Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫療器材與醫學影像研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78860
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林世明zh_TW
dc.contributor.advisorShiming Linen
dc.contributor.author蔡承育zh_TW
dc.contributor.authorCheng-Yu Tsaien
dc.date.accessioned2021-07-11T15:24:44Z-
dc.date.available2024-08-16-
dc.date.copyright2019-03-11-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citationReference
1. DOS. Taiwan’s Leading Causes of Death in 2016. 2017; Available from: https://www.mohw.gov.tw/cp-3425-33347-2.html.
2. Mozaffarian, D., et al., Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation, 2016. 133(4): p. e38-e360.
3. Barengo, N.C., et al., Leisure‐time physical activity reduces total and cardiovascular mortality and cardiovascular disease incidence in older adults. Journal of the American Geriatrics Society, 2017. 65(3): p. 504-510.
4. Bush, T.L., et al., Cardiovascular mortality and noncontraceptive use of estrogen in women: results from the Lipid Research Clinics Program Follow-up Study. Circulation, 1987. 75(6): p. 1102-1109.
5. Trialists’Collaboration, B.P.L.T., Effects of different regimens to lower blood pressure on major cardiovascular events in older and younger people: meta-analysis of randomised trials. Bmj, 2008. 336: p. 1121-1123.
6. Barengo, N.C., et al., Coronary heart disease incidence and mortality, and all-cause mortality among diabetic and non-diabetic people according to their smoking behavior in Finland. Tobacco induced diseases, 2017. 15(1): p. 12.
7. Lawson, C.A., et al., Comorbidity health pathways in heart failure patients: A sequences-of-regressions analysis using cross-sectional data from 10,575 patients in the Swedish Heart Failure Registry. PLoS medicine, 2018. 15(3): p. e1002540.
8. Group, D.S., Is the current definition for diabetes relevant to mortality risk from all causes and cardiovascular and noncardiovascular diseases? Diabetes Care, 2003. 26(3): p. 688-696.
9. Go, A.S., et al., AHA statistical update. Circulation, 2013. 127: p. e62-e245.
10. 2017, A.H.A. About strokes. 2017 viewed 28 March 2017]; Available from: http://www.strokeassociation.org/STROKEORG/AboutStroke/TypesofStroke/Types-of-Stroke_UCM_308531_SubHomePage.jsp.
11. Johnson, K.G. and D.C. Johnson, Frequency of sleep apnea in stroke and TIA patients: a meta-analysis. Journal of clinical sleep medicine: JCSM: official publication of the American Academy of Sleep Medicine, 2010. 6(2): p. 131.
12. Krupinski, J., et al., Role of angiogenesis in patients with cerebral ischemic stroke. Stroke, 1994. 25(9): p. 1794-1798.
13. Testai, F.D. and V. Aiyagari, Acute hemorrhagic stroke pathophysiology and medical interventions: blood pressure control, management of anticoagulant-associated brain hemorrhage and general management principles. Neurologic clinics, 2008. 26(4): p. 963-985.
14. Sacco, R.L., Risk factors for TIA and TIA as a risk factor for stroke. Neurology, 2004. 62(8 suppl 6): p. S7-S11.
15. Rolfs, A., et al., Prevalence of Fabry disease in patients with cryptogenic stroke: a prospective study. The Lancet, 2005. 366(9499): p. 1794-1796.
16. Mensah, G.A., et al., Mortality from cardiovascular diseases in sub-Saharan Africa, 1990-2013: a systematic analysis of data from the Global Burden of Disease Study 2013: cardiovascular topic. Cardiovascular journal of Africa, 2015. 26(Supplement 1): p. 6-10.
17. Mozaffarian, D., et al., AHA statistical update. Heart disease and stroke, 2015.
18. Organization, W.H. Website of world health organization. Available from: http://www.who.int/cardiovascular_diseases/en/.
19. Kachur, S., et al., Obesity and cardiovascular diseases. Minerva medica, 2017. 108(3): p. 212-228.
20. Bundy, J.D., et al., Systolic blood pressure reduction and risk of cardiovascular disease and mortality: a systematic review and network meta-analysis. JAMA cardiology, 2017. 2(7): p. 775-781.
21. Medina-Remón, A., et al., Dietary patterns and the risk of obesity, type 2 diabetes mellitus, cardiovascular diseases, asthma, and neurodegenerative diseases. Critical reviews in food science and nutrition, 2018. 58(2): p. 262-296.
22. Mallika, V., B. Goswami, and M. Rajappa, Atherosclerosis pathophysiology and the role of novel risk factors: a clinicobiochemical perspective. Angiology, 2007. 58(5): p. 513-522.
23. Publishing, H.H. Atherosclerosis. 2014; Available from: https://www.health.harvard.edu/blood-pressure/atherosclerosis.
24. Sterman, A.B., et al., Acute stroke therapy trials: an introduction to recurring design issues. Stroke, 1987. 18(2): p. 524-527.
25. Bamford, J., et al., Classification and natural history of clinically identifiable subtypes of cerebral infarction. The Lancet, 1991. 337(8756): p. 1521-1526.
26. Koutoukidis, G., Tabbner's nursing care : theory and practice / Gabrielle Koutoukidis, Kate Stainton, Jodie Hughson ; edited by Kaite Millar, ed. K. Stainton, et al. 2016, Chatswood, NSW: Elsevier Australia (a division of Reed International Books Australia Pty Ltd).
27. Malhotra, K., N. Goyal, and G. Tsivgoulis, Internal carotid artery occlusion: pathophysiology, diagnosis, and management. Current atherosclerosis reports, 2017. 19(10): p. 41.
28. Janko, M., et al., Carotid occlusion is associated with more frequent neurovascular events than moderately severe carotid stenosis. Journal of vascular surgery, 2017. 66(5): p. 1445-1449.
29. Bentes, C., et al., Usefulness of EEG for the differential diagnosis of possible transient ischemic attack. Clinical Neurophysiology Practice, 2017.
30. Krayenbühl, H., et al., Cerebral angiography. Vol. 296. 1968: Butterworths London.
31. Menshawi, K., J.P. Mohr, and J. Gutierrez, A functional perspective on the embryology and anatomy of the cerebral blood supply. Journal of stroke, 2015. 17(2): p. 144.
32. Alexander, M.P. and M. Freedman, Amnesia after anterior communicating artery aneurysm rupture. Neurology, 1984. 34(6): p. 752-752.
33. Starkstein, S.E. and R.G. Robinson, Affective disorders and cerebral vascular disease. The British Journal of Psychiatry, 1989. 154(2): p. 170-182.
34. Chan, J.-L. and E.D. Ross, Left‐handed mirror writing following right anterior cerebral artery infarction Evidence for nonmirror transformation of motor programs by right supplementary motor area. Neurology, 1988. 38(1): p. 59-59.
35. Alexander, M.P. and M.A. Schmitt, The aphasia syndrome of stroke in the left anterior cerebral artery territory. Archives of Neurology, 1980. 37(2): p. 97-100.
36. Hensler, J., et al., Spontaneous dissections of the anterior cerebral artery: a meta-analysis of the literature and three recent cases. Neuroradiology, 2016. 58(10): p. 997-1004.
37. Moore, K. and F. Arthur, Dalley. Clinically Oriented Anatomy. 1999, Lippincott Williams & Wilkins A Wolters Kluwer Company.
38. Engel, O., et al., Modeling stroke in mice-middle cerebral artery occlusion with the filament model. Journal of visualized experiments: JoVE, 2011(47).
39. BINI VINSARAJAN, P., MENTAL PRACTICE WITH MOTOR IMAGERY TO IMPROVE UPPER LIMB MOTOR FUNCTION IN STROKE. 2013.
40. O’Sullivan, S.B., Strategies to improve motor function. Physical rehabilitation, 2007: p. 471-522.
41. Demel, S.L. and J.P. Broderick, Basilar occlusion syndromes: an update. The Neurohospitalist, 2015. 5(3): p. 142-150.
42. Ferbert, A., H. Bruckmann, and R. Drummen, Clinical features of proven basilar artery occlusion. Stroke, 1990. 21(8): p. 1135-1142.
43. Wang, M., et al., Relationship between lesion location and onset symptoms of cerebral infarction caused by acute basilar arterial occlusion. Journal of Medical Postgraduates, 2017. 30(5): p. 508-511.
44. Redfors, B., et al., Trends in gender differences in cardiac care and outcome after acute myocardial infarction in Western Sweden: a report from the Swedish web system for enhancement of evidence‐based care in heart disease evaluated according to recommended therapies (SWEDEHEART). Journal of the American Heart Association, 2015. 4(7): p. e001995.
45. EUGenMed, et al., Gender in cardiovascular diseases: impact on clinical manifestations, management, and outcomes. European heart journal, 2015. 37(1): p. 24-34.
46. Rodríguez, J., et al. Analysis of the respiratory flow signal for the diagnosis of patients with chronic heart failure using artificial intelligence techniques. in VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, October 26th-28th, 2016. 2017. Springer.
47. Pinna, G.D., et al. Periodic breathing and state instability during supine laboratory recordings in chronic heart failure patients. in Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE. 2008. IEEE.
48. Timpka, S., et al., Muscle strength in adolescent men and risk of cardiovascular disease events and mortality in middle age: a prospective cohort study. BMC medicine, 2014. 12(1): p. 62.
49. Ranke, C., et al., Standardization of carotid ultrasound: a hemodynamic method to normalize for interindividual and interequipment variability. Stroke, 1999. 30(2): p. 402-406.
50. Kudo, N., A simple technique for visualizing ultrasound fields without Schlieren optics. Ultrasound in medicine & biology, 2015. 41(7): p. 2071-2081.
51. Wendelhag, I., et al., Ultrasound measurement of wall thickness in the carotid artery: fundamental principles and description of a computerized analysing system. Clinical physiology, 1991. 11(6): p. 565-577.
52. Spence, J.D., Carotid ultrasound phenotypes are biologically distinct. 2015, Am Heart Assoc.
53. Barnett, H.J., et al., Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. New England Journal of Medicine, 1998. 339(20): p. 1415-1425.
54. Segmentation, A.H.A.W.G.o.M., et al., Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation, 2002. 105(4): p. 539-542.
55. Normal, E., Electrophysiology of the Heart. 1960.
56. Chen, J. and S. Itoh, A wavelet transform-based ECG compression method guaranteeing desired signal quality. IEEE Transactions on Biomedical Engineering, 1998. 45(12): p. 1414-1419.
57. Millasseau, S.C., et al., Evaluation of carotid-femoral pulse wave velocity: influence of timing algorithm and heart rate. Hypertension, 2005. 45(2): p. 222-226.
58. Wilkinson, I.B., et al., Heart rate dependency of pulse pressure amplification and arterial stiffness. American journal of hypertension, 2002. 15(1): p. 24-30.
59. Lantelme, P., et al., Heart rate: an important confounder of pulse wave velocity assessment. Hypertension, 2002. 39(6): p. 1083-1087.
60. Ahlstrom, C., et al., Noninvasive investigation of blood pressure changes using the pulse wave transit time: a novel approach in the monitoring of hemodialysis patients. Journal of Artificial Organs, 2005. 8(3): p. 192-197.
61. Lass, J., et al. Continuous blood pressure monitoring during exercise using pulse wave transit time measurement. in Engineering in Medicine and Biology Society, 2004. IEMBS'04. 26th Annual International Conference of the IEEE. 2004. IEEE.
62. Asmar, R., et al., Assessment of arterial distensibility by automatic pulse wave velocity measurement: validation and clinical application studies. Hypertension, 1995. 26(3): p. 485-490.
63. Sugo, Y., et al. A novel continuous cardiac output monitor based on pulse wave transit time. in Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE. 2010. IEEE.
64. Teng, X.-F. and Y.-T. Zhang, Theoretical study on the effect of sensor contact force on pulse transit time. IEEE transactions on biomedical engineering, 2007. 54(8): p. 1490-1498.
65. Electronic, I., FSR 402 data sheet.
66. Yang, F.-Y., P.-R. Hsu, and S.-K. Lin, Reduced Internal Carotid Artery Flow in Color-coded Carotid Duplex Sonography. Acta Neurologica Taiwanica, 2016. 25(4): p. 136-147.
67. Lee, W., General principles of carotid Doppler ultrasonography. Ultrasonography, 2014. 33(1): p. 11.
68. Bai, C.H., et al., Lower blood flow velocity, higher resistance index, and larger diameter of extracranial carotid arteries are associated with ischemic stroke independently of carotid atherosclerosis and cardiovascular risk factors. Journal of clinical ultrasound, 2007. 35(6): p. 322-330.
69. Makwana, M.B., A. Mistri, and V.J. Patel, PHYSIOLOGICAL ASSESSMENT OF COMMON CAROTID ARTERY RESISTIVE INDEX TO EVALUATE DIFFERENT RISK FACTORS FOR THE DEVELOPMENT OF CEREBROVASCULAR STROKE. Int J Basic Appl Physiol, 2017. 6(1): p. 60.
70. Vlachopoulos, C., M. O'Rourke, and W.W. Nichols, McDonald's blood flow in arteries: theoretical, experimental and clinical principles. 2011: CRC press.
71. Standring, S., et al., Gray's anatomy: the anatomical basis of clinical practice. American Journal of Neuroradiology, 2005. 26(10): p. 2703.
72. Nunan, D., G.R. Sandercock, and D.A. Brodie, A quantitative systematic review of normal values for short‐term heart rate variability in healthy adults. Pacing and clinical electrophysiology, 2010. 33(11): p. 1407-1417.
73. Terminology and D.C. Committee, Standard method for ultrasound evaluation of carotid artery lesions. Journal of Medical Ultrasonics, 2009. 36(4): p. 219-226.
74. Ozaki, S., Diagnosis of carotid artery lesions. Methods of carotid artery ultrasonography for clinicians, 2005: p. 32-39.
75. O'leary, D.H., et al., Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. New England Journal of Medicine, 1999. 340(1): p. 14-22.
76. Hathout, G.M., et al., Sonographic NASCET index: a new doppler parameter for assessment of internal carotid artery stenosis. American journal of neuroradiology, 2005. 26(1): p. 68-75.
77. Rothwell, P.M., et al., Equivalence of measurements of carotid stenosis. A comparison of three methods on 1001 angiograms. European Carotid Surgery Trialists' Collaborative Group. Stroke, 1994. 25(12): p. 2435-2439.
78. Rohren, E.M., et al., A spectrum of Doppler waveforms in the carotid and vertebral arteries. American Journal of Roentgenology, 2003. 181(6): p. 1695-1704.
79. Bano, S., et al., Measurement of Internal Jugular Vein and Common Carotid Artery Diameter Ratio by Ultrasound to Estimate Central Venous Pressure. Cureus, 2018. 10(3).
80. Ranke, C. and H. Trappe, Blood flow velocity measurements for carotid stenosis estimation: interobserver variation and interequipment variability. VASA. Zeitschrift fur Gefasskrankheiten, 1997. 26(3): p. 210-214.
81. Dagdeviren, C., et al., Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nature communications, 2014. 5: p. 4496.
82. Shen, L.-P., et al., Sensitive stress-impedance micro sensor using amorphous magnetostrictive wire. IEEE Transactions on Magnetics, 1997. 33(5): p. 3355-3357.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78860-
dc.description.abstract心腦血管阻塞所造成的疾病是常見的死亡原因,而治療後也造成嚴重的生活不便且容易再次復發。頸動脈為供給大腦血液之主要血管,若在其血管分叉處產生動脈硬化狹窄,容易因內頸動脈或外頸動脈阻塞造成缺血性腦中風與臉部麻痺失控的症狀; 在心臟方面亦有許多疾病,如:心肌缺氧、心律不整、心肌梗塞、傳導障礙…等,但由於心臟疾病沒有特異性的早期症狀,常被誤以為老化而受到忽略而錯過治療時間。
頸動脈超音波為腦中風罹患篩檢的重要工具之一,但檢查方式須仰賴許多臨床人員執行,而超音波檢查也常因為有人為操作與經驗問題,其結果因環境因素與操作者而有差異。在心臟疾病方面,心電圖為評估之重要工具,但檢查需要在靜止狀態執行,於動作狀態下的心臟症狀,則不易察覺。
本研究整合了不同的訊號來源而建立評估的演算法,可以分別對腦血管與心臟功能進行評估。在腦部血管檢查方面,利用非侵襲性的雙頸動脈壓力感測器所測量之訊號,透過所撰寫之峰值擷取演算法分析基礎血液動力學之參數與進階阻力指標與彈性係數,並與臨床常規頸動脈超音波檢查進行比對。而為了評估心臟方面的狀況,本研究計算心電圖訊號與橈動脈訊號的尖峰時間差距,以分析更多心臟收縮等資訊 。
在結果方面,經過演算法計算的結果與臨床超音波比對,在血液動力學部分,如:心跳次數、血管收縮加速度、阻力係數其相關性皆呈現高度相關,另外也可以輔助計算出心電圖與橈動脈之波形差異時間。
透過壓力感測器整合峰值擷取演算法,可以自動化且有效計算出許多臨床上重要意義的血液動力學參數,透過更多的臨床試驗與數據收集分析後,將可以更有效的運用於臨床與普及檢查方式,達到輔助臨床診斷的重要功能。
zh_TW
dc.description.abstractObstructions of cerebrovascular or cardiovascular are the common cause of death. Although receiving treatment, it also causes serious inconvenience in daily and it is possible to recurrent. Carotid artery is the main vessel supplying blood to brain. When the arteriosclerotic stenosis occurred in the carotid bifurcation, including internal carotid artery or external carotid artery, some symptoms were observed as ischemic stroke or facial paralysis. In addition, there are many cardiovascular diseases, such as: myocardial hypoxia, arrhythmia, myocardial infarction, conduction disorders, etc. will result in sudden cardiac death. However, lack of specific early symptoms of cardiovascular disease, often mistaken for aging and neglected to miss treatment time.
Carotid ultrasound is one of the important tools for the cerebrovascular accident screening, whereas, the examination must rely on clinical professional performed. Furthermore, the results are easily affected by operator dependent and environmental factors. Besides, to evaluate cardiac disease, electrocardiogram is the essential tool for evaluating. However, procedure needed to be done at rest state that some patterns under movement are not noticeable easily.
In this study, we integrated different signals and built up the system with algorithm for automatic peak detection. Hemodynamic of cerebrovascular and cardiac functions can be evaluated respectively. Noninvasive duel pressure sensor used for measuring the signals from common carotid artery. After collecting the waveform, basic information from hemodynamic and advanced parameters, including heart rate, resistance index and acceleration time were calculated. To find the correlation between this system and standard sonography, we compared the results with clinical carotid ultrasound examination for each subject. For evaluating heart functions, the peak time region between the collecting ECG signal and the radial artery signal were calculated.
Based on the results, hemodynamic parameters, such as heart rate, acceleration time of vasoconstriction, and the resistance index are highly correlated with the examination by ultrasound. In addition, the peak tine region between electrocardiogram and radial artery waveform can also be calculated automatically. With more clinical trials recruited and data analyzed, it is possible to provide physician aiding clinical diagnosis.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:24:44Z (GMT). No. of bitstreams: 1
ntu-108-R05458005-1.pdf: 13044020 bytes, checksum: b3cdcfb9d2e7c3517f4016c9107285f5 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsTable of Contents
誌謝 I
中文摘要 II
Abstract III
Contents IV
List of Figures VI
List of Tables VIII
Chapter PAGE
1. Introduction 1
1.1. Background 1
1.2. Cerebrovascular Diseases and Cardiovascular Disease 3
1.2.1. Stroke 3
1.2.2. Heart Diseases 4
1.2.3. Symptoms of Cerebrovascular Diseases 6
1.2.4. Symptoms of Cardiovascular Diseases 8
1.2.5. Carotid Ultrasound 9
1.2.6. Side-related Difference 11
1.2.7. Latency between ECG and Pulse Radial Artery 13
1.3. Aims and Objectives 15
1.3.1. Research Motivations 15
1.3.2. Objectives 17
1.3.3. Thesis Organization 18
2. Methodology 19
2.1. Force Sensor 19
2.2. Carotid Sonography 21
2.3. ECG Modules 23
2.4. Platforms Architecture and Data Acquisition 25
2.4.1. Platform Architecture 25
2.4.2. Microcontroller 26
2.4.3. Amplification and Filtering Circuit 27
2.4.5. Oscilloscope 27
2.5. Signal Processing 27
2.5.1. Peak Detection 28
2.5.2. Blood Flow and Velocity Calculation 28
2.5.3. Resistance Index 30
2.5.4. Time region Calculation 31
2.6. Measuring Positions 33
2.7. Statistical Analysis 35
3. Results 37
3.1. Characterization of Study Subjects 37
3.2. Obtained Data from Sonography 38
3.3. Hemodynamic Parameters in this study 39
3.4. Signal from Different Distance between Dual Sensors 41
3.5. Data Record and Display 43
3.6. Signal Processing for Dual Force Sensors System 45
3.7. Hemodynamic Parameters in this System 47
3.7.1. Time Period between Two Sensors 48
3.7.2. Resistance Index Calculation 49
3.7.3. Contractility Time Calculation 51
3.7.4. Heart Rate Calculation 52
3.8. Correlation between Dual Sensors System and Sonography 54
3.9. Peak Detection in EKG Signal 55
4. Discussion 56
4.1. Clinical Parameters of Recruited Subjects 56
4.2. Measuring Length of Dual Sensors System 57
4.3. Results between Sonography and Dual Sensor System 58
4.4. Adjusting Formula by Ultrasound Examination Figures 60
4.5. Limitation of Dual Sensors System 61
5. Conclusion and Future Prospect 63
Reference 65
-
dc.language.isoen-
dc.subject血液動力學zh_TW
dc.subject壓力感測器zh_TW
dc.subject頸動脈超音波zh_TW
dc.subject峰值擷取演算法zh_TW
dc.subjecthemodynamicen
dc.subjectpressure sensoren
dc.subjectcarotid ultrasounden
dc.subjectpeak detection algorithmen
dc.title頸橈動脈與心電圖量測演算法系統之驗證zh_TW
dc.titleVerification of Algorithm for Carotid and Radial artery Assessment with Electrocardiogram and Force Sensoren
dc.typeThesis-
dc.date.schoolyear107-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄧致剛;洪錦堂zh_TW
dc.contributor.oralexamcommitteePetrus Tang;Jim-Tong Horngen
dc.subject.keyword頸動脈超音波,血液動力學,壓力感測器,峰值擷取演算法,zh_TW
dc.subject.keywordpeak detection algorithm,carotid ultrasound,hemodynamic,pressure sensor,en
dc.relation.page71-
dc.identifier.doi10.6342/NTU201804409-
dc.rights.note未授權-
dc.date.accepted2019-01-10-
dc.contributor.author-college醫學院-
dc.contributor.author-dept醫療器材與醫學影像研究所-
dc.date.embargo-lift2024-03-11-
顯示於系所單位:醫療器材與醫學影像研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
12.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved