Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78900
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹迺立zh_TW
dc.contributor.advisorNei-Li Chanen
dc.contributor.author楊啠夏zh_TW
dc.contributor.authorChe-Hsia Yangen
dc.date.accessioned2021-07-11T15:27:46Z-
dc.date.available2024-02-28-
dc.date.copyright2018-10-05-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Alberts B, J.A., Lewis J, et al., Molecular Biology of the Cell. New York: Garland Science, 2002. 4th edition.(Meiosis).
2. Aravind, L., D.D. Leipe, and E.V. Koonin, Toprim--a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Research, 1998. 26(18): p. 4205-4213.
3. Daniel L. Hartl, E.W.J.J.a.B.P., Genetics: Analysis of Genes and Genomes, Sixth Edition. Neuro-oncol, 2005. 7(2): p. 140-141.
4. Wilkins, A.S. and R. Holliday, The Evolution of Meiosis From Mitosis. Genetics, 2009. 181(1): p. 3-12.
5. Zickler, D. and N. Kleckner, Recombination, Pairing, and Synapsis of Homologs during Meiosis. Cold Spring Harb Perspect Biol, 2015. 7(6).
6. Battaglia, E., Homotypic: A wrong definition for the second division of meiosis (hemiosis). Vol. 48. 1995. 1-7.
7. Gerton, J.L. and R.S. Hawley, Homologous chromosome interactions in meiosis: diversity amidst conservation. Nat Rev Genet, 2005. 6(6): p. 477-87.
8. Reichman, R., B. Alleva, and S. Smolikove, Prophase I: Preparing Chromosomes for Segregation in the Developing Oocyte, in Signaling-Mediated Control of Cell Division : From Oogenesis to Oocyte-to-Embryo Development, S. Arur, Editor. 2017, Springer International Publishing: Cham. p. 125-173.
9. Lagirand-Cantaloube, J., et al., Loss of Centromere Cohesion in Aneuploid Human Oocytes Correlates with Decreased Kinetochore Localization of the Sac Proteins Bub1 and Bubr1. Sci Rep, 2017. 7: p. 44001.
10. Murakami, H. and S. Keeney, Regulating the formation of DNA double-strand breaks in meiosis. Genes Dev, 2008. 22(3): p. 286-92.
11. Zickler, D. and N. Kleckner, Meiotic Chromosomes: Integrating Structure and Function. Annual Review of Genetics, 1999. 33(1): p. 603-754.
12. Ortiz, R., et al., The width of the lateral element of the synaptonemal complex is determined by a multilayered organization of its components. Exp Cell Res, 2016. 344(1): p. 22-29.
13. Scherthan, H., A bouquet makes ends meet. Nature Reviews Molecular Cell Biology, 2001. 2: p. 621.
14. Penfold, C.A., et al., Modeling meiotic chromosomes indicates a size dependent contribution of telomere clustering and chromosome rigidity to homologue juxtaposition. PLoS Comput Biol, 2012. 8(5): p. e1002496.
15. Stewart, M.N. and D.S. Dawson, Changing partners: moving from non-homologous to homologous centromere pairing in meiosis. Trends Genet, 2008. 24(11): p. 564-73.
16. Yu, Z., Y. Kim, and A.F. Dernburg, Meiotic recombination and the crossover assurance checkpoint in Caenorhabditis elegans. Semin Cell Dev Biol, 2016. 54: p. 106-16.
17. Egel, R., Telomeres and chiasma terminalization. Hereditas, 1979. 91(1): p. 138-140.
18. Ghosh, A. and M. Bansal, A glossary of DNA structures from A to Z. Acta Crystallographica Section D, 2003. 59(4): p. 620-626.
19. Keeney, S., Mechanism and control of meiotic recombination initiation, in Current Topics in Developmental Biology. 2001, Academic Press. p. 1-53.
20. Keeney, S., C.N. Giroux, and N. Kleckner, Meiosis-Specific DNA Double-Strand Breaks Are Catalyzed by Spo11, a Member of a Widely Conserved Protein Family. Cell, 1997. 88(3): p. 375-384.
21. Cole, F., S. Keeney, and M. Jasin, Evolutionary conservation of meiotic DSB proteins: more than just Spo11. Genes Dev, 2010. 24(12): p. 1201-7.
22. Corbett, K.D., P. Benedetti, and J.M. Berger, Holoenzyme assembly and ATP-mediated conformational dynamics of topoisomerase VI. Nat Struct Mol Biol, 2007. 14(7): p. 611-9.
23. Nichols, M.D., et al., Structure and function of an archaeal topoisomerase VI subunit with homology to the meiotic recombination factor Spo11. The EMBO Journal, 1999. 18(21): p. 6177-6188.
24. Bergerat, A., et al., An atypical topoisomerase II from archaea with implications for meiotic recombination. Nature, 1997. 386: p. 414.
25. Lam, I. and S. Keeney, Mechanism and regulation of meiotic recombination initiation. Cold Spring Harb Perspect Biol, 2014. 7(1): p. a016634.
26. Neale, M.J., J. Pan, and S. Keeney, Endonucleolytic processing of covalent protein-linked double-strand breaks. Nature, 2005. 436(7053): p. 1053-1057.
27. Miyoshi, T., M. Ito, and K. Ohta, Spatiotemporal regulation of meiotic recombination by Liaisonin. Bioarchitecture, 2013. 3(1): p. 20-4.
28. Keeney, S., Spo11 and the Formation of DNA Double-Strand Breaks in Meiosis. Genome Dyn Stab, 2008. 2: p. 81-123.
29. Maleki, S., et al., Interactions between Mei4, Rec114, and other proteins required for meiotic DNA double-strand break formation in Saccharomyces cerevisiae. Chromosoma, 2007. 116(5): p. 471-486.
30. Arora, C., et al., Antiviral Protein Ski8 Is a Direct Partner of Spo11 in Meiotic DNA Break Formation, Independent of Its Cytoplasmic Role in RNA Metabolism. Molecular Cell, 2004. 13(4): p. 549-559.
31. Halbach, F., et al., The yeast ski complex: crystal structure and RNA channeling to the exosome complex. Cell, 2013. 154(4): p. 814-26.
32. He, S., et al., Genome-Wide Identification and Characterization of WD40 Protein Genes in the Silkworm, Bombyx mori. Int J Mol Sci, 2018. 19(2).
33. Neer, E.J., et al., The ancient regulatory-protein family of WD-repeat proteins. Nature, 1994. 371: p. 297.
34. Li, D. and R. Roberts, WD-repeat proteins: Structure characteristics, biological function, and their involvement in human diseases. Vol. 58. 2002. 2085-97.
35. Xu, C. and J. Min, Structure and function of WD40 domain proteins. Protein & Cell, 2011. 2(3): p. 202-214.
36. Cheng, Z., et al., Crystal structure of Ski8p, a WD-repeat protein with dual roles in mRNA metabolism and meiotic recombination. Protein Sci, 2004. 13(10): p. 2673-84.
37. Justin T Brown, X.B., Arlen W Johnson, The yeast antiviral proteins Ski2p, Ski3p, and Ski8p exist as a complex in vivo. RNA, 2000. 6(3): p. 449-57.
38. Tessé, S., et al., Localization and roles of Ski8p protein in Sordaria meiosis and delineation of three mechanistically distinct steps of meiotic homolog juxtaposition. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(22): p. 12865-12870.
39. Prieler, S., et al., The control of Spo11's interaction with meiotic recombination hotspots. Genes & Development, 2005. 19(2): p. 255-269.
40. Panizza, S., et al., Spo11-accessory proteins link double-strand break sites to the chromosome axis in early meiotic recombination. Cell, 2011. 146(3): p. 372-83.
41. Kee, K., et al., Spatial organization and dynamics of the association of Rec102 and Rec104 with meiotic chromosomes. The EMBO Journal, 2004. 23(8): p. 1815.
42. Henderson, K.A., et al., Cyclin-dependent kinase directly regulates initiation of meiotic recombination. Cell, 2006. 125(7): p. 1321-32.
43. Sasanuma, H., et al., Cdc7-dependent phosphorylation of Mer2 facilitates initiation of yeast meiotic recombination. Genes Dev, 2008. 22(3): p. 398-410.
44. Murton, B.L., et al., Characterising the binding specificities of the subunits associated with the KMT2/Set1 histone lysine methyltransferase. J Mol Biol, 2010. 398(4): p. 481-8.
45. Sommermeyer, V., et al., Spp1, a member of the Set1 Complex, promotes meiotic DSB formation in promoters by tethering histone H3K4 methylation sites to chromosome axes. Mol Cell, 2013. 49(1): p. 43-54.
46. Acquaviva L, S.L., Dichtl B, Dichtl BS, de La Roche Saint André C, Nicolas A, Géli V., The COMPASS subunit Spp1 links histone methylation. Science, 2013. 339(6116): p. 215-218.
47. Wendorff, T.J. and J.M. Berger, Topoisomerase VI senses and exploits both DNA crossings and bends to facilitate strand passage. eLife, 2018. 7: p. e31724.
48. Anne M. Villeneuve, K.J.H., Whence meiosis. cell, 2001. 106(6): p. 647-650.
49. Gadelle, D., et al., Phylogenomics of type II DNA topoisomerases. BioEssays, 2003. 25(3): p. 232-242.
50. Bates, A.D., J.M. Berger, and A. Maxwell, The ancestral role of ATP hydrolysis in type II topoisomerases: prevention of DNA double-strand breaks. Nucleic Acids Research, 2011. 39(15): p. 6327-6339.
51. Corbett, K.D. and J.M. Berger, Structure of the topoisomerase VI-B subunit: implications for type II topoisomerase mechanism and evolution. The EMBO Journal, 2003. 22(1): p. 151-163.
52. Dutta, R. and M. Inouye, GHKL, an emergent ATPase/kinase superfamily. Trends in Biochemical Sciences, 2000. 25(1): p. 24-28.
53. Chen, S.H., N.-L. Chan, and T.-s. Hsieh, New Mechanistic and Functional Insights into DNA Topoisomerases. Annual Review of Biochemistry, 2013. 82(1): p. 139-170.
54. Roca, J., et al., DNA transport by a type II topoisomerase: direct evidence for a two-gate mechanism. Proceedings of the National Academy of Sciences, 1996. 93(9): p. 4057.
55. Laponogov, I., et al., Structure of an ‘open’ clamp type II topoisomerase-DNA complex provides a mechanism for DNA capture and transport. Nucleic Acids Research, 2013. 41(21): p. 9911-9923.
56. Vrielynck, N., et al., A DNA topoisomerase VI–like complex initiates meiotic recombination. Science, 2016. 351(6276): p. 939.
57. Robert, T., et al., The TopoVIB-Like protein family is required for meiotic DNA double-strand break formation. Science, 2016. 351(6276): p. 943.
58. Dumon-Seignovert, L., G. Cariot, and L. Vuillard, The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). Protein Expression and Purification, 2004. 37(1): p. 203-206.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78900-
dc.description.abstract遺傳係指生物體繁衍後代時傳遞基因與性狀的現象,多數行有性生殖的物種會經由減數分裂以形成配子,再由雌雄配子的結合的而傳承生命,而在減數分裂的過程中會發生基因重組、使配子的遺傳多樣性更加豐富。真核生物中有一個高度保留、在起始減數分裂過程中不可或缺的蛋白,其名為Spo11;藉由催化轉酯反應,Spo11能在雙股DNA上形成斷裂,進而驅動基因的重組。在此過程中、Spo11會以其活性中心的酪胺酸攻擊DNA 5′端的磷酸形成磷酸二酯鍵,以共價鍵結的方式與DNA連結,同時釋放3′端的羥基,完成對DNA的切割作用;而以酪胺酸攻擊DNA 5′端的磷酸形成共價鍵的催化機制,與第二型拓樸異構酶VI切割DNA的催化機制相同,經由序列比對得知,Spo11與拓樸異構酶VI其中名為A次單元的蛋白具同源性。
拓樸異構酶VI廣泛存在於古生菌中,是一個由兩個A次單元及兩個B次單元所構成的異質四聚體酵素,負責催化DNA拓樸構型的改變,A次單元能與DNA結合並擁有切割能力,負責催化DNA的斷裂;B次單元含有負責水解三磷酸腺苷的GHKL功能域,以及傳導功能域,GHKL功能域水解三磷酸腺苷後會發生構型改變,此時連接A與B兩個次單元之間的傳導功能域可將B次單元的構型改變導引至A次單元而發生切割,使得拓樸異構酶VI具有完整的活性。鑒於拓樸異構酶VI須以A2B2的結構存在才有作用能力,推論Spo11這個類A次單元蛋白也可能是以A2B2四聚體的形式執行DNA切割。近期的研究指出,在體外實驗中,線蟲 (C. elegans)體內純化出的單體 (monomeric) Spo11,即便與DNA結合也不具切割單股或雙股DNA的能力。鑒於拓樸異構酶VI B次單元的同源蛋白,也被證實的確在老鼠 (Murine)與阿拉伯芥 (Arabidopsis)中存在,且為減數分裂過程中不可或缺的重要蛋白,以生化功能的分析及結構的相似度推測此類B次單元的蛋白極有可能與Spo11交互作用。
我們利用上述類B次單元的序列進行比對,發現嗜熱毀絲黴中兩個可能為類B次單元的基因,其一之C端區域較為完整,序列也較長。此段基因可合成一段含有499個胺基酸的多肽鏈,我們在其N端引入可移除之GST標籤以方便純化。藉由先前的實驗得知,Spo11只有在Ski8鷹架蛋白(scaffold protein)的存在下才能以可溶蛋白的形式出現,然而Spo11-Ski8複合體雖然具有與DNA結合的能力,卻無法切割DNA,此現象是否可藉由拓樸異構酶VI 類B次單元與Spo11形成複合體而有所回復呢?因此本研究的主要目的之一就是獲得具有酵素能力的拓樸異構酶VI 類B次單元並且做結構及功能性分析。我首先使用共價偶聯glutathione穀胱甘肽管柱層析 (batch column)純化GST融合之類B次單元,然而在沖提之後,發現此蛋白似乎會與樹脂緊密結合上而無法取得,更改沖提條件依然無法獲得蛋白。在推測會Spo11會與類B蛋白交互作用的前提下,嘗試利用黏附在樹脂上之融合蛋白獲得Spo11-Ski8複合體,而相對的,亦可利用純化之Spo11-Ski8複合體的方式獲得拓樸異構酶VI 類B次單元,然而至今尚無任何交互作用測試可證實嗜熱毀絲黴之拓樸異構酶VI 類B次單元與Spo11-Ski8複合體之間的交互作用。
我們仍期望樸異構酶VI 類B次單元能與Spo11或Spo11-Ski8複合體形成複合體,雖然目前對於身為鷹架蛋白的Ski8尚有許多不了解,然而樸異構酶VI 類B次單元在體內實驗被證實是與Spo11直接作用的蛋白,並且一旦此蛋白功能缺失,細胞內即不會產生雙股斷裂。因此,本實驗所表現出的拓樸異構酶VI 類B次單元在構型上正確與否尚有討論空間。拓樸異構酶VI 類B次單元必須正確摺疊方能執行其生物功能,摺疊不正確的蛋白在純化過程中,有極高的機率會暴露出其疏水性片段而與樹脂之間產生疏水性交互作用而無法沖提下來,樹脂上殘留無法沖提之拓樸異構酶VI 類B次單元顯示可能為蛋白本身構型未正確摺疊所致,因而影響後續與Spo11-Ski8複合體之間的交互作用的實驗結果,未來將釐清此疑義方能回歸此研究的中心主旨: Spo11究竟是如何切割DNA的?
zh_TW
dc.description.abstractHeredity is the term used to describe the maintenance of parental traits and genes during reproduction. Most species that undergo sexual reproduction would go through meiosis to form haploid gamets, subsequent combination of male and female gamets leads to the formation of a new life. Meiotic recombination is a process through which genes from homologous chromosomes are intentionally recombined to increase genetic diversity of the gamets. This crucial recombination process is initiated by the controlled introduction of DNA double-strand breaks (DSBs). Spo11, a conserved eukaryotic protein, has been recognized as a triggering factor that catalyzes DSB formation. Mechanistically, Spo11 performs a transesterification reaction between its active site tyrosine and the DNA 5′-phosphate and becomes covalently linked to the DNA 5′-end with comcomittant release of a hydroxyl group on the 3′-end . Such a mechanism of DNA cleavage is the same as the one employed by topoisomerase VI (TopoVI), a type IIB DNA topoisomerase. Indeed, sequence analysis revealed that Spo11 is homologous to the A-subunit of topoisomerase VI (TopoVI).
TopoVI is a tetrameric DNA-manipulating enzyme composed of two A (TopoVI-A) and two B (TopoVI-B) subunits found mainly in archaea and plants. The TopoVI-A subunit is responsible for DNA binding and cleavage. The TopoVI-B subunit possesses a GHKL domain capable of binding and hydrolysis of ATP and a transducer domain that bridges the cross-talks between the GHKL domain and the TopoVI-A subunit. Given that TopoVI functions as an A2B2 tetramer, it has been speculated that Spo11 would either dimerize or form a TopoVI-like heterotetramer to exhibit its DNA cleavage activity. Recently, a protein homologous to the TopoVI-B subunit has been identified in Murine and Arabidopsis. Biochemical analysis and structural modeling revealed that this TopoVI-B-like protein (TopoVI-BL) is structurally similar to TopoVI-B and may interact with Spo11.
Sequence alignment shows the existence of two genes that may be homologous to TopoVI-BL in Myceliophthora thermophila (MYCTH). The longer one has a more complete C-terminal domain and encodes a polypeptide of 499 amino acids. We introduced a GST-tag to the N-terminus of this longer TopoVI-BL and obtained a fusion protein that may be purified more readily. Previous experiments have shown that Spo11 is only soluble when co-expressed with a scaffolding protein Ski8. While the purified recombinant MYCTH Spo11-Ski8 complex can bind to DNA, no cleavage activity was observed. We speculated that TopoVI-BL may interact with Spo11-Ski8 complex to activate the cleavage ability to Spo11. Thus, a major aim of my thesis research is to obtain active TopoVI-BL for structural characterization and functional analysis. After attempting to purify by GST-fused TopoVI-BL using glutathione-charged resin, however, TopoVI-BL remained tightly associated with the beads and cannot be eluted from the resin. Different elution conditions made little effect. A subsequent strategy we employed for testing the interaction between TopoVI-BL and the Spo11-Ski8 complex was using the beads coated with either TopoVI-BL or Spo11-Ski8 complex to pull down the other. Unfortunately, currently none of the results showed the presence of an interaction between them.
Still, TopoVI-BL and are expected to form a complex with Spo11 and/or Spo11-Ski8 complex. Although little is known about Ski8 other than its role as a scaffold protein, TopoVI-BL is identified in vivo as a direct binding partner of Spo11 and, without TopoVI-BL, double-strand breaks would not occur during meiosis. Thus, there may be some issues regarding whether the purified TopoVI-BL is correctly folded. A misfolded protein has a greater tendency to expose hydrophobic residues and form non-specific hydrophobic interaction with the resin. The failure to elute TopoVI-BL from the beads indicate that TopoVI-BL may not fold appropriately. And the non-native structure further affects its interaction with Spo11-Ski8 complex. Therefore, it remains hopeful that a complex formed by TopoVI-BL and Spo11-Ski8 can be obtained to address to understand how Spo11 cleaves DNA.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:27:46Z (GMT). No. of bitstreams: 1
ntu-107-R05442009-1.pdf: 8116929 bytes, checksum: e6bd399728bfc23b1ee89e6efa3df300 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents謝誌 II
摘要 III
Abstract V
縮寫表 VIII
目 錄 IX
圖目錄 XIII
表目錄 XIV
一、前言 1
1.1. 減數分裂與同源重組的生理意義 1
1.2. DNA雙股斷裂—前期一(prophase I) 3
1.3. Spo11及其同源蛋白 5
1.3.1. Spo11催化DNA雙股斷裂機制 5
1.3.2. 雙股斷裂機制與高階染色體構型 7
1.3.3.同源蛋白拓樸異構酶VI (Topoisomerase VI, TopoVI)結構與催化機制 8
1.4. 拓樸異構酶B次單元類似蛋白 10
1.5. 研究動機 12
二、材料與方法 13
2.1. 蛋白表現系統 13
2.1.1. 表現質體之選擇與建構 13
2.1.2. 表現蛋白菌株 14
2.1.3. 轉型作用 (Transformation) 15
2.1.4. 蛋白表現測試 16
2.1.5 蛋白之大量表現 17
2.2. 蛋白質純化 18
2.2.1. 破菌與蛋白萃取 18
2.2.2. 液相層析 (Liquid chromatography) 19
2.3 蛋白質分析及定量 22
2.3.1 蛋白質膠體電泳分析 22
2.3.2 蛋白質身分鑑定 23
2.3.3 蛋白質濃縮定量 23
2.4 蛋白質交互作用測試 24
2.4.1. 以純化MYCTH TopoVIBL觀測交互作用 24
2.4.2. 以純化MYCTH Spo11-Ski8觀測交互作用 27
三、結果 28
3.1 蛋白質體表現系統 28
3.1.1 MYCTH TopoVIBL表現系統 28
3.1.2 MYCTH Spo11-Ski8表現系統 29
3.2 蛋白質純化 29
3.2.1 MYCTH TopoVI bl之純化 29
3.2.2 MYCTH Spo11-Ski8之純化 30
3.3 蛋白質身分鑑定 32
3.3.1 質譜分析 32
3.4 蛋白質交互作用測試 32
3.4.1 以純化MYCTH TopoVIBL觀測交互作用 32
3.4.2 以純化MYCTH Spo11-Ski8觀測交互作用 35
四、討論 37
4.1 蛋白質體表現系統 37
4.1.1 MYCTH TopoVI bl表現系統 37
4.2 蛋白質純化 38
4.2.1 MYCTH TopoVI bl之純化 38
4.3蛋白質身分鑑定 39
4.3.1 質譜分析 39
4.4 蛋白質交互作用測試 40
4.4.1 以純化MYCTH TopoVIBL觀測交互作用 40
4.4.2 以純化MYCTH Spo11-Ski8觀測交互作用 40
4.5 TopoVIBL對於Spo11-Ski8之影響 42
圖 45
圖 1-1減數分裂染色體組織化 (organization) 45
圖 1-2 Spo11作用的機制 46
圖1-3 雙股斷裂機制與高階染色體構型 47
圖2-1 GST batch column 流程示意圖 48
圖3-1 MYCTH TopoVIBL BL21 (DE3)表現系統 50
圖3-2 MYCTH TopoVIBL BL21 C43表現系統 51
圖3-3 MYCTH TopoVI bl之純化 52
圖3-4 MYCTH TopoVI bl之純化 定序膠圖 53
圖3-5 MYCTH TopoVI bl定序結果 54
圖3-6 蛋白質交互作用測試 (分別破菌):300 mg MYCTH Spo11-Ski8溶於MYCTH TopoVIBL蛋白粗萃取液 55
圖3-7 蛋白質交互作用測試 (分別破菌):加入MYCTH Spo11-Ski8於resin-MYCTH TopoVIBL 56
圖3-8 蛋白質交互作用測試 (共同破菌) 57
圖3-9 MCYTH Spo11-Ski8-TopoVIBL 經肝素瓊脂管住 (heparin column)層析純化 58
圖3-10 MCYTH Spo11-Ski8-TopoVIBL 經陰離子交換 (mono Q)層析純化 59
圖3-11 MCYTH Spo11-Ski8-TopoVIBL 經陽離子交換 (mono S)層析純化 60
圖3-12 MCYTH Spo11-Ski8-TopoVIBL 經膠體過濾 (GFC)層析純化 61
表 62
表 1 實驗使用菌種 62
表 2 培養 E. coli使用之培養液、培養基 62
表 3使用之緩衝溶液 63
參考文獻 65
附錄 71
附錄一-1 經修飾後之MYCTH Spo11序列 71
附錄一-2 與原始MYCTH Spo11序列進行alignment 72
附錄二 經修飾後之MYCTH Ski8 序列 73
附錄三-1 經修飾之MYCTH TopoVIBL序列 (C端含有六個Histidine) 74
附錄三-2經修飾之MYCTH TopoVIBL序列 (N端含有GST-tag) 75

圖目錄
圖3-1 MYCTH TopoVIBL BL21 (DE3)表現系統 50
圖3-2 MYCTH TopoVIBL BL21 C43表現系統 51
圖3-3 MYCTH TopoVI bl之純化 52
圖3-4 MYCTH TopoVI bl之純化 定序膠圖 53
圖3-5 MYCTH TopoVI bl定序結果 54
圖3-6 蛋白質交互作用測試 (分別破菌):300 mg MYCTH Spo11-Ski8溶於MYCTH TopoVIBL蛋白粗萃取液 55
圖3-7 蛋白質交互作用測試 (分別破菌):加入MYCTH Spo11-Ski8於resin-MYCTH TopoVIBL 56
圖3-8 蛋白質交互作用測試 (共同破菌) 57
圖3-9 MCYTH Spo11-Ski8-TopoVIBL 經肝素瓊脂管住 (heparin column)層析純化 58
圖3-10 MCYTH Spo11-Ski8-TopoVIBL 經陰離子交換 (mono Q)層析純化 59
圖3 11 MCYTH Spo11-Ski8-TopoVIBL 經陽離子交換 (mono S)層析純化 60
圖3 12 MCYTH Spo11-Ski8-TopoVIBL 經膠體過濾 (GFC)層析純化 61



表目錄
表 1 實驗使用菌種 62
表 2 培養 E. coli使用之培養液、培養基 62
表 3使用之緩衝溶液 63
-
dc.language.isozh_TW-
dc.title嗜熱毀絲黴之拓樸異構酶VI類B次單元的結構與功能分析zh_TW
dc.titleTowards structural and functional analysis of a topoisomerase VI-B-subunit-like protein from Myceliophthora thermophileen
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee徐駿森;曾秀如zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword減數分裂,同源重組,DNA雙股斷裂,Spo11,拓樸異構?VI類B次單元,zh_TW
dc.subject.keywordmeiosis,meiotic recombination,DNA double-strand break,Spo11,TopoVIBL,en
dc.relation.page75-
dc.identifier.doi10.6342/NTU201804045-
dc.rights.note未授權-
dc.date.accepted2018-08-22-
dc.contributor.author-college醫學院-
dc.contributor.author-dept生物化學暨分子生物學研究所-
dc.date.embargo-lift2023-10-05-
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-106-2.pdf
  目前未授權公開取用
7.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved