Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78897
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor段維新zh_TW
dc.contributor.author蘇奕廷zh_TW
dc.contributor.authorYi-Ting Suen
dc.date.accessioned2021-07-11T15:27:32Z-
dc.date.available2024-07-23-
dc.date.copyright2019-07-23-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] N. Reyren, S. Thiel, A.D. Caviglia, L.F. Kourkoutis, G. Hammerl, C.Richter, C.W. Schneider, T. Kopp, A.-S. Rüetschi, D. Jaccard, M. Gabay, D.A. Muller, J.-M.T.a.J. Mannhart, Superconducting Interfaces between Insulating Oxides, Science, Vol.317, No.5842 (2007) 1196-1199.
[2] H. Shen, Y. Song, H. Gu, P. Wang, Y. Xi, A high-permittivity SrTiO3-based grain boundary barrier layer capacitor material single-fired under low temperature, Materials Letters, 56 (2002) 802-805.
[3] R. Konta, T. Ishii, H. Kato, A. Kudo, Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation, The Journal of Physical Chemistry B, 108 (2004) 8992-8995.
[4] X. Zhu, J. Zhu, S. Zhou, Z. Liu, N. Ming, S. Lu, H.L.-W. Chan, C.-L. Choy, Recent progress of (Ba, Sr) TiO3 thin films for tunable microwave devices, Journal of electronic materials, 32 (2003) 1125-1134.
[5] S.J. Penn, N.M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, K. Schrapel, Effect of porosity and grain size on the microwave dielectric properties of sintered alumina, Journal of the American Ceramic Society, 80 (1997) 1885-1888.
[6] C. Anil Kumar, S. Josephine, D. Pamu, Impedance spectroscopy, broadband, and microwave dielectric properties of mechanically alloyed Ba5Nb4O15 ceramics, International Journal of Applied Ceramic Technology, 13 (2016) 554-563.
[7] A. Tkach, P. Vilarinho, A. Senos, A. Kholkin, Effect of nonstoichiometry on the microstructure and dielectric properties of strontium titanate ceramics, Journal of the European Ceramic Society, 25 (2005) 2769-2772.
[8] L. Amaral, A.M. Senos, P.M. Vilarinho, Sintering kinetic studies in nonstoichiometric strontium titanate ceramics, Materials Research Bulletin, 44 (2009) 263-270.
[9] M. Bäurer, H. Kungl, M.J. Hoffmann, Influence of Sr/Ti stoichiometry on the densification behavior of strontium titanate, Journal of the American Ceramic Society, 92 (2009) 601-606.
[10] Y.-C. Liou, C.-T. Wu, T.-C. Chung, Synthesis and microstructure of SrTiO3 and BaTiO3 ceramics by a reaction-sintering process, Journal of materials science, 42 (2007) 3580-3587.
[11] D.W. Richerson, Modern ceramic engineering: properties, processing, and use in design, CRC press2005.
[12] R. Leapman, L. Grunes, P. Fejes, Study of the L 23 edges in the 3 d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory, Physical Review B, 26 (1982) 614.
[13] SrTiO3 introduction.
[14] L. Amaral, M. Fernandes, I.M. Reaney, M.P. Harmer, A.M. Senos, P.M. Vilarinho, Grain growth anomaly and dielectric response in Ti-rich strontium titanate ceramics, The Journal of Physical Chemistry C, 117 (2013) 24787-24795.
[15] Y. Zhang, L. Zhong, D. Duan, A single-step direct hydrothermal synthesis of SrTiO3 nanoparticles from crystalline P25 TiO2 powders, Journal of materials science, 51 (2016) 1142-1152.
[16] V. Kumar, Solution‐Precipitation of Fine Powders of Barium Titanate and Strontium Titanate, Journal of the American Ceramic Society, 82 (1999) 2580-2584.
[17] K. Nonaka, S. Hayashi, K. Okada, N. Otsuka, T. Yano, Characterization and control of phase segregation in the fine particles of BaTiO3 and SrTiO3 synthesized by the spray pyrolysis method, Journal of materials research, 6 (1991) 1750-1756.
[18] R. Thomas, D. Dube, M. Kamalasanan, S. Chandra, A. Bhalla, Structural, electrical, and low-temperature dielectric properties of sol–gel derived SrTiO3 thin films, Journal of applied physics, 82 (1997) 4484-4488.
[19] M. Bäurer, D. Weygand, P. Gumbsch, M.J. Hoffmann, Grain growth anomaly in strontium titanate, Scripta Materialia, 61 (2009) 584-587.
[20] W. Rheinheimer, M.J. Hoffmann, Non-Arrhenius behavior of grain growth in strontium titanate: new evidence for a structural transition of grain boundaries, Scripta Materialia, 101 (2015) 68-71.
[21] W. Rheinheimer, M. Bäurer, H. Chien, G.S. Rohrer, C.A. Handwerker, J.E. Blendell, M.J. Hoffmann, The equilibrium crystal shape of strontium titanate and its relationship to the grain boundary plane distribution, Acta Materialia, 82 (2015) 32-40.
[22] W. Rheinheimer, M. Bäurer, C.A. Handwerker, J.E. Blendell, M.J. Hoffmann, Growth of single crystalline seeds into polycrystalline strontium titanate: anisotropy of the mobility, intrinsic drag effects and kinetic shape of grain boundaries, Acta Materialia, 95 (2015) 111-123.
[23] T.K.-Y. Wong, B.J. Kennedy, C.J. Howard, B.A. Hunter, T. Vogt, Crystal Structures and Phase Transitions in the SrTiO3–SrZrO3 Solid Solution, Journal of Solid State Chemistry, 156 (2001) 255-263.
[24] S.-J. Shih, S. Lozano-Perez, D.J. Cockayne, Investigation of grain boundaries for abnormal grain growth in polycrystalline SrTiO3, Journal of Materials Research, 25 (2010) 260-265.
[25] S.-Y. Chung, S.-J.L. Kang, Intergranular amorphous films and dislocations-promoted grain growth in SrTiO3, Acta Materialia, 51 (2003) 2345-2354.
[26] D.A. Hanaor, C.C. Sorrell, Review of the anatase to rutile phase transformation, Journal of Materials science, 46 (2011) 855-874.
[27] D. Reyes-Coronado, G. Rodriguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss, G. Oskam, Phase-pure TiO2 nanoparticles: anatase, brookite and rutile, Nanotechnology, 19 (2008) 145605.
[28] S. Kamba, P. Samoukhina, F. Kadlec, J. Pokorný, J. Petzelt, I. Reaney, P. Wise, Composition dependence of the lattice vibrations in Srn+ 1TinO3n+ 1 Ruddlesden–Popper homologous series, Journal of the European Ceramic Society, 23 (2003) 2639-2645.
[29] S. Ruddlesden, P. Popper, The compound Sr3Ti2O7 and its structure, Acta Crystallographica, 11 (1958) 54-55.
[30] M.A. Mccoy, R.W. Grimes, W.E. Lee, Phase stability and interfacial structures in the SrO–SrTiO3 system, Philosophical Magazine A, 75 (1997) 833-846.
[31] B.V. Beznosikov, K.S. Aleksandrov, Perovskite-Like Crystals of the Ruddlesden–Popper Series, Crystallography Reports, 45 (2000) 792-798.
[32] S. Šturm, A. Rečnik, C. Scheu, M. Čeh, Formation of Ruddlesden–Popper faults and polytype phases in SrO-doped SrTiO3, Journal of Materials Research, 15 (2000) 2131-2139.
[33] M.T. Sebastian, Dielectric materials for wireless communication, Elsevier2010.
[34] R. Neville, B. Hoeneisen, C. Mead, Permittivity of strontium titanate, Journal of Applied Physics, 43 (1972) 2124-2131.
[35] W.D. Kingery, Introduction to ceramics, (1960).
[36] I. Reaney, P. Wise, W. Lee, D. Iddles, D. Cannell, T. Price, Tunability of TCF in Ruddlesden-Popper compounds, Applications of Ferroelectrics, 2000. ISAF 2000. Proceedings of the 2000 12th IEEE International Symposium on, IEEE, 2000, pp. 187-190.
[37] S. Kamba, P. Samoukhina, F. Kadlec, J. Pokorný, J. Petzelt, I.M. Reaney, P.L. Wise, Composition dependence of the lattice vibrations in Srn+1TinO3n+1 Ruddlesden–Popper homologous series, Journal of the European Ceramic Society, 23 (2003) 2639-2645.
[38] P. Wise, I. Reaney, W. Lee, T. Price, D. Iddles, D. Cannell, Structure–microwave property relations in (SrxCa(1− x))n+1TinO3n+ 1, Journal of the European Ceramic Society, 21 (2001) 1723-1726.
[39] R.A. Parker, Static Dielectric Constant of Rutile (TiO2), 1.6-1060° K, Physical Review, 124 (1961) 1719.
[40] F. Liu, X.-Y. Liu, C.-L. Yuan, T. Yang, G.-H. Chen, C.-R. Zhou, Crystal structure and dielectric properties of (1− x) SrTiO3-xCa0. 4Sm0. 4TiO3 ceramic system at microwave frequencies, Materials Chemistry and Physics, 148 (2014) 1083-1088.
[41] C.-L. Huang, J.-Y. Chen, C.-C. Liang, Dielectric properties and mixture behavior of Mg4Nb2O9–SrTiO3 ceramic system at microwave frequency, Journal of Alloys and Compounds, 478 (2009) 554-558.
[42] P.-h. Sun, T. Nakamura, Y.J. Shan, Y. Inaguma, M. Itoh, T. Kitamura, Dielectric behavior of (1-x) LaAlO3–xSrTiO3 solid solution system at microwave frequencies, Japanese journal of applied physics, 37 (1998) 5625.
[43] W.W. Cho, K.-i. Kakimoto, H. Ohsato, High-Q microwave dielectric SrTiO3-doped MgTiO3 materials with near-zero temperature coefficient of resonant frequency, Japanese journal of applied physics, 43 (2004) 6221.
[44] Y.-B. Chen, New dielectric material system of Nd (Mg1/2Ti1/2)O3–SrTiO3 in the microwave frequency range, Journal of Alloys and Compounds, 509 (2011) 2285-2288.
[45] G.J. McCarthy, W.B. White, R. Roy, Phase Equilibria in the 1375° C Isotherm of the System Sr‐Ti‐O, Journal of the American Ceramic Society, 52 (1969) 463-467.
[46] K. Jacob, G. Rajitha, Thermodynamic properties of strontium titanates: Sr2TiO4, Sr3Ti2O7, Sr4Ti3O10, and SrTiO3, The Journal of Chemical Thermodynamics, 43 (2011) 51-57.
[47] W. Maus-Friedrichs, B. Lesage, O. KaıØtasov, S. Hoffmann-Eiferte, T. Schneller, Sr diffusion in undoped and La-doped SrTiO3 single crystals under oxidizing conditionsw, Phys. Chem. Chem. Phys, 7 (2005) 2053-2060.
[48] R. Meyer, R. Waser, J. Helmbold, G. Borchardt, Observation of Vacancy Defect Migration in the Cation Sublattice of Complex Oxides by O18 Tracer Experiments, Physical review letters, 90 (2003) 105901.
[49] K. Gömann, G. Borchardt, A. Gunhold, W. Maus-Friedrichs, H. Baumann, Ti diffusion in La-doped SrTiO3 single crystals, Physical Chemistry Chemical Physics, 6 (2004) 3639-3644.
[50] S. Šturm, A. Rečnik, M. Čeh, Nucleation and growth of planar faults in SrO-excess SrTiO3, Journal of the European Ceramic Society, 21 (2001) 2141-2144.
[51] L. Li, X.M. Chen, Frequency‐Dependent Qf Value of Microwave Dielectric Ceramics, Journal of the American Ceramic Society, 97 (2014) 3041-3043.
[52] Z. He, M. Cao, L. Zhou, L. Zhang, J. Xie, S. Zhang, J. Qi, H. Hao, Z. Yao, Z. Yu, Origin of low dielectric loss and giant dielectric response in (Nb+ Al) co‐doped strontium titanate, Journal of the American Ceramic Society.
[53] C. Wang, C. Lei, G. Wang, X. Sun, T. Li, S. Huang, H. Wang, Y. Li, Oxygen-vacancy-related dielectric relaxations in SrTiO3 at high temperatures, Journal of Applied Physics, 113 (2013) 094103.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78897-
dc.description.abstract為了滿足通訊科技對更高的頻寬、更多資料傳輸量的要求,微波介電材料的發展顯得日益重要。鈦酸鍶為微波介電材料的一種,一直以來受到學術界許多的關注。在本研究中,利用固態反應法配製不同鍶鈦比的鈦酸鍶,鍶鈦比範圍為0.95到1.05。當研究不同鍶鈦比鈦酸鍶的燒結行為,根據燒結動力數據結果發現,鍶鈦比小於等於一的試片在低溫下收縮較慢,然而隨著溫度升高到1250℃之後,其收縮速率超越鍶鈦比大於一的試片且在1400℃燒結後擁有較高的緻密度。在微結構上兩者也有許多差異,在鍶鈦比大於一的試片觀察到等軸晶和咖啡豆形貌晶粒同時存在,且有異常晶粒成長現象;反之,鍶鈦比小於等於一試片則只觀察到等軸晶且鍶鈦比小於一的試片可看到二氧化鈦在晶界上。結果顯示不同鍶鈦比會大幅影響鈦酸鍶的燒結行為、微結構以及二次相的多寡而介電性質則容易受到上述因素所影響。在低頻量測下,鍶鈦比小於一試樣有較高的共振品質因子;然而在微波頻段下,各組成的共振品質因子沒有明顯的差異,另外鍶鈦比小於等於一的試樣的介電常數較高且介電常數隨著鍶鈦比的增加而下降。zh_TW
dc.description.abstractNowadays, in order to meet the request for higher speed and larger data transmission for telecommunication, the development of the microwave dielectric ceramics is crucial.
SrTiO3 is a dielectric ceramic which has drown lots of attention for a long time. In the present study, the SrTiO3 powders with various Sr/Ti ratios were prepared using a solid state reaction. The Sr/Ti ratio varied from 0.95 to 1.05 with a step of 0.01. The sintering behavior of SrTiO3 as a function of Sr/Ti ratio was then investigated. Using TMA analysis, the Ti-rich and Sr/Ti=1.00 SrTiO3 specimens showed a lower densification rate at low temperature; however, their densification rate was higher than Sr-rich ones above 1250℃. Their density after sintering at 1400℃ was also higher. The morphology for the Sr-rich SrTiO3 showed the mixture of the equiaxed and coffee bean-like grains. On the other hand, the morphology for Ti-rich and Sr/Ti=1.00 SrTiO3 specimens exhibited equiaxed shape only. Some TiO2 second phase particles were located at the grain boundary for Ti-rich SrTiO3. Abnormal grain growth could be found in Sr-rich specimens. Some pores were trapped inside the abnormal grains. The Sr/Ti ratio strongly affected the shrinkage rate, relative density, microstructure, and the amount of second phases. As a consequence, the dielectric properties were influenced by these factors. At low frequency (1MHz), the Ti-rich SrTiO3 showed a higher quality factor. It may be related to their higher relative density and higher chemical defect concentration. Nevertheless, under microwave frequency, the quality factor of SrTiO3 specimens showed no dependence on Sr/Ti ratio. Moreover, the Ti-rich and Sr/Ti=1.00 specimens exhibited higher permittivity and the permittivity gradually decreased with increasing Sr/Ti ratio.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:27:32Z (GMT). No. of bitstreams: 1
ntu-107-R05527010-1.pdf: 9748344 bytes, checksum: ab4ff7f8c301808415173c2d62ed8dfc (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 iii
中文摘要 iiii
ABSTRACT v
CONTENTS viii
LIST OF FIGURES viii
LIST OF TABLES xiii
Chapter 1 Introduction 1
Chapter 2 Literature survey 2
2.1 Basics for SrTiO3 2
2.2 Sintering behavior of SrTiO3 5
2.2.1 Non-Arrhenius grain growth behavior 5
2.2.2 Abnormal grain growth (AGG) 8
2.3 Nonstoichiometry SrTiO3 9
2.3.1 Second phase and microstructure observation 9
2.3.2 Sintering behavior 12
2.4 Microwave dielectric properties 14
Chapter 3 Experimental procedure 18
3.1 Processing 18
3.1.1 Raw powder 18
3.1.2 Solid state reaction 18
3.1.3 Pressing and sintering 20
3.2 Analysis 21
3.2.1 Powder size distribution 21
3.2.2 Phase identification 21
3.2.3 Relative density 21
3.2.4 Dilatometer analysis 22
3.2.5 Microstructure observation 22
3.2.6 Electron backscatter diffraction 22
3.2.7 Electron probe micro-analyzer 22
3.2.8 Vickers hardness test 23
3.2.9 Dielectric properties measurement 23
3.2.10 Microwave dielectric properties 23
3.2.11 Insulation resistance 24
Chapter 4 Results 25
4.1 Starting powders 25
4.2 Calcination and sintering behavior 26
4.2.1 Particle analysis 26
4.2.2 Phase identification 28
4.2.3 Relative density and weight loss 31
4.2.4 Sintering kinetics 33
4.2.5 Microstructure observation 36
4.2.6 Vickers hardness test 45
4.2.7 Electron probe micro-analyzer 47
4.2.8 Electron backscatter diffraction for coffee bean structure 49
4.3 Dielectric property measurement 56
4.3.1 Dielectric property at low frequency 56
4.3.2 Microwave dielectric property 61
4.3.3 Insulation resistance 62
Chapter 5 Discussion 63
5.1 Phase identification 63
5.2 Sintering behavior 65
5.3 Microstructure 69
5.4 Dielectric properties 75
5.5 Microwave dielectric properties 79
5.6 Insulation resistance 82
5.7 Future work 83
Chapter 6 Conclusions 84
References 86
-
dc.language.isoen-
dc.title不同鍶鈦比對鈦酸鍶之燒結行為和微結構以及介電性質的影響zh_TW
dc.titleSintering behavior, microstructure and dielectric properties of SrTiO3 with different Sr/Ti ratioen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee謝宗霖;施劭儒;周振嘉zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword鈦酸鍶,燒結行為,微波介電性質,zh_TW
dc.subject.keywordnonstoichiometry SrTiO3,sintering behavior,microwave dielectric properties,en
dc.relation.page91-
dc.identifier.doi10.6342/NTU201802085-
dc.rights.note未授權-
dc.date.accepted2018-08-01-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2024-07-23-
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat 
ntu-107-2.pdf
  Restricted Access
9.52 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved