Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78870
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 賴喜美 | |
dc.contributor.author | Shing-Yun Chang | en |
dc.contributor.author | 張馨云 | zh_TW |
dc.date.accessioned | 2021-07-11T15:25:30Z | - |
dc.date.available | 2028-12-25 | |
dc.date.copyright | 2018-12-21 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-12-17 | |
dc.identifier.citation | 洪偉峰。2012。以逐層自組裝多層膜奈米塗佈技術開發含活性物質之高功能性澱粉膜。國立台灣大學生物資源暨農學院農業化學系,碩士論文。
21 C.F.R. §178.3520. (2017) (as revised in 2017). Part 178-Indirect Food Additives: Adjuvants, production aids, and sanitizers. Title 21, Volume 3. U.S. Food & Drug Administration. AACC. (2000). Approved methods of the AACC, 10th ed. Method 46-12. St. Paul, Minnesota: American Association of Cereal Chemists, Inc. AACC. (2000). International Approved Methods of Analysis. 11th ed. Method 76-21.01. General Pasting Method for Wheat or Rye Flour or Starch Using the Rapid Visco Analyzer. AACC International; St. Paul, MN, USA. Achayuthakan, P., Suphantharika, M., BeMiller, J. N. 2012. Confocal laser scanning microscopy of dextran-rice starch mixtures. Carbohydrate Polymers, 87, 557-563. AOAC. (2000). Official Methods of analysis of AOAC international, 17th edition. Method 992.23. Combustion method. AOAC International, Gaithersburg, MD, USA. AOAC. (2000). Official Methods of analysis of AOAC international, 17th edition. Method 991.43. Total dietary fiber enzymatic gravimetric method. AOAC International, Gaithersburg, MD, USA. Ariga, K., Hill, J. P., &Ji, Q. M. (2007). Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Physical ChemicalPhysics, 9, 2319-2340. Atkin, N. J., Abeysekera, R. M., Robards, A. W. (1998). The event leading to the formation of ghost remnants from the starch granule surface and the contribution of the granule surface to the gelatinization endotherm. Carbohydrate Polymers, 36, 193-204. Avérous, L., & Pollet, E. (2011). Biorenewable nanocomposites. MRS BULLETIN 36: 703-710. Bagaria, H. G., & Wong, M. S. (2011). Polyamine-salt aggregate assembly of capsules as responsive drug delivery vehicles. Journal of Materials Chemistry, 21, 9454-9466. Baker, W. O. (1949). Microgel, a new macromolecule. Industrial Engineering Chemistry, 41, 511-520. Batchelor, G. K. (1977). The effect of Brownian motion on the bulk stress in a suspension of spherical particles. Journal of Fluid Mechanics, 83, 97-117. Benchabane, A., & Bekkour, K. (2008). Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid Polym Sci, 286, 1173-1180. Blazek, J., & Gilbert, E. P. (2011). Application of small-angle X-ray and neutron scattering techniques to the characterization of starch structure: A review. Carbohydrate Polymers, 85, 281-293. Borrega, R., Cloitre, M., Betremieux, I., Ernst, B., Leibler, L. (1999). Concentration dependence of the low-shear viscosity of polyelectrolyte micro-networks: From hard spheres to soft microgels. Europhys. Lett., 47, 729-735. Carosio, F., Fontaine, G., Alongi, J., & Bourbigot, S. (2015). Starch-based layer by layer assembly: Efficient and sustainable approach to cotton fire protection. ACS Applied Materials & Interfaces, 7, 12158-12167. Cazón, P., Velazquez, G., Ramírez, J. A., & Vázquez, M. (2017). Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids, 68, 136-148. Chang, C., He, M., Zhou, J., & Zhang, L. (2011). Swelling behaviors of pH- and salt-responsive cellulose-based hydrogels. Macromolecules, 44, 1642-1648. Chang, S-Y., Lai, H-M. (2016). Effect of trisodium citrate on swelling property and structure of cationic starch thin film. Food Hydrocolloids, 56, 254-265. Chen, H., Ouyang, W., Martoni, C., &Prakash, S. (2009). Genipin cross-linked polymeric alginate-chitosan microcapsules for oral delivery: In-vitro analysis. International Journal of Polymer Science, 2009, 1-12. Chung, H-J., Woo, K-S., & Lim, S-T. (2004). Glass transition and enthalpy relaxation of cross-linked corn starches. Carbohydrate Polymers, 55, 9-15. C ̌i ́z ̌ova ́, A., Nes ̌c ̌a ́kova ́, Z., Malovi ́kova ́, A., & Bystricky ́, S. (2016). Preparation and characterization of cationic and amphoteric mannans from Candida albicans. Carbohydrate Polymers, 149, 1-7. Cunha, A. G., & Gandini, A. (2010). Turning polysaccharides into hydrophobic materials : A critical review. Part 2. Hemicellulose, chitin/chitosan, starch, pectin and alginates. Cellulose, 17, 1045-1065. Dean, J. A. (1985). Lange’s Handbook of Chemistry, 13th edition, McGraw-Hill Book Co. New York, NY. Debet, M. R., Gidley, M. J. (2007). Why do gelatinized starch granules not dissolve completely? Roles for amylose, protein, and lipid in granule “ghost” integrity. Journal of Agricultural and Food Chemistry, 55, 4752-4760. Dhar, N., Akhlaghi, S. P., Tam, K. C. (2012). Biodegradable and biocompatible polyampholyte microgels derived from chitosan, carboxymethyl cellulose and modified methyl cellulose. Carbohydrate Polymers 87, 101-109. Duan, DX., Donner, E., Liu, Q., Smith, DC., & Ravenelle, F. (2012). Potentiometric titration for determination of amylose content of starch – A comparison with colorimetric method. Food Chemistry, 130, 1142-1145. Dziechciarek, Y., van Soest, J. J. G., Philipse, A. P. (2002). Preparation and properties of starch-based colloidal microgels. Journal of Colloid and Interface Science, 246, 48-59. EPA. (1994). In: Crees, J. T., Brockhoff, C. A., Marin, T. D. (Eds.), Method 200.8: Determination of trace elements in waters and wastes by inductively coupled plasma-mass spectrometry, Cincinnati, OH, USA. Eronen, P., Laine, J., Ruokolainen, J., & Österberg, M. (2012). Comparison of multilayer formation between different cellulose nanofibrils and cationic polymers. Journal of Colloid and Interface Science, 373, 84-93. Evans, I. D., & Lips, A. (1992). Viscoelasticity of gelatinized starch dispersions. Journal of Texture Studies, 23, 69-86. FitzGerald, P. A., Amalvy, J. I., Armes, S. P., & Wanless, E. J. (2008). Film-forming microgels for pH-triggered capture and release. Langmuir, 24, 10228-10234. Follain, A., Joly, C., Dole, P., & Bliard, C. (2005). Mechanical properties of starch-based materials. I. Short review and complementary experimental analysis. Journal Application Polymer Science, 97, 1783-1794. Gillies, E. R., Goodwin, A. P., & Frechet, J. M. J. (2004). Acetals as pH-sensitive linkages for drug delivery. Bioconjugate Chem., 15, 1254-1263. Graham, N. B., Cameron, A. (1998). Nanogels and microgels: The new polymeric materials playground. Pure & Appl. Chem., 70, 1271-1275. Gruber, J. V. (1999). Synthetic polymers in cosmetics (Chapter 6). In Principles of polymer science and technology in cosmetics and personal care. Published by Marcel Dekker, Inc. New York. Grujic ́,R., Vujadinovic ́, D., & Savanovic ́, D. (2017). Biopolymer as food packaging materials. In: Pellicer E. et al. (eds) Advances in Applications of Industrial Biomaterials, 139-160. Han, J., Cheng, F., Wang, X., & Wei, Y. (2012). Solution properties and microstructure of cationic cellulose/sodium dodecyl benzene sulfonate complex system. Carbohydrate Polymers, 88, 139-145. Han, U., Seo, Y., & Hong, J. (2016). Effect of pH on the structure and drug release profiles of layer-by-layer assembled films containing polyelectrolyte, micelles, and grapheme oxide. Scientific Reports DOI: 10.1038/srep24158. Hao, X., Wang, W. H., Yang, Z., Yue, L., Sun, H., Wang, H., Guo, Z., Cheng, F., Chen, S. (2019). pH responsive antifouling and antibacterial multilayer films with self-healing performance. Chemical Engineering Journal, 356, 130-141. Harsha, P.S.C. S., Khan, M. I., Prabhakar, P., & Giridhar, P. (2013). Cyanidin-3-glucoside, nutritionally important constituents and in vitro antioxidant activities of Santalum album L. berries. Food Research International, 50, 275-281. Hashide, R., Yoshida, K., Hasebe, Y., Takahashi, S., Sato, K., & Anzai, J-i. (2012). Insulin-containing layer-by-layer films deposited on poly(lactic acid) microbeads for pH-controlled release of insulin. Colloids and Surfaces B: Biointerfaces 89, 242-247. Hashmi, S. M., Dufresne, E. (2009). Mechanical properties of individual microgel particles through the deswelling transition. Soft Matter, 5, 3682-3688. Heinze, T., Haack, V., & Rensing, S. (2004). Starch derivatives of high degree of functionalization. 7. Preparation of cationic 2-hydroxypropyltrimethylammonium chloride starch. Starch/Stärke 56, 228-296. Holtz, J. H., & Asher, S. A. (1997). Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature, 389, 829-832. Hong, J., Kim, B-S., Char, K., & Hammond, PT. (2011). Inherent charge-shifting polyelectrolyte multilayer blends: A facile route for tunable protein release from surfaces. Biomacromolecules, 12, 2975-2981. Horkay, F., & Basser, P. J. (2008). Ionic and pH effects on the osmotic properties and structure of polyeletrolyte gels. Journal of Polymer Science: Part B: Polymer Physics, 46, 2803-2810. Hsu, BB., Hagerman, SR., Jamieson, K., Veselinovic, J., O’Neill, N., Holler, E., Ljubimova, JY., & Hammond, PT. (2014). Multilayer films assembled from naturally-derived material for controlled protein release. Biomacromolecules, 15, 2049-2057. Hu, Y., Wang, Q., Wang, J., Zhu, J., Wang, H., Yang, Y. (2012). Shape controllable microgel particles prepared by microfluidic combining external ionic crosslinking. Biomicrofluidics, 6, 026502. Huang, H. K., Sheu, H. S., Chuang, W. T., Jeng, U., Su, A. C., Wu, W. R., Liao, K. F., Chen, C. Y., Chang, S. Y., & Lai, H. M. (2014). Correlated changes in structure and viscosity during gelatinization and gelation of tapioca starch granules. IUCrJ, 1, 418-428. Hule, R. A., Nagarkar, R. P., Hammouda, B., Schneider, J. P., & Pochan, D. J. (2009). Dependence of self-assembled peptide hydrogel network structure on local fibril nanostructure. Macromolecules, 42, 7137-7145. Jang, Y., Akgun, B., Kim, H., Satija, S., & Char, K. (2012). Controlled release from model blend multilayer films containing mixtures of strong and weak polyelectrolytes. Macromolecules, 45, 3542-3549. Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Edible and biodegradable starch films: A review.Food and Bioprocess Technology, 5, 2058-2076. Johansson, E., & Wågberg, L. (2012). Tailoring the mechanical properties of starch-containing layer-by-layer films. Colloids and Surface A: Physicochem. Eng. Aspects, 392, 14-22. Ketz, R. J., Rrud’homme, R. K., & Graessley, W. W. (1988). Rheology of concentrated microgel solutions. Rheol Acta, 27, 531-539. Khare, A. R., & Peppas, N. A. (1995). Swelling/deswelling of anionic copolymer gels. Biomaterials, 16, 559-567. Kijchavengkul, T., & Auras, R. (2008). Perspective compostability of polymers. Polymer International, 57, 793-804. Klinger, D., & Landfester, K. (2012). Stimuli-responsive microgels for the loading and release of functional compounds: Fundamental concepts and applications. Polymer, 53, 5209-5231. Knill, C. J., & Kennedy, J. F. 2005. Starch: Commercial sources and derive products. In 'Polysaccharides: Structure diversity and functional versatility,' 2nd edition, Dumitriu, S. (Ed)., Marcel Dekker: New York, USA. Chapter 25. Koizumi, S., Tomita, Y., Kondo, T., & Hashimoto, T. (2009). What factors determine hierarchical structure of microbial cellulose – Interplay among physics, chemistry and biology. Macromolecular Symposia, 279, 110-118. Kozlovskaya, V., Kharlampieva, E., Erel, I., & Sukhishvili, S. A. (2009). Multilayer-derived, ultrathin, stimuli-responsive hydrogels. Soft Matter, 5, 4077-4087. Krieger, I. M., Dougherty, T. J. (1959). A mechanism for non-Newtonian flow in suspensions of rigid spheres. Transactions of the Society of Rheology, 3, 137-152. Kuo, W-Y., & Lai, H-M. (2007). Changes of property and morphology of cationic corn starches. Carbohydrate Polymers, 69, 544-553. Kuo, W-Y., & Lai, H-M. (2009). Effects of reaction conditions on the physicochemical properties of cationic starch studied by RSM. Carbohydrate Polymers, 75, 627-635. Landfester, K., & Musyanovych, A. (2010). Hydrogels in miniemulsions. Adv Polym Sci, 234, 39-63. Lee, J. H., Lee, H-J., & Choung, M-G. (2011). Anthocyanin compositions and biological activities from the red petals of Korean edible rose (Rosa hybrida cv. Noblered). Food Chemistry, 129, 272-278. Lee, J., Durst, R. W., & Wrolstad, R. E. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. Journal of AOAC International, 88, 1269-1278. Lehmann, A., Volkert, B., Fischer, S., Schrader, A., Nerenz, H. (2008). Starch based thickening agents for personal care and surfactant systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 331, 150-154. Li, G., Fu, Y., Shao, Z., Zhang, F., & Qin, M. (2015). Preparing cationic cellulose derivative in NaOH/Urea aqueous solution and its performance as filler modifier. BioResources, 10, 7782-7794. Li, Y., de Vries, R., Slaghek, T., Timmermans, J., Stuart, M. A. C., & Norde, W. (2009). Preparation and characterization of oxidized starch polymer microgels for encapsulation and controlled release of functional ingredients. Biomacromolecules, 10, 1931-1938. Li, Y., Kleijn, J. M., Stuart, M. A. C., Slaghek, T., Timmermans, J., & Norde, W. (2011). Mobility of lysozyme inside oxidized starch polymer microgels. Soft Matter, 7, 1926-1935. Li, Y., Norde, W., & Kleijn, J. M. (2012). Stabilization of protein-loaded starch microgel by polyelectrolytes. Langmuir, 28, 1545-1551. Liu, R. C. W., Morishima, Y., & Winnik, F. M. (2002). Rheological properties of mixtures of oppositely charged polyelectrolytes. A study of the interactions between a cationic cellulose ether and a hydrophobically modified poly[sodium2-(acrylamido)-2-methylpropanesulfonate]. Polymer Journal, 34, 340-346. Lundström-Hämälä, L., Johansson, E., & Wågberg, L. (2010). Polyelectrolyte multilayer from cationic and anionic starch: Influence of charge density and salt concentration on the properties of the adsorbed layers. Starch/Stärke, 62, 102-114. Makhlouf, A. S. H., & Abu-Thabit, N. Y. (2018). Stimuli responsive polymeric nanocarriers for drug delivery applications. 1st Edition. Published by Woodhead Publishing, Duxford, UK. Manelius, R., Nurmi, K., & Bertoft, E. (2000). Enzymatic and acidic hydrolysis of cationized waxy maize starch granules. Cereal Chemistry, 77, 345-353. Manoi, K., & Rizvi, S. S. H. (2010). Physicochemical characteristics of phosphorylated cross-linked starch produced by reactive supercritical fluid extrusion. Carbohydrate Polymers, 81, 687-694. McAloney, R. A., Sinyor, M., Dudnik, V., & Goh, M. C. (2001). Atomic Force Microscopy Studies of Salt Effects on Polyelectrolyte Multilayer Film Morphology. Langmuir, 17, 6655–6663 Merces, A. (2013). Thickener systems for personal care and other cleansing compositions. US patent 20130252875A1. Metzner, A. B. (1985). Rheology of suspensions in polymeric liquids. Journal of Rheology, 29, 739-775. Missirlis, D., Tirelli, N., Hubbell, J. A. (2005). Amphiphilic hydrogel nanoparticles. Preparation, characterization, and preliminary assessment as new colloidal drug carriers. Langmuir, 21, 2605-2613. Mohanta, V., & Patil, S. (2013). Enhancing surface coverage and growth in layer-by-layer assembly of protein nanoparticles. Langmuir, 29, 13123-13128. Mohanta, V., Madras, G., & Patil, S. (2012). Layer-by-Layer Assembled Thin Film of Albumin Nanoparticles for Delivery of Doxorubicin. The Journal of Physical Chemistry C, 116, 5333-5341. Mueller, S., Llewellin, E. W., & Mader, H. M. (2010). The rheology of suspensions of solid particles. Proceedings of The Royal Scociety A, 466, 1201-1228. Murthy, V. S., Rana, R. K., & Wong, M. S. (2006). Nanoparticle-assembled capsule synthesis: Formation of colloidal polyamine-salt intermediates. The Journal of Physical Chemistry B, 110, 25619-25627. Nordqvist, D., & Vilgis, T. A. (2011). Rheological study of the gelation process of agarose-based solutions. Food Biophysics, 6, 450-460. Pavlukhina, S., & Sukhishvili, S. (2011). Polymer assemblies for controlled delivery of bioactive molecules from surfaces. Advance Drug Delivery Reviews, 63, 822-836. Pavlukhina, S., Lu, Y., Patimetha, A., Libera, M., & Sukhishvili, S. (2010). Polymer multilayer with pH-triggered release of antibacterial agents. Biomacromolecules 11, 3448-3456. Podaralla, S. K., Perumal, O. P., &Kaushik, R. S. (2009). Design and formulation of protein-based NPDDS. In 'Drug delivery nanoparticles formulation and characterization,' Pathak, Y., Thassu, D. (Ed). Chapter 6. Taylor & Francis Group: Boca Raton, FL, USA. Popescu, I., Pelin, I. M., Butnaru, M., Fundueanu, G., Suflet, D. M. (2013). Phophorylated curdlan microgels. Preparation, characterization, and in vitro drug release studies. Carbohydrate Polymers, 94, 889-898. Puupponen-Pimiä, R., Nohynek, L., Meier, C., Kähkönen, M., Heinonen, M., Hopia, A., & Oksman-Caldentey, K.-M. (2001). Antimicrobial properties of phenolic compounds from berries. Journal of Applied Microbiology, 90, 494-507. Revol, J. F., Bradford, H., Giasson, J., Marchessault, R. H., & Gray, D. G. (1992). Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int. J. Biol. Macromol. 14, 170-172. Roufik, S., Paquin, P., & Britten, M. (2005). Use of high-performance size exclusion chromatography to characterize protein aggregation in commercial whey protein concentrates. International Dairy Journal, 15, 231-241. Rutledge, J. E., Islam, M. N., & James, W. H. (1974). Improved canning stability of parboiled rice through cross-linking. Cereal Chemistry, 51, 46–51. Saito, T., Isogai, A. (2004). TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules, 5, 1983-1989. Salamon, K., Aumiler, D., Pabst, G., & Vuletic ́, T. (2013). Probing the mesh formed by the semirigid polyelectrolytes. Macromolecules, 46, 1107-1118. Sánchez-Díaz, J. C., Becerra-Bracamontes, F., González-Álvarez, A., Cruz-Barba, L. E., &Martínez-Ruvalcaba, A. (2010). Effect of sodium hexametaphosphate concentration on the swelling and controlled drug release properties of chitosan hydrogels. Journal of Applied Polymer Science, 117, 3595-3600. Sang, Y., Prakash, O., &Seib, P. A. (2007). Characterization of phosphorylated cross-linked resistant starch by 31P nuclear magnetic resonance (31P NMR) spectroscopy. Carbohydrate Polymers, 67, 201-212. Sapper, M., & Chiralt, A. (2018). Starch-based coatings for preservation of fruits and vegetables. Coatings, 8, 152-171. Seth, J. R., Mohan, L., Locatelli-Champagne, C., Cloitre, M., &Bonnecaze, R. T. (2011). A micromechanical model to predict the flow of soft particle glasses. Nature Materials, 10, 838-843. Shewan, H. M., & Stokes, J. R. (2013). Review of techniques to manufacture micro-hydrogel particles for the food industry and their applications. Journal of Food Engineering, 119, 781-792. Shewan, H. M., & Stokes, J. R. (2015). Viscosity of soft spherical micro-hydrogel suspensions. Journal of Colloid and Interface Science, 442, 75-81. Shu, X. Z., Zhu, K. J., & Song, W. (2001). Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release. International Journal of Pharmaceutics, 212, 19-28. Shukri, R. & Shi, Y-C. (2017). Structure and pasting properties of alkaline-treated phosphorylated cross-linked waxy maize starches. Food Chemistry, 214, 90-95. Singh, J., Kaur, L., & McCarthy, O. J. (2007). Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food Hydrocolloids, 21, 1–22. Smith, RC., Riollano, M., Leung, A., & Hammond, PT. (2009). Layer-by-layer platform technology for small-molecules delivery. Angew. Chem. Int. Ed., 48, 8974-8977. Sorrell, C. D., Carter M. C. D., & Serpe, M. J. (2011). Color tunable poly (N-Isopropylacrylamide)-co-acrylic acid microgel–Au hybrid assemblies. Adv. Funct. Mater., 21, 425–433. Stuart, M. A. C., Huck, W. T. S., Genzer, J., Muller, M., Ober, C., Stamm, Sukhorukov, G. B., Szleifer, I., Tsukruk, V. V., Urban, M., Winnik, F., Zauscher, F., Luzinov, I., & Minko, S. (2010). Emerging applications of stimuli-responsive polymer materials. Nature Materials, 9, 101-113. Tan, B. H., Tam, K. C., Lam, Y. C., &Tan, C. B. (2004). A semi-empirical approach for modeling charged soft microgel particles. Journal of Rheology, 48, 915-926. Tokarev, I., Tokareva, I., Gopishetty, V., Katz, E., & Minko, S. (2010). Specific biochemical-to-optical signal transduction by responsive thin hydrogel films loaded with noble metal nanoparticles. Advanced Materials, 22, 1412-1416. Trongsatitkul, T., &Budhlall, B. M. (2013). Microgels or microcapsules? Role of morphology on the release kinetics of thermoresponsive PNIPAm-co-PEGMa hydrogels. Polymer Chemistry, 4, 1502-1516. Turquois, T., Rochas, C., Taravel, F-R., Doublier, J. L., & Axelos, M-A-V. (1995). Small-angle X-ray scattering of k-carrageenan based systems: Sols, gels, and blends with carob galactomannan. Biopolymers, 36, 559-567. Uhl, F. M., Levchik, G. F., Levchik, S. V., Dick, C., Liggat, J. J., Snape, C E., & Wilkie, C. A. (2001). The thermal stability of cross-linked polymers: methyl methacrylate with divinylbenzene and styrene with dimethacrylates. Polymer Degradation and Stability, 71, 317-325. Wang, S., Chen, X., Shi, M., Zhao, L., Li, W., Chen, Y., Lu, M., Wu, J., Yuan, Q., &Li, Y. (2015). Absorption of whey protein isolated (WPI)-stabilized β-carotene emulsions by oppositely charged oxidized starch microgels. Food Research International, 67, 315-322. Wang, Z., Li, Y., Chen, L., Xin, X., & Yuan, Q. (2013). A study of controlled uptake and release of anthocyanins by oxidized starch microgels. Journal of Agricultural and Food Chemistry, 61, 5880-5887. Wei, L., Cai, C., Lin, J., &Chen, T. (2009). Dual-drug delivery system based on hydrogel/micelle composites. Biomaterials, 30, 2606-2613. Woo, K., & Seib, P. A. (1997). Cross-linking of wheat starch and hydroxypropylated wheat starch in alkaline slurry with sodium trimetaphosphate. Carbohydrate Polymers, 33, 263–271. Xu, YM., &Du, YM. (2003). Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. International Journal of Pharmaceutics 250, 215-226. Yang, Q.,Adrus, N., Tomicki, F., & Ulbricht, M. (2011). Composites of functional polymeric hydrogels and porous membranes. Journal of Materials Chemistry, 21, 2783-2811. Yao, Z. L., Grishkewich, N., & Tam, K. C. (2013). Swelling and shear viscosity of stimuli-responsive colloidal systems. Soft Matter, 9, 5319-5335. Yoo, S. H., & Jane, J. L. (2002). Molecular weights and gyration radii of amylopectins determined by high-performance size-exclusion chromatography equipped with multi-angle laser-light scattering and refractive index detectors. Carbohydrate Polymers, 49, 307-314. Yuan, W., & Li, C. M. (2010). Exponentially growing layer-by-layer assembly to fabricate pH-responsive hierarchical nanoporous polymeric film and its superior controlled release performance. Chem. Commun., 46, 9161-9163. Yusuf, A. A., Ayedun, H., & Logunleko, G. B. (2007). Functional properties of unmodified and modified Jack bean (Canavalia ensiformis) starches. Nigerian Food Journal, 25, 141-149. Zhang, B., Chen, L., Li, X., Li, L., Zhang, H. (2015). Understanding the multi-scale structure and functional properties of starch modulated by glow-plasma: A structure-functionality relationship. Food Hydrocolloids, 50, 228-236. Zhang, Y., Chi, C., Huang, X., Zou, Q., Li, X., & Chen, L. (2017). Starch-based nanocapsules fabricated through layer-by-layer assembly for oral delivery of protein to lower gastrointestinal tract. Carbohydrate Polymers, 171, 242-251. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78870 | - |
dc.description.abstract | 本論文中,正電澱粉與不同的負電交聯分子將用以製備pH應答型材料。將分別介紹以正電澱粉為基質的薄膜、微凝膠與多層薄膜三種材料,並觀察三者在不同環境下(如、離子強度與pH),因為靜電交聯調控的物性與結構變化。在製備薄膜與微凝膠試驗中,皆採用較低取代度(DS~0.12)的顆粒狀正電澱粉(gCS)。第三章中,探討不同正負電比例下添加的trisodium citrate (citrate)對於gCS薄膜膨潤能力的影響。實驗發現gCS薄膜的組成是由釋出的amylose形成連續相而未破損的膨潤顆粒分散其中,內部含有amylopectin。由成膜溶液的流變性質以及citrate-gCS薄膜的顯微外觀證實,citrate多累積在膨潤顆粒內,以靜電交聯調控gCS分子的pH應答膨潤行為。由小角度X光散射(SAXS)圖譜,進一步發現去質子化的citrate會導致分子鏈聚集而使SAXS圖譜low q範圍曲線強度上升,此聚集有助於增強薄膜的結構用以抵抗膨潤滲透壓,降低膨潤率。然而在裝載與釋放ampicillin的試驗中,因薄膜內的靜電交聯無法長時間穩定結構,使薄膜在5分鐘後開始溶出於溶液中。此一現象促使第四章中,決定引入交聯劑sodium trimetaphosphate (STMP)於部分糊化的gCS中穩定結構,用以製備球狀的正電澱粉微凝膠。實驗發現gCS經50°C部分糊化10 min,可以保存最多的完整膨潤顆粒,之後的STMP交聯也證實可增強微凝膠結構,長時間抵抗膨潤。此一微凝膠的膨潤體積能隨著交聯程度、離子強度與pH改變而改變。STMP交聯經鑑定後得知包含靜電交聯(unreacted STMP)以及化學交聯(distarch monophosphate),且交聯度都在添加的STMP/CS重量比> 0.1時達到飽和。在膨潤行為上,靜電交聯幾乎沒有顯著性影響,微凝膠的膨潤體積主要由多數的正電基團與化學交聯主導。此外,微凝膠的可變形性在高度交聯的微凝膠仍被觀察到,再次說明STMP形成化學交聯的能力是受限的。雖然微凝膠無法在食品與人體內常見的pH範圍內嶄露pH應答行為,但是低度交聯的微凝膠具有良好的增稠能力,可作為一天然來源的增稠劑。第五章中,改使用高取代度(DS~0.6)的正電澱粉。由一般玉米澱粉或高直鏈玉米澱粉,製備出多分支(NCS)與多直鏈(HCS)的正電澱粉分別與負電的濃縮乳清蛋白(WPC)以逐層塗布法製備澱粉多層膜。因為WPC在pI前後淨電荷性翻轉,因此可以預期觀察到正電澱粉與WPC兩者相吸引之下的多層膜成長,以及兩者相排斥後多層膜表面崩解。首先發現,無論是多層膜的成長方式或崩解方式,皆隨著正電澱粉型態不同而不同。相較於多直鏈的HCS,多分支的NCS容易形成厚且多孔的結構,有助於留住大量的WPC。而實驗中,也的確在pH < pI (4.3)且高離子強度(i=0.1M)下,觀察到WPC與正電澱粉之間斥力產生而導致的結構崩解,只是兩種多層膜具有不同的崩解形式:以HCS為基質的多層膜,在很窄的pH範圍內即發生完整的崩解;NCS為基質的多層膜卻因為其交纏的網狀結構,導致結構崩解不完整。而本實驗也證實,經後裝載(post loading)進入多層膜的花青素釋放也是由WPC調控。綜合以上,本論文有助於設計與發展新的澱粉材料,拓展澱粉在更多樣領域上的應用。 | zh_TW |
dc.description.abstract | In this thesis, pH-responsive materials were prepared by using cationic starch and different negatively charged cross-linkers. Three types of materials are presented: Casted thin film, microgel, and multilayer thin film. Their physical properties and microstructural change controlled by the ionic cross-linking upon varying environmental conditions (i.e., ionic strengths and pH) were investigated. For casted thin film and microgel, the granular cationic starch (gCS) with DS ~ 0.12 was adopted. In Chapter 3, the effects of trisodium citrate (citrate) on swelling property of citrate-gCS thin film across various (+/-) charge ratios were studied. The gCS thin film is composed of leached amylose and unbursted swollen granules mainly occupied by amylopectin. Proved by the rheological properties of citrate-gCS film forming solution and the microscopic images of citrate-gCS thin films, citrate governs the pH-dependent swelling behavior within the unbursted swollen granule via ionic cross-linking. The small angle X-ray scattering (SAXS) patterns of swollen citrate-gCS thin films are well fitted by employing the correlation length model. The rise of the exponent in low q region (n) is found to be correlated with the presence of deprotonated citrate induced aggregates, constructing a strong network against osmotic pressure, thus leading to a low swelling ratio of the thin film. However, during the release study of loaded ampicillin, the weak ionic cross-linking can’t keep citrate-gCS thin film from dissolving in solution for more than 5 min. It inspired the idea of preparing starch-based microgels where the chemical cross-linking was introduced. In Chapter 4, the spherical cationic starch microgels could be prepared by partially gelatinizing the gCS followed by stabilizing the swollen particles with sodium trimetaphosphate (STMP). It was found that the partial gelatinization process (50°C, 10 min) kept most of swollen granules intact. STMP cross-linking strengthens the structure of microgel against swelling, and was identified containingthe ionic (unreacted STMP) and chemical cross-linking (distarch monophosphate), while saturating as the STMP/CS > 0.1. Microgels swelling volume was subject to change by varying the cross-linking density, ionic strength and pH. Regarding the swelling behavior, the effect of ionic cross-linking is negligible, because the swelling volume of microgels is majorly governed by the excess cationic group and chemical cross-linking. A deformable character in microgels upon close-packing, was even found in a highly cross-linked one, explaining a limit reactivity of STMP to form chemical cross-linking. Although there is no significant pH dependent swelling in microgel observed within a practical pH range, a good thickening ability of a mildly cross-linked microgel is accessible. In Chapter 5, strongly charged cationic starch with DS ~ 0.6 was chosen. Highly branched (NCS) and linear cationic starches (HCS) were prepared to construct multilayers via a layer-by-layer (LbL) deposition with whey protein concentrate (WPC). The pH-dependent structure integrity of multilayer driven by the attraction/repulsion between WPC and cationic starch across its pI was expected and assessed. As a result, the build-up and break-down of multilayer structure differed with the conformation of cationic starch. The thick and porous NCS layer tended to retain more WPC than HCS did. A pH-dependent structural disruption was observed in both multilayers at pH < pI (4.3) under an ionic strength of 0.1 M. Unlike the HCS-based multilayer showing a complete structural dissociation within a narrow pH range, the entangled network in the NCS-based multilayer delayed the release of WPC. Also, the WPC driven release of the post-loaded anthocyanins from the NCS-based multilayer was confirmed. A potential of multilayer to apply as a pH-triggered active coating is foreseen. The findings of this work could have an impact on designing new starch-based pH-responsive materials and extended the application of starch to a broader field. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:25:30Z (GMT). No. of bitstreams: 1 ntu-107-D99623003-1.pdf: 6197125 bytes, checksum: 3935efe829468aaaccb110ab9c56b19b (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 目錄
中文摘要 I 英文摘要 III 第一章、緒論 1 實驗架構示意圖 2 第二章、 文獻探討 1 一、pH應答材料 1 1. pH應答原理 1 2. pH應答型微凝膠 3 3. pH應答型薄膜 6 二、 澱粉 8 1. 澱粉與修飾澱粉 8 2. 澱粉微凝膠 11 3. 澱粉薄膜 12 4. 澱粉粒與糊化後澱粉之小角度X光散射圖譜 13 第三章:以檸檬酸鹽與低取代度正電澱粉製備pH應答澱粉薄膜 14 一、 材料與方法 14 1. 材料 14 2. 正電澱粉之製備與取代度測定 14 2.1 以顆粒澱粉製備低取代度之正電澱粉 14 2.2 正電取代度之測定 14 3. 正電澱粉分子量之測定 15 4. 靜電交聯澱粉薄膜之製備 15 5. 成膜溶液之組成 16 6. 以混濁度測定多羧酸小分子與正電澱粉之靜電交聯程度 17 7. 成膜溶液於不同pH值下之流變性質測定 17 8. 靜電交聯澱粉薄膜於不同pH環境下之膨潤率 17 9. 靜電交聯澱粉薄膜之顯微外觀 18 10. 以小角度X光散射分析(SAXS)不同pH值下薄膜膨潤之結構變化 18 11. 含Ampicillin之靜電交聯澱粉薄膜在不同pH溶液下活性物質釋放量測定 19 二、結果與討論 19 1. 薄膜的組成 19 2. 正電澱粉與檸檬酸鹽於不同電荷比例下之交互作用 20 3. 成膜溶液在不同pH下之流變性質 21 4. 薄膜於不同時間下的膨潤行為與顯微外觀 25 5. 薄膜於不同pH下的膨潤率與外觀 27 6. 薄膜於不同pH下的奈米結構 31 7. Citrate-gCS薄膜應用於釋放活性物質之評估 36 8. 其他鹽類用於靜電交聯正電澱粉之評估 (預實驗) 37 三、結論 38 第四章:以三偏磷酸鈉與低取代度正電澱粉製備pH應答澱粉微凝膠 40 一、材料與方法 40 1. 材料 40 2. 正電澱粉之製備與取代度測定 40 3. 正電澱粉之糊液黏度測定 40 4. 澱粉微凝膠之製備 41 5. 熱重分析(TGA) 41 6.磷的定量與定性 42 6.1 感應耦合電漿質譜儀 42 6.2 31P核磁共振光譜 42 7. 膨潤率測定 43 7.1 到達平衡膨潤率所需時間測定 43 7.2 不同離子強度與不同pH值環境中之膨潤率測定 43 8. 顯微外觀與粒徑分布 43 9. 流變性質測定 44 9.1 實驗設定 44 9.2 比體積與最大堆疊分率 44 10. 孔徑分布與通透率觀察 45 二、結果與討論 45 1. 正電澱粉的製備與部分糊化 45 2. 三偏磷酸鈉在澱粉微凝膠內的交聯 49 3. 澱粉微凝膠在不同環境下之膨潤率與外觀 54 4. 澱粉微凝膠懸浮液之流變性質 61 5. 澱粉微凝膠懸浮液之孔徑分布 68 三、結論 70 第五章:以乳清濃縮蛋白與高取代度正電澱粉製備pH應答型澱粉多層膜 71 一、材料與方法 71 1. 材料 71 2. 高取代度正電澱粉之製備、取代度測定與分子量測定 71 3. 動態光散射與界面電位測定 71 4. 以逐層塗布法製備多層膜 72 5. 多層膜之成長與崩解 72 6. 多層膜的外觀型態與厚度 73 7. 多層膜裝載與釋放花青素 73 7.1 花青素的萃取 73 7.2 多層膜花青素裝載動力曲線 74 7.3 花青素的釋放試驗 74 二、結果與討論 75 1. 正電澱粉與乳清濃縮蛋白之性質 75 2. 多層膜於逐層塗布過程之變化 77 2.1 表面型態 77 2.2 濃縮乳清蛋白裝載能力 79 2.3 厚度 80 3. 多層膜之乳清蛋白釋放試驗 82 4. 多層膜之花青素釋放試驗 86 三、結論 88 第六章、總結 90 第七章、縮寫表 91 第八章、附錄 93 第九章、參考文獻 94 | |
dc.language.iso | zh-TW | |
dc.title | 以澱粉為基質製備pH應答型材料之研究 | zh_TW |
dc.title | Preparation and characterization of starch-based pH-responsive materials | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 張永和,呂廷璋,賴麗旭,童世煌,楊台鴻 | |
dc.subject.keyword | pH應答材料,正電澱粉,微凝膠,薄膜,逐層塗布多層膜,靜電交聯, | zh_TW |
dc.subject.keyword | pH-responsive materials,Cationic starch,Microgels,Thin films,Layer-by-layer multilayers,Ionic cross-linking, | en |
dc.relation.page | 106 | |
dc.identifier.doi | 10.6342/NTU201804352 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-12-17 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
dc.date.embargo-lift | 2028-12-25 | - |
Appears in Collections: | 農業化學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-107-D99623003-1.pdf Restricted Access | 6.05 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.