Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78884
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張麗冠(Li-Kwan Chang)
dc.contributor.authorPo-Chun Chenen
dc.contributor.author陳柏郡zh_TW
dc.date.accessioned2021-07-11T15:26:33Z-
dc.date.available2025-08-21
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-20
dc.identifier.citationAlfieri, C., M. Birkenbach, E. Kieff. (1991). Early events in Epstein-Barr virus infection of human B lymphocytes. Journal of Virology, 181(2), 595-608.
Anderton, E., J. Yee, P. Smith, T. Crook, R. White, M. J. O. Allday. (2008). Two Epstein–Barr virus (EBV) oncoproteins cooperate to repress expression of the proapoptotic tumour-suppressor Bim: clues to the pathogenesis of Burkitt's lymphoma. Oncogene, 27(4), 421-433.
Aviel, S., G. Winberg, M. Massucci, A. Ciechanover. (2000). Degradation of the epstein-barr virus latent membrane protein 1 (LMP1) by the ubiquitin-proteasome pathway. Targeting via ubiquitination of the N-terminal residue. Journal of Biological Chemistry, 275(31), 23491-23499.
Baumann, M., R. Feederle, E. Kremmer, W. J. T. E. J. Hammerschmidt. (1999). Cellular transcription factors recruit viral replication proteins to activate the Epstein–Barr virus origin of lytic DNA replication, oriLyt. The EMBO Journal, 18(21), 6095-6105.
Baumann, M., H. Mischak, S. Dammeier, W. Kolch, O. Gires, D. Pich, . . . W. Hammerschmidt. (1998). Activation of the Epstein-Barr virus transcription factor BZLF1 by 12-O-tetradecanoylphorbol-13-acetate-induced phosphorylation. Journal of Virology, 72(10), 8105-8114.
Beltrao, P., P. Bork, N. J. Krogan, V. Van Noort. (2013). Evolution and functional cross-talk of protein post-translational modifications. Molecular Systems Biology, 9(1), 714.
Bergbauer, M., M. Kalla, A. Schmeinck, C. Gobel, U. Rothbauer, S. Eck, . . . W. Hammerschmidt. (2010). CpG-methylation regulates a class of Epstein-Barr virus promoters. PLoS Pathogens, 6(9), e1001114.
Buschle, A., W. Hammerschmidt. (2020). Epigenetic lifestyle of Epstein-Barr virus. Seminars in Immunopathology, 1-12.
Cayrol, C., E. J. T. E. J. Flemington. (1996). The Epstein‐Barr virus bZIP transcription factor Zta causes G0/G1 cell cycle arrest through induction of cyclin‐dependent kinase inhibitors. The EMBO Journal, 15(11), 2748-2759.
Chang, L.-K., J.-Y. Chuang, M. Nakao, S.-T. J. N. a. R. Liu. (2010). MCAF1 and synergistic activation of the transcription of Epstein–Barr virus lytic genes by Rta and Zta. Nucleic Acids Research, 38(14), 4687-4700.
Chang, L. K., Y. S. Chang, S. T. Liu. (1998). Role of Rta in the translation of bicistronic BZLF1 of Epstein-Barr virus. Journal of Virology, 72(6), 5128-5136.
Chang, L. K., Y. H. Lee, T. S. Cheng, Y. R. Hong, P. J. Lu, J. J. Wang, . . . S. T. Liu. (2004). Post-translational modification of Rta of Epstein-Barr virus by SUMO-1. Journal of Biological Chemistry, 279(37), 38803-38812.
Chen, L.-W., V. Raghavan, P.-J. Chang, D. Shedd, L. Heston, H.-J. Delecluse, G. J. V. Miller. (2009). Two phenylalanines in the C-terminus of Epstein–Barr virus Rta protein reciprocally modulate its DNA binding and transactivation function. Journal of Virology, 386(2), 448-461.
Chiu, Y. F., B. Sugden. (2016). Epstein-Barr Virus: The Path from Latent to Productive Infection. Annual Review of Virology, 3(1), 359-372.
Chiu, Y. F., C. P. Tung, Y. H. Lee, W. H. Wang, C. Li, J. Y. Hung, . . . S. T. Liu. (2007). A comprehensive library of mutations of Epstein Barr virus. Journal of General Virology, 88(Pt 9), 2463-2472.
Ciechanover, A., K. J. I. L. Iwai. (2004). The ubiquitin system: from basic mechanisms to the patient bed. IUBMB, 56(4), 193-201.
Dantuma, N. P., M. G. Masucci. (2003). The ubiquitin/proteasome system in Epstein–Barr virus latency and associated malignancies. Seminars in Cancer Biology, 13(1), 69-76.
Dimova, N. V., N. A. Hathaway, B. H. Lee, D. S. Kirkpatrick, M. L. Berkowitz, S. P. Gygi, . . . R. W. King. (2012). APC/C-mediated multiple monoubiquitylation provides an alternative degradation signal for cyclin B1. Natature Cell Biology, 14(2), 168-176.
Dolyniuk, M., E. Wolff, E. J. J. O. V. Kieff. (1976). Proteins of Epstein-Barr Virus. II. Electrophoretic analysis of the polypeptides of the nucleocapsid and the glucosamine-and polysaccharide-containing components of enveloped virus. Journal of Virology, 18(1), 289-297.
Drouet, E. (2019). The Role of the Epstein-Barr Virus Lytic Cycle in Tumor Progression: Consequences in Diagnosis and Therapy. In Human Herpesvirus Infection-Biological Features, Transmission, Symptoms, Diagnosis and Treatment: IntechOpen.
El-Guindy, A., M. Ghiassi-Nejad, S. Golden, H.-J. Delecluse, G. J. J. O. V. Miller. (2013). Essential role of Rta in lytic DNA replication of Epstein-Barr virus. Journal of Virology, 87(1), 208-223.
El-Guindy, A., L. Heston, H.-J. Delecluse, G. J. J. O. V. Miller. (2007). Phosphoacceptor site S173 in the regulatory domain of Epstein-Barr Virus ZEBRA protein is required for lytic DNA replication but not for activation of viral early genes. Journal of Virology, 81(7), 3303-3316.
El-Guindy, A. S., G. J. J. O. V. Miller. (2004). Phosphorylation of Epstein-Barr virus ZEBRA protein at its casein kinase 2 sites mediates its ability to repress activation of a viral lytic cycle late gene by Rta. Journal of Virology, 78(14), 7634-7644.
Epstein, M. A., B. G. Achong, Y. M. Barr. (1964). Virus Particles in Cultured Lymphoblasts from Burkitt's Lymphoma. Lancet, 1(7335), 702-703.
Farrell, P. J. (2001). Epstein-Barr Virus. In Epstein-Barr Virus Protocols (pp. 3-12): Springer.
Farrell, P. J., D. T. Rowe, C. Rooney, T. J. T. E. J. Kouzarides. (1989). Epstein‐Barr virus BZLF1 trans‐activator specifically binds to a consensus AP‐1 site and is related to c‐fos. The EMBO Journal, 8(1), 127-132.
Feederle, R., M. Kost, M. Baumann, A. Janz, E. Drouet, W. Hammerschmidt, H. J. J. T. E. J. Delecluse. (2000). The Epstein–Barr virus lytic program is controlled by the co‐operative functions of two transactivators. The EMBO Journal, 19(12), 3080-3089.
Finley, D., S. Sadis, B. P. Monia, P. Boucher, D. J. Ecker, S. T. Crooke, . . . C. Biology. (1994). Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant. Molecular Cell Biology, 14(8), 5501-5509.
Fixman, E. D., G. S. Hayward, S. D. Hayward. (1995). Replication of Epstein-Barr virus oriLyt: lack of a dedicated virally encoded origin-binding protein and dependence on Zta in cotransfection assays. Journal of Virology, 69(5), 2998-3006.
Flemington, E. K., A. M. Borras, J. P. Lytle, S. H. Speck. (1992). Characterization of the Epstein-Barr virus BZLF1 protein transactivation domain. Journal of Virology, 66(2), 922-929.
Fryrear, K. A., X. Guo, O. Kerscher, O. J. Semmes. (2012). The Sumo-targeted ubiquitin ligase RNF4 regulates the localization and function of the HTLV-1 oncoprotein Tax. Blood, 119(5), 1173-1181.
Fujii, K., N. Yokoyama, T. Kiyono, K. Kuzushima, M. Homma, Y. Nishiyama, . . . T. Tsurumi. (2000). The Epstein-Barr virus pol catalytic subunit physically interacts with the BBLF4-BSLF1-BBLF2/3 complex. Journal of Virology, 74(6), 2550-2557.
Grice, G. L., J. A. Nathan. (2016). The recognition of ubiquitinated proteins by the proteasome. Cellular and Molecular Life Sciences, 73(18), 3497-3506.
Gutensohn, N., P. Cole. (1981). Childhood social environment and Hodgkin's disease. The New England Journal of Medicine, 304(3), 135-140.
Hagemeier, S. R., S. J. Dickerson, Q. Meng, X. M. Yu, J. E. Mertz, S. C. Kenney. (2010). Sumoylation of the Epstein-Barr Virus BZLF1 Protein Inhibits Its Transcriptional Activity and Is Regulated by the Virus-Encoded Protein Kinase. Journal of Virology, 84(9), 4383-4394.
Haglund, K., I. Dikic. (2005). Ubiquitylation and cell signaling. The EMBO Journal, 24(19), 3353-3359.
Hakli, M., K. L. Lorick, A. M. Weissman, O. A. Janne, J. J. Palvimo. (2004). Transcriptional coregulator SNURF (RNF4) possesses ubiquitin E3 ligase activity. FEBS Letters, 560(1-3), 56-62.
Harper, S., H. E. Gratton, I. Cornaciu, M. Oberer, D. J. Scott, J. Emsley, I. Dreveny. (2014). Structure and catalytic regulatory function of ubiquitin specific protease 11 N-terminal and ubiquitin-like domains. Biochemistry, 53(18), 2966-2978.
Heilmann, A. M., M. A. Calderwood, D. Portal, Y. Lu, E. J. J. O. V. Johannsen. (2012). Genome-wide analysis of Epstein-Barr virus Rta DNA binding. Journal of Virology, 86(9), 5151-5164.
Hendriks, I. A., J. Schimmel, K. Eifler, J. V. Olsen, A. C. Vertegaal. (2015). Ubiquitin-specific Protease 11 (USP11) Deubiquitinates Hybrid Small Ubiquitin-like Modifier (SUMO)-Ubiquitin Chains to Counteract RING Finger Protein 4 (RNF4). Journal of Biological Chemistry, 290(25), 15526-15537.
Henle, G., W. Henle, V. Diehl. (1968). Relation of Burkitt's tumor-associated herpes-ytpe virus to infectious mononucleosis. Proceedings of the National Academy of Sciences of the United States of America, 59(1), 94-101.
Hofmann, H., S. Floss, T. Stamminger. (2000). Covalent modification of the transactivator protein IE2-p86 of human cytomegalovirus by conjugation to the ubiquitin-homologous proteins SUMO-1 and hSMT3b. Journal of Virology, 74(6), 2510-2524.
Hong, Y., R. Rogers, M. J. Matunis, C. N. Mayhew, M. L. Goodson, O. K. Park-Sarge, K. D. Sarge. (2001). Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. Journal of Biological Chemistry, 276(43), 40263-40267.
Huang, H.-H., C.-S. Chen, W.-H. Wang, S.-W. Hsu, H.-H. Tsai, S.-T. Liu, L.-K. J. F. I. M. Chang. (2017). TRIM5α promotes ubiquitination of RTA from epstein–barr virus to attenuate lytic progression. Frontiers in Microbiology, 7, 2129.
Huang, H.-H., W.-H. Wang, T.-H. Feng, L.-K. J. B. Chang, B. R. Communications. (2020). Rta is an Epstein-Barr virus tegument protein that improves the stability of capsid protein BORF1. Biochemical and Biophysical Research Communications, 523(3), 773-779.
Humme, S., G. Reisbach, R. Feederle, H.-J. Delecluse, K. Bousset, W. Hammerschmidt, A. J. P. O. T. N. a. O. S. Schepers. (2003). The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proceedings of the National Academy of Sciences of the United States of America, 100(19), 10989-10994.
Hwang, S.-P., L.-C. Huang, W.-H. Wang, M.-H. Lin, C.-W. Kuo, H.-H. Huang, L.-K. J. J. O. M. B. Chang. (2020). Expression of Rta in B Lymphocytes during Epstein–Barr Virus Latency. Journal of Molecular Biology.
Ideguchi, H., A. Ueda, M. Tanaka, J. Yang, T. Tsuji, S. Ohno, . . . Y. Ishigatsubo. (2002). Structural and functional characterization of the USP11 deubiquitinating enzyme, which interacts with the RanGTP-associated protein RanBPM. Biochemical Journal, 367(1), 87-95.
Kang, M.-S., E. J. E. Kieff, M. Medicine. (2015). Epstein–Barr virus latent genes. Experimental Molecular Medicine, 47(1), e131-e131.
Ke, J. Y., C. J. Dai, W. L. Wu, J. H. Gao, A. J. Xia, G. P. Liu, . . . C. L. Wu. (2014). USP11 regulates p53 stability by deubiquitinating p53. Journal of Zhejiang University Science B, 15(12), 1032-1038.
Kenney, S. C., J. E. Mertz. (2014). Regulation of the latent-lytic switch in Epstein–Barr virus. Seminars in Cancer Biology, 26, 60-68.
Kho, Y., S. C. Kim, C. Jiang, D. Barma, S. W. Kwon, J. Cheng, . . . J. J. P. O. T. N. a. O. S. Falck. (2004). A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12479-12484.
Kilger, E., A. Kieser, M. Baumann, W. J. T. E. J. Hammerschmidt. (1998). Epstein–Barr virus‐mediated B‐cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. The EMBO Journal, 17(6), 1700-1709.
Kintner, C., B. J. J. O. V. Sugden. (1981). Conservation and progressive methylation of Epstein-Barr viral DNA sequences in transformed cells. Journal of Virology, 38(1), 305-316.
Kintner, C. R., B. Sugden. (1979). The structure of the termini of the DNA of Epstein-Barr virus. Cell, 17(3), 661-671.
Komander, D., M. J. Clague, S. Urbe. (2009). Breaking the chains: structure and function of the deubiquitinases. Nature Reviews Molecular Cell Biology, 10(8), 550-563.
Kumar, R., R. González-Prieto, Z. Xiao, M. Verlaan-De Vries, A. C. J. N. C. Vertegaal. (2017). The STUbL RNF4 regulates protein group SUMOylation by targeting the SUMO conjugation machinery. Nature Communications, 8(1), 1-16.
Leight, E. R., B. J. R. I. M. V. Sugden. (2000). EBNA‐1: a protein pivotal to latent infection by Epstein–Barr virus. Reviews in medical virology, 10(2), 83-100.
Levitskaya, J., A. Sharipo, A. Leonchiks, A. Ciechanover, M. G. J. P. O. T. N. a. O. S. Masucci. (1997). Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein–Barr virus nuclear antigen 1. Proceedings of the National Academy of Sciences of the United States of America, 94(23), 12616-12621.
Li, Q., L. Young, G. Niedobitek, C. Dawson, M. Birkenbach, F. Wang, A. J. N. Rickinson. (1992). Epstein–Barr virus infection and replication in a human epithelial cell system. Nature, 356(6367), 347-350.
Liew, C. W., H. Y. Sun, T. Hunter, C. L. Day. (2010). RING domain dimerization is essential for RNF4 function. Biochemical Journal, 431(1), 23-29.
Lin, C. H., H. S. Chang, W. C. Y. Yu. (2008). USP11 stabilizes HPV-16E7 and further modulates the E7 biological activity. Journal of Biological Chemistry, 283(23), 15681-15688.
Lin, Y.-C., M. Boone, L. Meuris, I. Lemmens, N. Van Roy, A. Soete, . . . R. J. N. C. Drmanac. (2014). Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nature Communications, 5(1), 1-12.
Luka, J., B. Kallin, G. Klein. (1979). Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology, 94(1), 228-231.
Münz, C. J. N. R. M. (2019). Latency and lytic replication in Epstein–Barr virus-associated oncogenesis. Nature Reviews Microbiology, 17(11), 691-700.
Müller, S., M. J. Matunis, A. J. T. E. J. Dejean. (1998). Conjugation with the ubiquitin‐related modifier SUMO‐1 regulates the partitioning of PML within the nucleus. The EMBO Journal, 17(1), 61-70.
Mahajan, R., C. Delphin, T. Guan, L. Gerace, F. J. C. Melchior. (1997). A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell, 88(1), 97-107.
Manet, E., A. Rigolet, H. Gruffat, J.-F. Giot, A. J. N. a. R. Sergeant. (1991). Domains of the Epstein-Barr virus (EBV) transcription factor R required for dimerization, DNA binding and activation. Nucleic Acids Research, 19(10), 2661-2667.
Martel-Renoir, D., V. Grunewald, R. Touitou, G. Schwaab, I. J. J. O. G. V. Joab. (1995). Qualitative analysis of the expression of Epstein—Barr virus lytic genes in nasopharyngeal carcinoma biopsies. Journal of General Virology, 76(6), 1401-1408.
Matic, I., M. Van Hagen, J. Schimmel, B. Macek, S. C. Ogg, M. H. Tatham, . . . C. Proteomics. (2008). In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Molecular and Cellular Proteomics, 7(1), 132-144.
Mcclellan, A. J., S. H. Laugesen, L. J. O. B. Ellgaard. (2019). Cellular functions and molecular mechanisms of non-lysine ubiquitination. Open Biology, 9(9), 190147.
Mckenzie, J., A. El-Guindy. (2015). Epstein-Barr virus lytic cycle reactivation. In Epstein Barr Virus Volume 2 (pp. 237-261): Springer.
Metzger, M. B., J. N. Pruneda, R. E. Klevit, A. M. Weissman. (2014). RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochimica et Biophysica Acta, 1843(1), 47-60.
Mevissen, T. E., D. J. a. R. O. B. Komander. (2017). Mechanisms of deubiquitinase specificity and regulation. Annual Review of Biochemistry, 86, 159-192.
Moilanen, A. M., H. Poukka, U. Karvonen, M. Hakli, O. A. Janne, J. J. Palvimo. (1998). Identification of a novel RING finger protein as a coregulator in steroid receptor-mediated gene transcription. Molecular and Cellular Biology, 18(9), 5128-5139.
Morales-Sánchez, A., E. M. J. C. Fuentes-Panana. (2018). The immunomodulatory capacity of an epstein-barr virus abortive lytic cycle: potential contribution to viral tumorigenesis. Cancers, 10(4), 98.
Morrison, T. E., S. C. J. V. Kenney. (2004). BZLF1, an Epstein–Barr virus immediate–early protein, induces p65 nuclear translocation while inhibiting p65 transcriptional function. Virology, 328(2), 219-232.
Nemerow, G. R., C. Mold, V. K. Schwend, V. Tollefson, N. R. Cooper. (1987). Identification of Gp350 as the Viral Glycoprotein Mediating Attachment of Epstein-Barr-Virus (Ebv) to the Ebv/C3d Receptor of B-Cells - Sequence Homology of Gp350 and C3-Complement Fragment C3d. Journal of Virology, 61(5), 1416-1420.
Niedobitek, G., L. S. Young, C. K. Sam, L. Brooks, U. Prasad, A. B. Rickinson. (1992). Expression of Epstein-Barr virus genes and of lymphocyte activation molecules in undifferentiated nasopharyngeal carcinomas. American Journal of Pathology, 140(4), 879-887.
Nonoyama, M., C. H. Huang, J. S. Pagano, G. Klein, S. Singh. (1973). DNA of Epstein-Barr virus detected in tissue of Burkitt's lymphoma and nasopharyngeal carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 70(11), 3265-3268.
Ohtake, F., Y. Saeki, S. Ishido, J. Kanno, K. J. M. C. Tanaka. (2016). The K48-K63 branched ubiquitin chain regulates NF-κB signaling. Molecular Cell, 64(2), 251-266.
Ohtake, F., H. Tsuchiya. (2017). The emerging complexity of ubiquitin architecture. The Journal of Biochemistry, 161(2), 125-133.
Ohtake, F., H. Tsuchiya, Y. Saeki, K. Tanaka. (2018). K63 ubiquitylation triggers proteasomal degradation by seeding branched ubiquitin chains. Proceedings of the National Academy of Sciences of the United States of America, 115(7), E1401-E1408.
Owerbach, D., E. M. Mckay, E. T. Yeh, K. H. Gabbay, K. M. J. B. Bohren, B. R. Communications. (2005). A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochemical and Biophysical Research Communications, 337(2), 517-520.
Packham, G., A. Economou, C. M. Rooney, D. T. Rowe, P. J. Farrell. (1990). Structure and function of the Epstein-Barr virus BZLF1 protein. Journal of Virology, 64(5), 2110-2116.
Peng, J., D. Schwartz, J. E. Elias, C. C. Thoreen, D. Cheng, G. Marsischky, . . . S. P. Gygi. (2003). A proteomics approach to understanding protein ubiquitination. Nature Biotechnology, 21(8), 921-926.
Petosa, C., P. Morand, F. Baudin, M. Moulin, J.-B. Artero, C. W. J. M. C. Müller. (2006). Structural basis of lytic cycle activation by the Epstein-Barr virus ZEBRA protein. Molecular Cell, 21(4), 565-572.
Pfüller, R., W. J. J. O. V. Hammerschmidt. (1996). Plasmid-like replicative intermediates of the Epstein-Barr virus lytic origin of DNA replication. Journal of Virology, 70(6), 3423-3431.
Poukka, H., P. Aarnisalo, H. Santti, O. A. Jänne, J. J. J. J. O. B. C. Palvimo. (2000). Coregulator small nuclear RING finger protein (SNURF) enhances Sp1-and steroid receptor-mediated transcription by different mechanisms. Journal of Biological Chemistry, 275(1), 571-579.
Rooney, C., J. G. Howe, S. H. Speck, G. Miller. (1989). Influence of Burkitt's lymphoma and primary B cells on latent gene expression by the nonimmortalizing P3J-HR-1 strain of Epstein-Barr virus. Journal of Virology, 63(4), 1531-1539.
Sadowski, M., R. Suryadinata, A. R. Tan, S. N. A. Roesley, B. J. I. L. Sarcevic. (2012). Protein monoubiquitination and polyubiquitination generate structural diversity to control distinct biological processes. IUBMB Life, 64(2), 136-142.
Sarangi, P., X. J. T. I. B. S. Zhao. (2015). SUMO-mediated regulation of DNA damage repair and responses. Trends in Biochemical Sciences, 40(4), 233-242.
Sarisky, R. T., Z. Gao, P. M. Lieberman, E. D. Fixman, G. S. Hayward, S. D. J. J. O. V. Hayward. (1996). A replication function associated with the activation domain of the Epstein-Barr virus Zta transactivator. Journal of Virology, 70(12), 8340-8347.
Sarwari, N. M., J. D. Khoury, C. M. R. J. B. H. Hernandez. (2016). Chronic Epstein Barr virus infection leading to classical Hodgkin lymphoma. BMC Hematology, 16(1), 1-6.
Sato, Y., T. Kamura, N. Shirata, T. Murata, A. Kudoh, S. Iwahori, . . . T. Tsurumi. (2009). Degradation of phosphorylated p53 by viral protein-ECS E3 ligase complex. PLoS Pathogens, 5(7), e1000530.
Schepers, A., D. Pich, W. J. V. Hammerschmidt. (1996). Activation of oriLyt, the lytic origin of DNA replication of Epstein–Barr virus, by BZLF1. Virology, 220(2), 367-376.
Schneider-Poetsch, T., J. Ju, D. E. Eyler, Y. Dang, S. Bhat, W. C. Merrick, . . . J. O. J. N. C. B. Liu. (2010). Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nature Chemical Biology, 6(3), 209-217.
Schoenfeld, A. R., S. Apgar, G. Dolios, R. Wang, S. A. Aaronson. (2004). BRCA2 is ubiquitinated in vivo and interacts with USP11, a deubiquitinating enzyme that exhibits prosurvival function in the cellular response to DNA damage. Molecular and Cellular Biology, 24(17), 7444-7455.
Scott, J. R. J. V. (1968). Genetic studies on bacteriophage P1. Virology, 36(4), 564-574.
Shaw, G., S. Morse, M. Ararat, F. L. J. T. F. J. Graham. (2002). Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB Journal, 16(8), 869-871.
Sixbey, J. W., J. G. Nedrud, N. Raabtraub, R. A. Hanes, J. S. Pagano. (1984). Epstein-Barr Virus-Replication in Oropharyngeal Epithelial-Cells. New England Journal of Medicine, 310(19), 1225-1230.
Smatti, M. K., D. W. Al-Sadeq, N. H. Ali, G. Pintus, H. Abou-Saleh, G. K. J. F. I. O. Nasrallah. (2018). Epstein–Barr virus epidemiology, serology, and genetic variability of LMP-1 oncogene among healthy population: an update. Frontiers in Oncology |, 8, 211.
Speck, S. H., T. Chatila, E. J. T. I. M. Flemington. (1997). Reactivation of Epstein-Barr virus: regulation and function of the BZLF1 gene. Trends in Microbiology, 5(10), 399-405.
Stewart, M. D., T. Ritterhoff, R. E. Klevit, P. S. J. C. R. Brzovic. (2016). E2 enzymes: more than just middle men. Cell Research, 26(4), 423-440.
Sun, H., T. J. J. O. B. C. Hunter. (2012). Poly-small ubiquitin-like modifier (PolySUMO)-binding proteins identified through a string search. Journal of Biological Chemistry, 287(50), 42071-42083.
Sun, H., J. D. Leverson, T. J. T. E. J. Hunter. (2007). Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. The EMBO Journal, 26(18), 4102-4112.
Swatek, K. N., D. J. C. R. Komander. (2016). Ubiquitin modifications. Cell Research, 26(4), 399-422.
Tatham, M. H., M.-C. Geoffroy, L. Shen, A. Plechanovova, N. Hattersley, E. G. Jaffray, . . . R. T. J. N. C. B. Hay. (2008). RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nature Cell Biology, 10(5), 538-546.
Tatham, M. H., E. Jaffray, O. A. Vaughan, J. M. Desterro, C. H. Botting, J. H. Naismith, R. T. J. J. O. B. C. Hay. (2001). Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. Journal of Biological Chemistry, 276(38), 35368-35374.
Taxman, D. J., C. B. Moore, E. H. Guthrie, M. T.-H. Huang. (2010). Short hairpin RNA (shRNA): design, delivery, and assessment of gene knockdown. In RNA therapeutics (pp. 139-156): Springer.
Theliao, T. L., C. Y. Wu, W. C. Su, K. S. Jeng, M. M. Lai. (2010). Ubiquitination and deubiquitination of NP protein regulates influenza A virus RNA replication. The EMBO Journal, 29(22), 3879-3890.
Tsai, A. Raykova, O. Klinke, K. Bernhardt, K. Gartner, C. S. Leung, . . . H. J. Delecluse. (2013). Spontaneous Lytic Replication and Epitheliotropism Define an Epstein-Barr Virus Strain Found in Carcinomas. Cell Reports, 5(2), 458-470.
Tsai, S. C., S. J. Lin, P. W. Chen, W. Y. Luo, T. H. Yeh, H. W. Wang, . . . C. H. Tsai. (2009). EBV Zta protein induces the expression of interleukin-13, promoting the proliferation of EBV-infected B cells and lymphoblastoid cell lines. Blood, 114(1), 109-118.
Urier, G., M. Buisson, P. Chambard, A. Sergeant. (1989). The Epstein-Barr virus early protein EB1 activates transcription from different responsive elements including AP-1 binding sites. The EMBO Journal, 8(5), 1447-1453.
Wang, Y. (2014). RING finger protein 4 (RNF4) derepresses gene expression from DNA methylation. Journal of Biological Chemistry, 289(49), 33808-33813.
Wen, W., D. Iwakiri, K. Yamamoto, S. Maruo, T. Kanda, K. Takada. (2007). Epstein-Barr virus BZLF1 gene, a switch from latency to lytic infection, is expressed as an immediate-early gene after primary infection of B lymphocytes. Journal of Virology, 81(2), 1037-1042.
Whitehurst, C. B., S. Ning, G. L. Bentz, F. Dufour, E. Gershburg, J. Shackelford, . . . J. S. Pagano. (2009). The Epstein-Barr virus (EBV) deubiquitinating enzyme BPLF1 reduces EBV ribonucleotide reductase activity. Journal of Virology, 83(9), 4345-4353.
Wilkinson, K. A., J. M. Henley. (2010). Mechanisms, regulation and consequences of protein SUMOylation. Biochemical Journal, 428(2), 133-145.
Wille, C. K., D. M. Nawandar, A. R. Panfil, M. M. Ko, S. R. Hagemeier, S. C. Kenney. (2013). Viral genome methylation differentially affects the ability of BZLF1 versus BRLF1 to activate Epstein-Barr virus lytic gene expression and viral replication. Journal of Virology, 87(2), 935-950.
Xiao, J. Q., J. M. Palefsky, R. Herrera, J. Berline, S. M. Tugizov. (2009). EBV BMRF-2 facilitates cell-to-cell spread of virus within polarized oral epithelial cells. Virology, 388(2), 335-343.
Yamaguchi, T., J. Kimura, Y. Miki, K. J. J. O. B. C. Yoshida. (2007). The deubiquitinating enzyme USP11 controls an IκB kinase α (IKKα)-p53 signaling pathway in response to tumor necrosis factor α (TNFα). Journal of Biological Chemistry, 282(47), 33943-33948.
Yang, Y.-C., T.-H. Feng, T.-Y. Chen, H.-H. Huang, C.-C. Hung, S.-T. Liu, L.-K. J. J. O. G. V. Chang. (2015). RanBPM regulates Zta-mediated transcriptional activity in Epstein–Barr virus. Journal of General Virology, 96(8), 2336-2348.
Yang, Y. C., Y. Yoshikai, S. W. Hsu, H. Saitoh, L. K. Chang. (2013). Role of RNF4 in the ubiquitination of Rta of Epstein-Barr virus. Journal of Biological Chemistry, 288(18), 12866-12879.
Yin, Y. L., A. Seifert, J. S. Chua, J. F. Maure, F. Golebiowski, R. T. Hay. (2012). SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage. Genes Development, 26(11), 1196-1208.
Zheng, N., N. J. a. R. O. B. Shabek. (2017). Ubiquitin ligases: structure, function, and regulation. Annual Review of Biochemistry, 86, 129-157.
Zhong, S., S. MüLler, S. Ronchetti, P. S. Freemont, A. Dejean, P. P. J. B. Pandolfi, The Journal of the American Society of Hematology. (2000). Role of SUMO-1–modified PML in nuclear body formation. Blood, 95(9), 2748-2752.
Zur Hausen, H., F. J. O'neill, U. K. Freese, E. Hecker. (1978). Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature, 272(5651), 373-375.
徐詩媁. (2013). TRIM5a 對 EB病毒溶裂發展的影響. 國立臺灣大學碩士論文.
陳紀元. (2017). USP11 對EB病毒Rta及Zta的泛素化所扮演的角色. 國立臺灣大學碩士論文.
楊雅君. (2013). 泛素化修飾與EB病毒Rta及Zta的協同作用. 國立臺灣大學博士論文.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78884-
dc.description.abstractEB 病毒 (Epstein-Barr Virus, EBV),又稱作第四型人類皰疹病毒 (Human Herpesvirus 4, HHV-4),是在人類首度發現的 DNA 致癌病毒,會感染全球九成以上人口。EBV 的生活史主要分成潛伏期 (Latency) 與溶裂期 (Lytic stage),在溶裂期時 EBV 會表現由 BZLF1 基因轉錄轉譯出的轉錄因子 Zta 來活化溶裂期基因的表現。Zta 偏好活化啟動子被甲基化修飾的基因表現使 EBV 進入生產循環 (productive cycle),且 Zta 可以直接結合到複製起始點 oriLyt 並與其它蛋白質形成複合體以活化溶裂期複製。先前研究已指出 Zta 會被接上類泛素 (Small Ubiquitin-like Modifier, SUMO),被類泛素化修飾的 Zta 其轉錄活性會受到抑制。本研究發現 Zta 的泛素化修飾且其泛素化修飾和泛素-蛋白酶體系統 (ubiquitin-preoteasome system, UPS) 有關。Zta 與 RNF4 會於體內及體外結合。在過量表達 RNF4 的情況下,Zta 的泛素化程度會顯著提高,顯示 RNF4 是 Zta 的泛素連接酶。若將 Zta 上的離氨酸 (lysine) 12位點突變後,Zta 的泛素化程度會因此減少。同時本研究發現在敲落 (knockdown) USP11 基因表現的情況下,Zta的泛素化程度會升高,推測 USP11 與 RNF4 在 Zta 的泛素化修飾上存在拮抗的關係。另外本研究發現過量表現 RNF4 會降低 Zta 在細胞中的穩定性,而 ZK12R 的穩定性並不受影響。最後,敲落USP11 基因表現後會使溶裂期蛋白質的表現量衰減。這些結果顯示 RNF4 與 USP11 在 Zta 泛素化修飾的重要性,且對 EBV 的溶裂期進展有著關鍵性的影響。zh_TW
dc.description.abstractEpstein-Barr virus (EBV), also known as Human Herpesvirus 4 (HHV-4), is a human oncovirus which infects 90 percent of global population. The life cycle of EBV can be divided into two stages: latency and lytic cycle. During the lytic stage, EBV expresses Zta, which is a transcription factor encoded by BZLF1, to activate the transcription of lytic genes. Zta preferentially activates the methylated genes, allowing EBV to enter the productive cycle. Zta also binds to oriLyt directly as well as forms the replication complex with other proteins to activate lytic replication. Previous study indicated that Zta is conjugated to SUMOs to repress its transcriptional activity. This study finds that Zta is ubiquitinated and its ubiquitination is involved in ubiquitin-proteasome degradation pathway. Zta also interacts with RNF4 in vivo and in vitro. Overexpression of RNF4 enhanced the ubiquitination of Zta, revealing that RNF4 is an ubiquitin E3 ligase of Zta. Moreover, the levels of ubiquitinated Zta was reduced when lysine 12 residue on Zta is mutated (ZK12R). Additionally, knockdown of USP11 expression increased the levels of ubiquitinated Zta, suggesting that USP11 counteracts the effect of RNF4 on Zta’s ubiquitination. This study also finds that overexpression of RNF4 decreased the stability of Zta, but not that of ZK12R. Finally, knockdown of USP11 gene expression attenuated the expression of lytic proteins. Results of this study suggest the importance of RNF4 and USP11 in the ubiquitination of Zta, which is crucial for the lytic progression of EBV.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:26:33Z (GMT). No. of bitstreams: 1
U0001-1808202018030600.pdf: 2625228 bytes, checksum: 71dafa5947674b2430caf4e105e0f084 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents目錄
致謝 i
摘要 ii
Abstract iii
常用縮寫表 iv
背景介紹 1
1. Epstein-Barr virus (EBV) 1
2. EBV 的生活史 2
3. EBV 的溶裂期 3
4. EBV 的溶裂期極早期蛋白質 Rta 與 Zta 4
5. 轉譯後修飾 6
6. 泛素化修飾與類泛素化修飾 7
7. RNF4 9
8. USP11 10
9. 泛素化修飾對 EBV 的影響 11
研究目的 12
材料與方法 13
1. 細胞株與菌種 13
2. 質體 14
3. 質體 DNA 的萃取 14
4. 細胞轉染 (Transient transfection) 14
5. 抑制細胞內 USP11 基因的表現 14
6. 西方墨點法分析 (Western blotting) 15
7. 共免疫沉澱法 (Co-immunoprecipitation assay) 15
8. 變性免疫沉澱法 (Denaturing immunoprecipitation assay) 16
9. 螢光酶活性分析 (Luciferase activity assay) 16
10. 蛋白質穩定性測試 17
結果 18
1. Zta 的泛素化修飾 18
2. RNF4 對 Zta 與 ZK12R 泛素化修飾的影響 18
3. RNF4 的 SIM序列對 Zta 泛素化修飾的影響 20
4. USP11 對RNF4活性的影響 20
5. RNF4 對 Zta 穩定性的影響 21
6. RNF4 對 Zta 轉錄活性的影響 22
7. USP11 與 EBV 的溶裂期進展 22
討論 24
1. Zta 會被泛素化修飾 24
2. RNF4 是 Zta 的泛素連接酶 25
3. USP11會拮抗 RNF4 的活性 27
4. RNF4 會降低 Zta 的穩定性 28
5. USP11會提升 EBV 溶裂期蛋白質的表現量 29
6. 結論 30
圖表 31
表一、 本研究使用的質體 31
表二、 本研究使用的抗體 33
圖一、 經 MG132 處理後 Zta 泛素化修飾的累積 34
圖二、 RNF4 與 Zta 的泛素化修飾 35
圖三、 Zta 與 RNF4 的結合 36
圖四、 抑制 USP11 表現後對 Zta 泛素化修飾的影響 37
圖五、 USP11 與RNF4 對 Zta 泛素化修飾的影響 38
圖六、 RNF4 對 Zta 穩定性的影響 39
圖七、 抑制 USP11 對 EBV 溶裂期蛋白質的影響 40
圖八、 RNF4 與 RNF4-mSIM 對 Zta 泛素化修飾的影響 41
圖九、 MG132 對 Zta 類泛素化修飾的影響 42
圖十、 RNF4 或 RNF4-CS1 對 Zta 活化含有 ZRE 啟動子的影響 43
圖十一、 USP11 對 Zta 穩定性的影響 44
圖十二、 RNF4 與 USP11 調控 Zta 泛素化修飾的模型 45
參考文獻 46
附錄 67
附錄一、 Zta 對 EBV 溶裂期基因的影響 67
附錄二、 泛素化修飾 68
附錄三、 MG132 處理與 USP11 抑制後 Zta 的泛素化修飾 69
附錄四、 RNF4 與 Zta 於體內體外的結合 70
dc.language.isozh-TW
dc.subjectRNF4 泛素連接酶zh_TW
dc.subjectEB 病毒zh_TW
dc.subjectZta 蛋白質zh_TW
dc.subject泛素化修飾zh_TW
dc.subjectUSP11 去泛素化酶zh_TW
dc.subjectRNF4en
dc.subjectZtaen
dc.subjectEpstein-Barr Virus (EBV)en
dc.subjectUSP11en
dc.subjectubiquitinationen
dc.titleRNF4 及 USP11 對 EBV Zta 泛素化修飾的調控zh_TW
dc.titleRegulation of the ubiquitination of Zta of Epstein-Barr virus by RNF4 and USP11en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉世東(Shih-Tung Liu),張沛鈞(Pey-Jium Chang),陳美如(Mei-Ru Chen),廖憶純(Yi-Chun Liao)
dc.subject.keywordEB 病毒,Zta 蛋白質,泛素化修飾,RNF4 泛素連接酶,USP11 去泛素化酶,zh_TW
dc.subject.keywordEpstein-Barr Virus (EBV),Zta,ubiquitination,RNF4,USP11,en
dc.relation.page70
dc.identifier.doi10.6342/NTU202004017
dc.rights.note有償授權
dc.date.accepted2020-08-20
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
dc.date.embargo-lift2025-08-21-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
U0001-1808202018030600.pdf
  未授權公開取用
2.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved