of brain morphology in first episode schizophrenia. Biological Psychiatry, 49(6), 487-499.
Liu, Y.-C., Liu, S.-K., Shang, C.-Y., Lin, C.-H., Tu, C.-L., & Gau, S. S.-F. (2006). Norm of the Chinese Version of the Swanson, Nolan and Pelham, Version IV Scale for ADHD. [注意力缺陷過動症中文版Swanson, Nolan, and Pelham, Version IV (SNAP-IV)量表之常模及信效度]. Taiwanese Journal of Psychiatry, 20(4), 290-304. doi:10.29478/tjp.200612.0006
Liu, Y., Miao, W., Wang, J., Gao, P., Yin, G., Zhang, L., . . . Peng, Y. (2013). Structural abnormalities in early Tourette syndrome children: a combined voxel-based morphometry and tract-based spatial statistics study. PLoS One, 8(9), e76105. doi:10.1371/journal.pone.0076105
Lu, H.-C. (2008). The Association Study among Health Disorders, Emotion and Handedness. National Taiwan University. Retrieved from http://hdl.handle.net/11296/5yycjh Available from Airiti AiritiLibrary database.
Miller, A. M., Bansal, R., Hao, X., Sanchez-Pena, J. P., Sobel, L. J., Liu, J., . . . Peterson, B. S. (2010). Enlargement of thalamic nuclei in Tourette syndrome. Arch Gen Psychiatry, 67(9), 955-964. doi:10.1001/archgenpsychiatry.2010.102
Muellner, J., Delmaire, C., Valabregue, R., Schupbach, M., Mangin, J. F., Vidailhet, M., . . . Worbe, Y. (2015). Altered structure of cortical sulci in gilles de la Tourette syndrome: Further support for abnormal brain development. Mov Disord, 30(5), 655-661. doi:10.1002/mds.26207
Muller-Vahl, K. R., Kaufmann, J., Grosskreutz, J., Dengler, R., Emrich, H. M., & Peschel, T. (2009). Prefrontal and anterior cingulate cortex abnormalities in Tourette Syndrome: evidence from voxel-based morphometry and magnetization transfer imaging. BMC Neurosci, 10, 47. doi:10.1186/1471-2202-10-47
Novotny, M., Valis, M., & Klimova, B. (2018). Tourette Syndrome: A Mini-Review. Front Neurol, 9, 139. doi:10.3389/fneur.2018.00139
Peng, Z. W., Yang, W. H., Miao, G. D., Jing, J., & Chan, R. C. (2011). The Chinese version of the Obsessive-Compulsive Inventory-Revised scale: replication and extension to non-clinical and clinical individuals with OCD symptoms. BMC Psychiatry, 11, 129. doi:10.1186/1471-244x-11-129
Peterson, B., Riddle, M. A., Cohen, D. J., Katz, L. D., Smith, J. C., Hardin, M. T., & Leckman, J. F. (1993). Reduced basal ganglia volumes in Tourette's syndrome using three-dimensional reconstruction techniques from magnetic resonance images. Neurology, 43(5), 941-949.
Peterson, B. S., Staib, L., Scahill, L., Zhang, H., Anderson, C., Leckman, J. F., . . . Webster, R. (2001). Regional brain and ventricular volumes in Tourette syndrome. Arch Gen Psychiatry, 58(5), 427-440.
Peterson, B. S., Thomas, P., Kane, M. J., & et al. (2003). Basal ganglia volumes in patients with gilles de la tourette syndrome. Arch Gen Psychiatry, 60(4), 415-424. doi:10.1001/archpsyc.60.4.415
Qiu, A., Crocetti, D., Adler, M., Mahone, E. M., Denckla, M. B., Miller, M. I., & Mostofsky, S. H. (2009). Basal ganglia volume and shape in children with attention deficit hyperactivity disorder. Am J Psychiatry, 166(1), 74-82. doi:10.1176/appi.ajp.2008.08030426
Qiu, M. G., Ye, Z., Li, Q. Y., Liu, G. J., Xie, B., & Wang, J. (2011). Changes of brain structure and function in ADHD children. Brain Topogr, 24(3-4), 243-252. doi:10.1007/s10548-010-0168-4
Roessner, V., Overlack, S., Baudewig, J., Dechent, P., Rothenberger, A., & Helms, G. (2009). No brain structure abnormalities in boys with Tourette's syndrome: a voxel-based morphometry study. Mov Disord, 24(16), 2398-2403. doi:10.1002/mds.22847
Roessner, V., Overlack, S., Schmidt-Samoa, C., Baudewig, J., Dechent, P., Rothenberger, A., & Helms, G. (2011). Increased putamen and callosal motor subregion in treatment-naive boys with Tourette syndrome indicates changes in the bihemispheric motor network. J Child Psychol Psychiatry, 52(3), 306-314. doi:10.1111/j.1469-7610.2010.02324.x
Scherk, H., & Falkai, P. (2006). Effects of antipsychotics on brain structure. Curr Opin Psychiatry, 19(2), 145-150. doi:10.1097/01.yco.0000214339.06507.d8
Singer, H. S., & Minzer, K. (2003). Neurobiology of Tourette's syndrome: concepts of neuroanatomic localization and neurochemical abnormalities. Brain Dev, 25 Suppl 1, S70-84.
Singer, H. S., Reiss, A. L., Brown, J. E., Aylward, E. H., Shih, B., Chee, E., . . . et al. (1993). Volumetric MRI changes in basal ganglia of children with Tourette's syndrome. Neurology, 43(5), 950-956.
Sowell, E. R., Kan, E., Yoshii, J., Thompson, P. M., Bansal, R., Xu, D., . . . Peterson, B. S. (2008). Thinning of sensorimotor cortices in children with Tourette syndrome. Nat Neurosci, 11(6), 637-639. doi:10.1038/nn.2121
Stein, J. (2017). Sensorimotor Control Reference Module in Neuroscience and Biobehavioral Psychology: Elsevier.
Stewart, W. F., Lipton, R. B., Kolodner, K. B., Sawyer, J., Lee, C., & Liberman, J. N. (2000). Validity of the Migraine Disability Assessment (MIDAS) score in comparison to a diary-based measure in a population sample of migraine sufferers. Pain, 88(1), 41-52.
Stewart, W. F., Lipton, R. B., Whyte, J., Dowson, A., Kolodner, K., Liberman, J. N., & Sawyer, J. (1999). An international study to assess reliability of the Migraine Disability Assessment (MIDAS) score. Neurology, 53(5), 988-994.
Strimmer., B. K. a. K. (2015). fdrtool: Estimation of (Local) False Discovery Rates and Higher Criticism. Retrieved from https://CRAN.R-project.org/package=fdrtool
Tinaz, S., Belluscio, B. A., Malone, P., van der Veen, J. W., Hallett, M., & Horovitz, S. G. (2014). Role of the sensorimotor cortex in Tourette syndrome using multimodal imaging. Hum Brain Mapp, 35(12), 5834-5846. doi:10.1002/hbm.22588
Vicario, C. M., Martino, D., Spata, F., Defazio, G., Giacche, R., Martino, V., . . . Cardona, F. (2010). Time processing in children with Tourette's syndrome. Brain Cogn, 73(1), 28-34. doi:10.1016/j.bandc.2010.01.008
Wang, H. S., & Kuo, M. F. (2003). Tourette's syndrome in Taiwan: an epidemiological study of tic disorders in an elementary school at Taipei County. Brain Dev, 25 Suppl 1, S29-31.
Wechsler, D. D. (2007). Manual for the Wechsler Intelligence Scale for Children-fourth edition (Taiwan). Taipei, Taiwan: The Chinese Behavioral Science Corporation.
Wellington, T. M., Semrud-Clikeman, M., Gregory, A. L., Murphy, J. M., & Lancaster, J. L. (2006). Magnetic resonance imaging volumetric analysis of the putamen in children with ADHD: combined type versus control. J Atten Disord, 10(2), 171-180. doi:10.1177/1087054705284242
Wittfoth, M., Bornmann, S., Peschel, T., Grosskreutz, J., Glahn, A., Buddensiek, N., . . . Muller-Vahl, K. R. (2012). Lateral frontal cortex volume reduction in Tourette syndrome revealed by VBM. BMC Neurosci, 13, 17. doi:10.1186/1471-2202-13-17
Wolff, N., Luehr, I., Sender, J., Ehrlich, S., Schmidt-Samoa, C., Dechent, P., & Roessner, V. (2016). A DTI study on the corpus callosum of treatment-naive boys with 'pure' Tourette syndrome. Psychiatry Res Neuroimaging, 247, 1-8. doi:10.1016/j.pscychresns.2015.12.003
Worbe, Y., Marrakchi-Kacem, L., Lecomte, S., Valabregue, R., Poupon, F., Guevara, P., . . . Poupon, C. (2015). Altered structural connectivity of cortico-striato-pallido-thalamic networks in Gilles de la Tourette syndrome. Brain, 138(Pt 2), 472-482. doi:10.1093/brain/awu311
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78903-
dc.description.abstract研究背景:妥瑞氏症(Tourette Syndrome, TS)是一種神經發展性疾病。第一次發病年齡通常於4至6歲,在性別上是男生多於女生,比例約2:1-4:1。症狀會在十至十二歲最嚴重,青少年期開始會減輕。但也有少數患者的症狀會持續到成年甚至更嚴重。妥瑞氏症的主要症狀為抽動(tics),其抽動方式有可能是以動作(motor tics)或聲音(vocal tics)方式表示。大多數的妥瑞氏症患者會合併有注意力不足過動症(ADHD)、強迫症(OCD)及憂鬱症(depression)。在過去的研究中,對於妥瑞氏症的機轉還不是很確定,懷疑CSTC迴路(cortico-striato-thalamo-cortical circuits)是造成妥瑞氏症症狀的可能路徑。同時發現大腦體積的改變也不一致。

研究目的:為了了解這個疾病對大腦結構的影響,本研究利用磁振造影(magnetic resonance imaging, MRI)檢測患者的灰質體積,進一步以影像結果及症狀嚴重度作相關,以了解抽搐嚴重度與結構變化的關連性。並探討基底核(basal ganglia)與潛在機轉之CSTC迴路的關連性。

研究方法:本研究共招募27位妥瑞氏症及27位健康受試者,年齡範圍為6-15,其中分別有21位男生與6位女生。腦部影像是以磁振造影獲得影像結構資訊。大腦結構是利用FreeSurfer軟體進行分析。使用問卷做為評估篩選工具,評估抽動的嚴重程度、排除神經精神方面疾病。

研究結果:我們發現2位患者有合併注意力缺失症(attention deficit disorder, ADD)。在智力測驗發現患者子測驗─記憶廣度(digit span)有顯著低於健康受試者。基底神經結中,殼核(putamen)、伏隔核(accumbens nucleus)的體積與健康受試者相比有顯著不對稱的差異,前者不對稱較低、健康受試者不對稱較高。
在大腦皮質體積中有發現少數區域有改變,但當經過多重比較後,只有發現右邊殼核體積與左邊的前中央溝下面(inferior part of the precentral sulcus)表面積有顯著差異。同時我們也觀察大腦體積與症狀嚴重度沒有差異,但在動作抽搐(motor tics)有發現與左腦的橫向額極迴和溝(transverse frontopolar gyri and sulci)、胼胝體周圍溝(pericallosal sulcus)及右腦的胼胝體區,胼胝體迴(subcallosal area, subcallosal gyrus)正相關:與枕骨下迴和溝(inferior occipital gyrus (O3) and sulcus)負相關。聲音抽搐(vocal tics)發現與左腦直腦迴(straight gyrus)、前橫向側支溝(anterior transverse collateral sulcus)、眼眶溝(orbital sulci)跟頂葉下溝(subparietal sulcus)顯示出負相關。

研究結論:在過去的研究中也有指出殻核的不對稱,但在體積減少的結果卻不一致。殻核與伏隔核都是紋狀體(striatum)的一部份。這個結果可能顯示紋狀體在抽搐的調節扮演重要角色。雖然這個研究有一些限制,但我們相信這些發現可以對未來的研究有所幫助。
zh_TW
dc.description.abstractBackground: The Tourette Syndrome (TS) is a neuropsychiatric and neurodevelopmental disease. The onset time is about 4 to 6 years. The boy to girl ratio is around 2: 1 to 4: 1. The peak severity of TS appears at age 10 to 12 years and then declines in adolescence. The tics symptoms of a few people will continue to adulthood, and the tics symptoms are more severe than before. The main symptoms of TS are tics, which are represented by motor tics or vocal tics. The majority of TS comorbid with attention deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), and depression. The mechanism of TS has not been ascertained in the past studies. The cortico-striato-thalamo-cortical circuits (CSTC) circuits are suspected to be the pathway of symptoms in TS.

Proposes: To investigate the brain structural change in TS, we use magnetic resonance imaging (MRI) to detect the gray matter change in subjects. The correlation between the brain volume change and tics severity was done.

Methods: We enrolled 27 TS and 27 healthy controls (HC), including 21 boys and 6 girls, respectively. The age ranged from 6 to 15 years. The structural imaging data from MRI were investigated. The brain structural imaging analysis was done using the FreeSurfer software. We also used the questionnaire as an assessment screening tool for tics severity and for excluding the neuropsychiatric diseases.

Results: We found 2 TS comorbid with ADD. The full scale intelligence quotient (FSIQ) subtest of digit span was shown to be significant lower in TS compared with HC. We found the volume of putamen and accumbens nucleus had significant reduction of asymmetry in TS children compared with HC. We also found the region of cortical volume was altered in a few regions. However, after correction for multiple comparison, we only found the volume of right putamen and surface area of left inferior part of the precentral sulcus showed the significant difference. However, we found the left transverse frontopolar gyri and sulci, pericallosal sulcus, and right subcallosal area, subcallosal gyrus showed positive correlation with the severity of motor tics. The inferior occipital gyrus and sulcus negatively correlated with the severity of motor tics. We also found that the left straight gyrus, anterior transverse collateral sulcus, orbital sulci, and subparietal sulcus showed negative correlation with the severity of vocal tics.

Conclusion: The changes of the brain volume in putamen and accumbens nucleus may indicate that the striatum plays an important role in tics regulation. Although this study had some limitations, we believe that these findings can be of some help for future research.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:28:00Z (GMT). No. of bitstreams: 1
ntu-107-R05454016-1.pdf: 8333569 bytes, checksum: f5b4dd4c5f6b19c5eddd7baf78b2e799 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents目錄
中文摘要 I
Abstract III
I. Introduction 1
Neuroimaging change in Tourette syndrome 5
1.1 Frontal 6
1.2 Occipital and Temporal 9
1.3 Basal Ganglia 10
1.4 Thalamus 11
1.5 Striatum 12
1.6 Ventricle 15
1.7 Tics severity correlated of brain structure change 16
II. Material and Method 19
2.1 Participants 19
2.2 Image data acquisition and processing 20
Conventional MR imaging 20
2.3 Questionnaires 23
2.4 Statistical analysis 27
III. Results 29
3.1 Demographic data 29
3.2 Brain volume change 30
A. TS comparing to HC 30
B. In TS without comorbidity group 32
3.3 Brain cortical thickness change 34
A. TS comparing to HC 34
B. In TS without comorbidity group 34
3.4 Brain cortical surface area change 35
A. TS comparing to HC 35
B. In TS without comorbidity group 36
3.5 Brain volume correlate with tics severity 37
IV. Discussion 39
V. Conclusions 48
VI. Reference 49
VII. Appendix 55
Table 1. Demographic data 57
Table 2. WISC (IQ test) score 58
Table 3-1. Brain hemisphere volume change 59
Table 3-2. Brain hemisphere volume asymmetry 59
Table 4-1. Brain ventricle volume change 60
Table 4-2. Brain ventricle volume asymmetry ( 60
Table 5-1. Basal ganglia-related CSTC circuits 61
Table 5-2. Basal ganglia-related CSTC circuits asymmetry ( 61
Table 6-1. Suspected mechanism-motor 62
Table 6-2. Suspected mechanism-oculomotor 62
Table 6-3. Suspected mechanism-dorsolateral prefrontal 63
Table 6-4. Suspected mechanism-lateral orbitofrontal 63
Table 6-5. Suspected mechanism-anterior cingulate 64
Table 7. 4 lobes of the brain volume 65
Table 8-1. The sulco-gyral cortical brain volume change in the Left Hemisphere 66
Table 8-2. The sulco-gyral cortical brain volume change in the Right Hemisphere 70
Table 9-1. Brain hemisphere volume change in TS without comorbidity 74
Table 9-2. Brain hemisphere volume asymmetry ( in TS without comorbidity 74
Table 10-1. Brain ventricle volume change in TS without comorbidity 75
Table 10-2. Brain ventricle volume asymmetry ( in TS without comorbidity 75
Table 11-1. Basal ganglia-related CSTC circuits in TS without comorbidity 76
Table 11-2. Basal ganglia-related CSTC circuits asymmetry ( in TS without comorbidity 76
Table 12-1. Suspected mechanism-motor 77
Table 12-2. Suspected mechanism-oculomotor 77
Table 12-3. Suspected mechanism-dorsolateral prefrontal 78
Table 12-4. Suspected mechanism-lateral orbitofrontal 78
Table 12-5. Suspected mechanism-anterior cingulate 79
Table 13. 4 lobes of the brain volume in TS without comorbidity 80
Table 14-1. The sulco-gyral cortical brain volume change in the Left Hemisphere in TS without comorbidity 81
Table 14-2. The sulco-gyral cortical brain volume change in the Right Hemisphere in TS without comorbidity 85
Table 15. 4 lobes of the brain cortical thickness 89
Table 16-1. The sulco-gyral cortical thickness change in the Left Hemisphere 90
Table 16-2. The sulco-gyral cortical thickness change in the Right Hemisphere 94
Table 17. 4 lobes of the brain cortical thickness in TS without comorbidity 98
Table 18-1. The sulco-gyral cortical thickness change in the Left Hemisphere in TS without comorbidity 99
Table 18-2. The sulco-gyral cortical thickness change in the Right Hemisphere in TS without comorbidity 103
Table 19. 4 lobes of the brain surface area 107
Table 20-1. Change the sulco-gyral cortical surface area in the Left Hemisphere 108
Table 20-2. Change the sulco-gyral cortical surface area in the Right Hemisphere 112
Table 21. 4 lobes of the brain surface area in TS without comorbidity 116
Table 22-1. Change the sulco-gyral cortical brain surface area in the Left Hemisphere in TS without comorbidity 117
Table 22-2. Change the sulco-gyral cortical brain surface area in the Right Hemisphere in TS without comorbidity 121
Table 23-1 Correlation between motor tics and brain volume 125
Table 23-2 Correlation between vocal tics and brain volume 125
Figure 1-1. The right putamen area 126
Figure 1-2. The surface area of left inferior part of the precentral sulcus 127
Figure 2. Correlation between motor tics and brain volume in LH 128
Figure 3. Correlation between motor tics and brain volume in LH 129
Figure 4. Correlation between motor tics and brain volume in RH 130
Figure 5. Correlation between vocal tics and brain volume in LH 131
Figure 6. Correlation between vocal tics and brain volume in LH 132
-
dc.language.isoen-
dc.subject磁振造影zh_TW
dc.subject妥瑞氏症zh_TW
dc.subject魏氏智力測驗zh_TW
dc.subject大腦體積zh_TW
dc.subjectFreeSurferzh_TW
dc.subject大腦表面積zh_TW
dc.subject大腦厚度zh_TW
dc.subjectsurface areaen
dc.subjectbrain volumeen
dc.subjectcortical thicknessen
dc.subjectWISCen
dc.subjectFreeSurferen
dc.subjectMRIen
dc.subjectTourette syndromeen
dc.title妥瑞氏症兒童大腦體積改變zh_TW
dc.titleAltered Brain Volume in Children with Tourette Syndromeen
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee曾文毅;曾明宗;彭信逢zh_TW
dc.contributor.oralexamcommitteeWen-I Tseng;Ming-Tsung Tseng;Hsin-Feng Pengen
dc.subject.keyword妥瑞氏症,磁振造影,大腦表面積,大腦體積,大腦厚度,魏氏智力測驗,FreeSurfer,zh_TW
dc.subject.keywordTourette syndrome,MRI,surface area,brain volume,cortical thickness,WISC,FreeSurfer,en
dc.relation.page132-
dc.identifier.doi10.6342/NTU201804055-
dc.rights.note未授權-
dc.date.accepted2018-08-20-
dc.contributor.author-college醫學院-
dc.contributor.author-dept腦與心智科學研究所-
dc.date.embargo-lift2023-10-09-
顯示於系所單位:腦與心智科學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-2.pdf
  未授權公開取用
8.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved