Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78849
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 周綠蘋 | zh_TW |
dc.contributor.author | 羅恆御 | zh_TW |
dc.contributor.author | Heng-Yu Lou | en |
dc.date.accessioned | 2021-07-11T15:23:54Z | - |
dc.date.available | 2024-08-16 | - |
dc.date.copyright | 2019-03-11 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 1. 衛生福利部國民健康署:肝病防治及肝癌. 2017.
2. Wong, M.C.S., et al., International incidence and mortality trends of liver cancer: a global profile. Scientific Reports, 2017. 7(1). 3. Laursen, L., A preventable cancer. Nature, 2014. 516. 4. Ghouri, Y.A., I. Mian, and J.H. Rowe, Review of hepatocellular carcinoma: Epidemiology, etiology, and carcinogenesis. J Carcinog, 2017. 16: p. 1. 5. Farazi, P.A. and R.A. DePinho, Hepatocellular carcinoma pathogenesis: from genes to environment. Nature Reviews Cancer, 2006. 6(9): p. 674-687. 6. Hsu, C.-Y., et al., Metastasis in patients with hepatocellular carcinoma: Prevalence, determinants, prognostic impact and ability to improve the Barcelona Clinic Liver Cancer system. Liver International, 2018. 7. Forner, A., J.M. Llovet, and J. Bruix, Hepatocellular carcinoma. The Lancet, 2012. 379(9822): p. 1245-1255. 8. Bruix, J. and M. Sherman, Management of hepatocellular carcinoma: An update. Hepatology, 2011. 53(3): p. 1020-1022. 9. Parsons, H.M., et al., Adoption of Sorafenib for the Treatment of Advanced-Stage Hepatocellular Carcinoma in Oncology Practices in the United States. Liver Cancer, 2017. 6(3): p. 216-226. 10. Gauthier, A. and M. Ho, Role of sorafenib in the treatment of advanced hepatocellular carcinoma: An update. Hepatology Research, 2013. 43(2): p. 147-154. 11. Zhu, Y.J., et al., New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacologica Sinica, 2017. 38(5): p. 614-622. 12. Chen, K.F., et al., Activation of Phosphatidylinositol 3-Kinase/Akt Signaling Pathway Mediates Acquired Resistance to Sorafenib in Hepatocellular Carcinoma Cells. Journal of Pharmacology and Experimental Therapeutics, 2011. 337(1): p. 155-161. 13. Lu, C.-H., To study the elevation of receptor tyrosine kinase EphA2 mediates acquired resistance to sorafenib in Huh7 cells, in Graduate Insitute od Biochemistry and Milecular Biology College of Medicine. 2014, National Taiwan University. 14. Chavent, M., et al., Structures of the EphA2 Receptor at the Membrane: Role of Lipid Interactions. Structure, 2016. 24(2): p. 337-347. 15. Gale, N.W., et al, Eph Receptors and Ligands Comprise Two Major Specificity Subclasses and Are Reciprocally Compartentalized during Embryogenesis. Neuron, 1996. 17(1): p. 9-19. 16. Eph Nomenclature,C.,Unified Nomenclature for Eph Family Receptors and Their Ligands, the Ephrins. Cell, 1997. 90(3): p. 403-404. 17. Ojosnegros, S., et al., Eph-ephrin signaling modulated by polymerization and condensation of receptors. Proceedings of the National Academy of Sciences, 2017. 114(50): p. 13188-13193. 18. Miao, H., et al., EphA2 Mediates Ligand-Dependent Inhibition and Ligand-Independent Promotion of Cell Migration and Invasion via a Reciprocal Regulatory Loop with Akt. Cancer Cell, 2009. 16(1): p. 9-20. 19. Pasquale, E.B., Eph-ephrin bidirectional signaling in physiology and disease. Cell, 2008. 133(1): p. 38-52. 20. Pasquale, E.B., Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nature Reviews Cancer, 2010. 10(3): p. 165-180. 21. Surawska, H., P.C. Ma, and R. Salgia, The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev, 2004. 15(6): p. 419-33. 22. Duxbury, M.S., et al., EphA2: a determinant of malignant cellular behavior and a potential therapeutic target in pancreatic adenocarcinoma. Oncogene, 2004. 23(7): p. 1448-1456. 23. Miao, H. and B. Wang, Eph/ephrin signaling in epithelial development and homeostasis. The International Journal of Biochemistry & Cell Biology, 2009. 41(4): p. 762-770. 24. Thaker, P.H., et al EphA2 Expression is Associated with Aggressive Features in Ovarian Carcinoma. Clinical Cancer Research, 2004. 10(15): p. 5145. 25. Wang, B., Cancer cells exploit the Eph-ephrin system to promote invasion and metastasis: tales of unwitting partners. Sci Signal, 2011. 4(175): p. pe28. 26. Zelinski, D.P., et al, EphA2 Overexpression Causes Tumorigenesis of Mammary Epithelial Cells Cancer Research, 2001. 61(5): p. 2301. 27. Miyazaki, T., et al., EphA2 overexpression correlates with poor prognosis in esophageal squamous cell carcinoma. Int J Cancer, 2003. 103(5): p. 657-63. 28. Zhuang, G., et al., Elevation of Receptor Tyrosine Kinase EphA2 Mediates Resistance to Trastuzumab Therapy. Cancer Research, 2009. 70(1): p. 299-308. 29. Amato, K.R., et al., EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer. Cancer Research, 2016. 76(2): p. 305-318. 30. Yang, N.Y., et al., Crosstalk of the EphA2 receptor with a serine/threonine phosphatase suppresses the Akt-mTORC1 pathway in cancer cells. Cell Signal, 2011. 23(1): p. 201-12. 31. Himanen, J.P., et al., Ligand recognition by A-class Eph receptors: crystal structures of the EphA2 ligand-binding domain and the EphA2/ephrin-A1 complex. EMBO Rep, 2009. 10(7): p. 722-8. 32. Lema Tomé, C.M., et al., Structural and Functional Characterization of Monomeric EphrinA1 Binding Site to EphA2 Receptor. Journal of Biological Chemistry, 2012. 287(17): p. 14012-14022. 33. Himanen, J.P., et al., Architecture of Eph receptor clusters. Proc Natl Acad Sci U S A, 2010. 107(24): p. 10860-5. 34. Henninot, A., J.C. Collins, and J.M. Nuss, The Current State of Peptide Drug Discovery: Back to the Future? Journal of Medicinal Chemistry, 2017. 61(4): p. 1382-1414. 35. Lau, J.L. and M.K. Dunn, Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorganic & Medicinal Chemistry, 2018. 26(10): p. 2700-2707. 36. Fosgerau, K. and T. Hoffmann, Peptide therapeutics: current status and future directions. Drug Discovery Today, 2015. 20(1): p. 122-128. 37. Koolpe, M., M. Dail, and E.B. Pasquale, An ephrin mimetic peptide that selectively targets the EphA2 receptor. J Biol Chem, 2002. 277(49): p. 46974-9. 38. Mitra, S., et al., Structure−Activity Relationship Analysis of Peptides Targeting the EphA2 Receptor. Biochemistry, 2010. 49(31): p. 6687-6695. 39. Duggineni, S., et al., Design and Synthesis of Potent Bivalent Peptide Agonists Targeting the EphA2 Receptor. ACS Med Chem Lett, 2013. 4(3). 40. Stefan J.Riedl, E.B.P., Targeting the Eph System with Peptides and Peptide Conjugates. Curr Drug Taegets, 2015. 16(10): p. 1031-1047. 41. Waugh, D.F., Protein-Protein Interactions. 1954. 9: p. 325-437. 42. Yong Duan, P.A.K., Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science, 1998. 282(5389): p. 740-744. 43. Torrie, G.M., and J.P.Valleau, 1997., Nonphysical sampling distributions in Monte Carlo free-energy estimation:Umbrella sampling. Journal of Computational Physics. 23: p. 187-199. 44. Kumar, S., J.M.Rosenberg, D.Bouzida, R.H.Swendsen, amd P.A.Kollman, The weighted histogram analysis method for free-energy caculations on biomolecules.I.The method. Journal of coputational chemistry, 1992. 13: p. 1011-1021. 45. Himanen, J.P., et al., Architecture of Eph receptor clusters. Proceedings of the National Academy of Sciences, 2010. 107(24): p. 10860-10865. 46. Dolinsky, T.J., et al., PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Research, 2004. 32(Web Server): p. W665-W667. 47. Berendsen, H.J.C., et al, Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 1984. 81(8): p. 3684-3690. 48. D.A.Casem D.S.C., T.E.C., III, T.A. Darden, R.E. Duke, T.J. Gieses, H.Gohike,A.W.Goetz, D.,et al, AMBER 2017. University of California, San Francisco, 2017. 49. Ryckaert, J.-P., G.Ciccotti, and H.J.C. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics, 1977. 23(3): p. p.327-341. 50. Cheatham, T.E., III, et al., Molecular Dynamics Simulation on SolvatedBiomolecular Systems: The Particle Mesh Ewald Method Leads to Stable Trajectories of DNA, RNA, and Proteins. Journal of the American Chemical Society, 1995. 117(14): p. p.4193-4194. 51. Joshi, D.C., A novel generalized curvilinear-path approach for characterizing protein-protein interaction, in Graduate Insititute of Biochemical Science. 2018, National Taiwan University. 52. Grossfield, A., WHAM: the weighted histogram analysis method. Version 2.0.9.1. 53. Petty, A., et al., A small molecule agonist of EphA2 receptor tyrosine kinase inhibits tumor cell migration in vitro and prostate cancer metastasis in vivo. PLoS One, 2012. 7(8): p. e42120. 54. Landen, C.N., Jr., et al., Efficacy and antivascular effects of EphA2 reduction with an agonistic antibody in ovarian cancer. J Natl Cancer Inst, 2006. 98(21): p. 1558-70. 55. al., E.T.e., miR-200a inhibits migration of triple-negative breast cancer cells through direct repression of EPHA@ oncogene. Carcinogenesis, 2015. 36(9): p. 1051-1060. 56. Thundimadathil, J., Cancer Treatment Using Peptides: Current Therapies and Future Prospects. Journal of Amino Acids, 2012. 2012: p. 1-13. 57. Boohaker RJ, e.a., The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem, 2012. 19(22): p. 3794-804. 58. M., Z., Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci, 1987. 84(15): p. 5449-53. 59. Fretz, Marjan M., et al., Temperature-, concentration- and cholesterol-dependent translocation of L- and D-octa-arginine across the plasma and nuclear membrane of CD34+leukaemia cells. Biochemical Journal, 2007. 403(2): p. 335-342. 60. Fischer, R., et al., A Stepwise Dissection of the Intracellular Fate of Cationic Cell-penetrating Peptides. Journal of Biological Chemistry, 2004. 279(13): p. 12625-12635. 61. A, A.-F., Conjugates of antisense oligonucleotides with the Tat and antennapedia cell-penetrating peptides: effects on cellular uptake, binding to target sequences, and biologic actions. Pharm Res, 2002. 19(6): p. 744-54. 62. Torchilin, V.P., et al., TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proceedings of the National Academy of Sciences, 2001. 98(15): p. 8786-8791. 63. Meade BR, D.S., Enhanceing the cellular uptake of siRNA duplexes following noncovalent packaging with protein transduction domain peptides. Adv Drug Deliv Rev, 2008. 60(4-5): p. 530-6. 64. Liang, J.F. and V.C. Yang, Synthesis of doxorubicin-peptide conjugate with multidrug resistant tumor cell killing activity. Bioorg Med Chem Lett, 2005. 15(22): p. 5071-5. 65. Chen, X., et al., Integrin alpha v beta 3-targeted imaging of lung cancer. Neoplasia, 2005. 7(3): p. 271-9. 66. Marqus, S., E. Pirogova, and T.J. Piva, Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci, 2017. 24(1): p. 21. 67. Watt, P.M., Screening for peptide drugs from the natural repertoire of biodiverse protein folds. Nature Biotechnology, 2006. 24(2): p. 177-183. 68. Naider, F. and J. Anglister, Peptides in the treatment of AIDS. Curr Opin Struct Biol, 2009. 19(4): p. 473-82. 69. London, N., D. Movshovitz-Attias, and O. Schueler-Furman, The Structural Basis of Peptide-Protein Binding Strategies. Structure, 2010. 18(2): p. 188-199. 70. Vanhee, P., et al., Computational design of peptide ligands. Trends Biotechnol, 2011. 29(5): p. 231-9. 71. Shifman, J.M. and S.L. Mayo, Modulating Calmodulin Binding Specificity through Computational Protein Design. Journal of Molecular Biology, 2002. 323(3): p. 417-423. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78849 | - |
dc.description.abstract | 肝癌是世界上最常見的癌症之一,其中最常見的是肝細胞癌(Hepatocellualr carcinoma, HCC)。在台灣,肝癌的盛行率是所有癌症的第二名,僅次於肺癌。根據巴賽隆納臨床肝癌分期方法,晚期的肝癌病人常使用唯一的口服肝癌標靶藥物蕾莎瓦(Sorafenib)治療。蕾莎瓦是一種多重激脢抑制劑,能藉由Raf抑制MAPK細胞傳遞路徑,且是目前唯一美國FDA核可上市的口服肝癌標靶藥物。但是近年來,根據越來越多的臨床報導及文獻指出,接受蕾莎瓦治療的病人逐漸有抗藥性的產生。本實驗室過去的研究,不論是動物或是細胞模型上,EphA2在抗藥性的肝細胞癌細胞都有大量表達的現象。
EphA2是一種細胞膜上的受體酪氨酸激酶(Receptor tyrosine kinase),最早是在神經科學與發育生物學中被提及,具有引導軸突 (Axon)生長的作用,但近年來EphA2在癌症中扮演的角色已經越來越多文獻報導。當EphA2缺乏其配體 (Ligand) ephrin時,EphA2會傾向以單體 (Monomer)形式存在,伴隨著本身高度的Ser897磷酸化,EphA2會與其他受體酪氨酸激酶一同使Akt的Ser473位點高度磷酸化,使得癌細胞侵襲及轉移的能力上升,這或許也解釋了高度表達EphA2的許多癌症患者其癒後情況也相當差。而當其配體結合上EphA2時,受體的Ser897去磷酸化和連帶導致的Akt Ser473位點去磷酸化則抑制了癌細胞移動及增生的能力。 所以我們是希望能夠尋找能夠作為EphA2受體的胜肽分子。首先純化出EphA2 LBD ( Ligand binding domain)重組蛋白,也進行了表面電漿共振的分析,確定蛋白活性,未來可以作為針對EphA2的篩藥平台。利用分子模擬的方法計算出結合自由能,期望能找到一段適合的胜肽分子具有和EphA2良好的結合能力。並且在細胞實驗中進行驗證。綜合以上研究,我們能夠利用分子模擬的方法,尋找EphA2合適的受體促效劑,日後也能夠優化並開發出針對EphA2的抗藥性癌症藥物分子。 | zh_TW |
dc.description.abstract | Hepatocellular carcinoma, HCC, is the most common liver cancer in the world. In Taiwan, it ranks on top two deadly cancers. Barcelona Clinic Liver Cancer(BCLC) has been suggested to be the best treatment guidance. According to the BCLC system, Sorafenib is the only anticancer drug with proven prognostic efficacy in HCC. Sorafenib is a multikinase inhibitor of several growth factor signaling pathways. It inhibits the VEGF pathway by inhibiting VEGF receptors, and the MAPK pathway by inhibiting Raf. In our previous study, we found that EphA2 is overexpressed in Huh7R cells.
The Eph receptor family is the largest of the 20 receptors tyrosine kinase family. A member of the Eph receptor family, EphA2, is highly expressed in tumors. It can promote cell migration/invasiveness and tumor malignancy in a ligand-independent manner. Its tumorigenic activity has been linked to high levels of Ser897 phosphorylation and low levels of tyrosine phosphorylation. EphA2 appears to behave as an oncoprotein in the absence of ligand binding, which may explain why its overexpression is associated with poor prognosis in many cancers. Previously, when ligand bound to EphA2 resulted de-phosphorylation of Ser897 and suppressed tumor progression. In this study, we want to find a potential ligand to bind EphA2 and activate downstream signaling which suppress tumorigenic activity. First, we expressed ligand-binding domain (LBD) of EphA2 protein using E.coli system and identified this protein using LC-MS/MS and western blotting. It is also important for us to screen the best condition to express EphA2 LBD soluble protein since the protein is membrane protein and majority exist in inclusion body. After induction with 0.5 mM IPTG overnight in 16o C, the soluble native protein can be enriched. Recombinant His-tag LBD proteins were purified by Ni2+ affinity column. The recombinant proteins further purified by gel filtration using Hiload Superdex FPLC column. We also investigated the binding affinity between LBD of EphA2 and the ligand ephrin by surface plasmon resonance(SPR). To find the potential binding peptides, molecular dynamic simulation (MD simulation) is used to calculate the binding free energy. It is expected to find a suitable peptide with a good binding ability to EphA2. And in vitro experiments will be validate the effect of the peptide on Huh7R cells. Based on the above studies, we will able to use molecular modeling methods to find suitable receptor agonists for EphA2. In the future, we will be able to optimize and develop drug-resistant cancer drug molecules against EphA2. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:23:54Z (GMT). No. of bitstreams: 1 ntu-108-R05442020-1.pdf: 3462450 bytes, checksum: e4d85acb4c0ce84ab8fc5707673b09a3 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員審定書 i
謝誌 ii 中文摘要 iv Abstract vi 目錄 viii 第一章 導論 1 第一節、肝癌 1 1.1肝癌的臨床特徵 1 1.2 肝癌的分期與治療策略 1 第二節、蕾莎瓦的作用機制及抗藥性 3 2.1蕾莎瓦的臨床試驗療效 3 2.2蕾莎瓦的作用機制 3 2.3蕾莎瓦的抗藥性 3 第三節、肝細胞癌Sorafenib抗藥性伴隨酪氨酸激酶EphA2升高 4 第四節、EphA2 5 4.1 EphA2介紹 5 4.2 EphA2訊息傳遞 6 4.3 EphA2過量表現與多種癌症有高度關聯性 7 4.4 EphA2與癌症抗藥性有關 7 4.5 EphA2 Oncogene switch 7 4.6 EphA2與ephrin 結晶結構分析 8 第五節、胜肽藥物 9 5.1胜肽藥物介紹 9 5.2胜肽藥物市場發展現況 10 5.3針對EphA2為作用標的的胜肽分子 10 第六節、自由能計算與蛋白交互作用預測 11 6.1蛋白交互作用 11 6.2 分子動力學模擬(Molecular Dynamic Simulation) 11 6.3 Umbrella Sampling 12 第七節、研究動機 12 第二章、實驗方法 14 第一節、EphA2 LBD蛋白質分析 14 1.1 EphA2重組蛋白質的純化 14 第二節、表面電漿共振生物感測儀(Surface Plasmon Resonance, SPR) 16 2.1偵測原理 16 2.2、機器操作 17 第三節 蛋白質分析方法 17 3.1 蛋白質濃度測定 (BCA protein assay) 17 3.2十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 (SDS-PAGE) 19 3.3 電泳膠體的染色 (Protein staining) 22 3.4 西方點墨法 (Western blot) 22 第四節 訊息傳遞的研究 25 4.1 細胞的培養 (Cell culture) 25 4.2 細胞的計數與細胞的存活率 (Cell counting and cell viability) 25 4.3 細胞加藥處理 (Drug treatment) 25 4.4 裂解細胞 (Cell lysis) 26 4.5 細胞裂解液的配置 (Preparation of RIPA cell lysis buffer) 26 第五節 分子動力學模擬 26 5.1建置模擬模組 26 5.2力場參數 27 5.3系統能量最佳化 28 5.4系統加熱 28 5.5分子動力學模擬運算 29 第六節 結合自由能的計算 29 6.1 配體的平衡位置 29 6.2 傘型抽樣計算(Umbrella Sampling calculation) 30 6.3 平均力勢PMF的建構 30 第三章 實驗結果 31 第一節、EphA2 LBD重組蛋白質純化 31 第二節、表面電漿共振分析 31 第三節、EphA2受體與G-H loop序列之選擇 31 第四節、分子動力學模擬結果 32 4.1 傘形抽樣方法計算EphA2 LBD配體結合自由能 32 4.2 SEK與EphA2 LBD受體之氫鍵結合分析 32 第五節、SEK對細胞株Huh7R 訊息傳遞功能分析 33 第四章 討論 34 第一節 EphA2 作為抗癌藥物目標之應用 34 1.1 小分子 34 1.2 抗體 34 1.3 RNA藥物 34 第二節 胜肽應用於癌症治療 35 第三節 以電腦模擬發現與設計胜肽藥物 36 第四節 SEK和EphA2 LBD的結合與功能分析 37 第五章 參考文獻 39 第六章 圖表 48 第一節 EphA2 LBD 重組蛋白純化 48 第二節 表面電漿共振分析結果 51 第三節、EphA2受體與G-H loop序列之選擇 53 第四節、分子動力學模擬結果 54 4.1 傘型抽樣方法計算 EphA2 LBD 配體結合自由能 54 4.2 SEK 與EphA2 LBD受體之氫鍵結合分析 55 第五節 SEK對細胞株Huh7R 訊息傳遞功能分析 58 第六節 SEK和EphA2 LBD的結合與功能分析 60 第七章 附錄 63 第一節 蕾莎瓦抗藥性肝細胞癌中EphA2受體升高 63 第二節 分子動力學模擬 64 2-1系統建置 64 2-1 系統能量最佳化參數 64 2-3 系統加熱參數 65 2-4 分子動力學模擬運算 66 2-5 傘形抽樣運算參數 66 第三節SEK與EphA2 LBD受體之氫鍵結合分析 67 3-1 氨基酸原子命名法 67 3-2 SEK與EphA2 LBD受體之氫鍵結合分析總表 68 | - |
dc.language.iso | zh_TW | - |
dc.title | 以蕾莎瓦抗藥性的肝癌細胞株為平台尋找具濳力的胜肽促進EphA2 訊號以抑制腫瘤增生 | zh_TW |
dc.title | Discovery of Potential Ligand Promotes EphA2 Signaling to Suppress Tumor Progression in Sorafenib-Resistant HCC Cells | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林榮信;黃楓婷 | zh_TW |
dc.contributor.oralexamcommittee | ;; | en |
dc.subject.keyword | 肝細胞癌,EphA2,分子動力學模擬,胜?藥物, | zh_TW |
dc.subject.keyword | EphA2,Peptide drugs,Molecular dynamic simulation,Umbrella sampling, | en |
dc.relation.page | 68 | - |
dc.identifier.doi | 10.6342/NTU201900141 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-01-23 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 生物化學暨分子生物學研究所 | - |
dc.date.embargo-lift | 2029-01-20 | - |
Appears in Collections: | 生物化學暨分子生物學科研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-107-1.pdf Restricted Access | 3.38 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.