請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78825完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐麗芬 | zh_TW |
| dc.contributor.advisor | Lie-Fen Shyur | en |
| dc.contributor.author | 李孟億 | zh_TW |
| dc.contributor.author | Meng-Yi Li | en |
| dc.date.accessioned | 2021-07-11T15:22:08Z | - |
| dc.date.available | 2024-02-15 | - |
| dc.date.copyright | 2019-02-13 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1.American Cancer Society, Inc., Surveillance Research, Cancer Facts & Figures 2018. American Cancer Society 2018.
2.Boris C. Bastian, The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. Annu Rev Pathol, 2014. 9: 239-71. 3.Arlo J. Miller and Martin C. Mihm, Mechanisms of disease Melanoma. The New England Journal of Medicine, 2006;355:51-65. 4.Jennifer A. Lo and David E. Fisher, The melanoma revolution: from UV carcinogenesis to a new era in therapeutics. Science, 2014. 346(6212): 945-9. 5.Geoffrey Kim, Amy E. McKee, Yang-Min Ning, et al., FDA approval summary: vemurafenib for treatment of unresectable or metastatic melanoma with the BRAFV600E mutation. Clin Cancer Res, 2014. 20(19): 4994-5000. 6.Simone Mocellin, Daunia Verdi and Donato Nitti, DNA repair gene polymorphisms and risk of cutaneous melanoma: a systematic review and meta-analysis. Carcinogenesis, 2009. 30(10): 1735-43. 7.Yalin Sun, Hao Zhang, Haifeng Ying, et al., A meta-analysis of XPD/ERCC2 Lys751Gln polymorphism and melanoma susceptibility. Int J Clin 2015. 8(8):13874-13878. 8.Sangeetha Ramanujam, Dirk Schadendorf, and Georgina V. Long, Systemic therapies for melanoma brain metastases: which drug for whom and when? Chin Clin Oncol, 2015. 4(2): 25. 9.Maria Colombino, Mariaelena Capone, Amelia Lissiaet, et al., BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J Clin Oncol, 2012. 30(20): 2522-9. 10.Joan Anton Puig-Butillé, Celia Badenas, Zighereda Ogbah, et al.,Genetic alterations in RAS-regulated pathway in acral lentiginous melanoma. Exp Dermatol, 2013. 22(2): 148-50. 11.Liang Cheng, Antonio Lopez-Beltran, Francesco Massari, et al., Molecular testing for BRAF mutations to inform melanoma treatment decisions: a move toward precision medicine. Mod Pathol, 2018. 31(1): 24-38. 12.Hensin Tsao, Vikas Goel, Heng Wu, et al., Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Invest Dermatol, 2004. 122(2): 337-41. 13.Tina J. Hieken, Salve G. Ronan, Miguel Farolan, et al., Molecular Prognostic Markers in Intermediate-Thickness Cutaneous Malignant Melanoma. American Cancer Society, 1999. Volume 85 / Number 2. 14.David M. Gonzalez, Damian Medici, Signaling mechanisms of the epithelial-mesenchymal transition. Science Signaling, 2014. Vol 7 Issue 344 re8 15.Ali Nawshad, Damian LaGamba, Ahmad Polad, et al., Transforming growth factor-beta signaling during epithelial-mesenchymal transformation: implications for embryogenesis and tumor metastasis. Cells Tissues Organs, 2005. 179(1-2): 11-23. 16.Raghu Kalluri and Robert A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest, 2009. 119(6): 1420-8. 17.Marta Canel, Alan Serrels, Margaret C. Frame, et al., E-cadherin-integrin crosstalk in cancer invasion and metastasis. J Cell Sci, 2013. 126(Pt 2): 393-401. 18.Hye Won Lee, Young Mi Park, Se Jeong Lee, et al., Alpha-smooth muscle actin (ACTA2) is required for metastatic potential of human lung adenocarcinoma. Clin Cancer Res, 2013. 19(21): p. 5879-89. 19.Arun Satelli and Shulin L, Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci, 2011. 68(18): 3033-46. 20.Jie Zhao, QiQi, Yong Yang, et al., Inhibition of alpha(4) integrin mediated adhesion was involved in the reduction of B16-F10 melanoma cells lung colonization in C57BL/6 mice treated with gambogic acid. Eur J Pharmacol, 2008. 589(1-3): 127-31. 21.Martin Schlesinger, Marko Roblek, Katrin Ortmann, et al., The role of VLA-4 binding for experimental melanoma metastasis and its inhibition by heparin. Thromb Res, 2014. 133(5): 855-62. 22.Blazej Zbytek, J Andrew Carlson, Jacqueline Granese, et al., Current concepts of metastasis in melanoma. Expert Rev Dermatol, 2008. 3(5): 569-585. 23.Wallance H. Clark, David E. Elder, Dupont Guerry, et al., A Study of Tumor Progression: The Precursor Lesions of Superficial Spreading and Nodular Melanoma. Human Pathology December 1984. Volume 15.No. 12 24.Emanual Maverakis, Lynn A. Cornelius, Glen M. Bowen, et al., Metastatic melanoma - a review of current and future treatment options. Acta Derm Venereol, 2015. 95(5): 516-24. 25.Yabin Cheng, Guohong Zhang, and Gang Li, Targeting MAPK pathway in melanoma therapy. Cancer Metastasis Rev, 2013. 32(3-4): 567-84. 26.Paul B. Chapman, Axel Hauschild, Caroline Robert, et al., Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med, 2011. 364(26): 2507-16. 27.Vita Saranga-Perry, Chenwi Ambe, Jonathan S. Zager, et al., Recent developments in the medical and surgical treatment of melanoma. CA Cancer J Clin, 2014. 64(3): 171-85. 28.Laura Finn, Svetomir N Markovic, and Richard W Joseph, Therapy for metastatic melanoma: the past, present, and future. BMC Med, 2012. 10: 23. 29.Sophie C. Cheshire, Ruth E. Board, Alexandra R. Lewis, et al., Pembrolizumab-induced Sarcoid-like Reactions during Treatment of Metastatic Melanoma. Radiology, 2018: 180572. 30.Kerstin Trunzer, Anna C. Pavlick, Lynn Schuchter, et al., Pharmacodynamic effects and mechanisms of resistance to vemurafenib in patients with metastatic melanoma. J Clin Oncol, 2013. 31(14): 1767-74. 31.Yulin Ren, Jianhua Yu, A. Douglas Kinghorn, Development of Anticancer Agents from Plant-derived Sesquiterpene Lactones. Curr Med Chem. 2016. 23(23): 2397–2420. 32.M. Helena R. Amorim, Rui M. Gil da Costa, Carlos Lopes, et al., Sesquiterpene lactones: adverse health effects and toxicity mechanisms. Crit Rev Toxicol, 2013. 43(7): 559-79. 33.Ui Joung Youn, Gabriella Miklossy, Xingyun Chai, et al., Bioactive sesquiterpene lactones and other compounds isolated from Vernonia cinerea. Fitoterapia, 2014. 93: 194-200. 34.Zhou Li, Li-Min Guo, Lai-Bin Zhang, et al., Sesquiterpene Lactones with COX-2 Inhibition Activity from Artemisia lavandulaefolia. Chem Biodivers, 2018. 15(5): e1700548. 35.I. H. Hall, C. O. Starnes, K. H. Lee, et al., Mode of Action of Sesquiterpene Lactones as Anti-Inflammatory Agents. Journal of Pharmaceutical Sciences Vol. 69, No. 5, May 1980 36.Natalia Bailon-Moscoso, Gabriela González-Arévalo, Gabriela Velásquez-Rojas, et al., Phytometabolite Dehydroleucodine Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Human Astrocytoma Cells through p73/p53 Regulation. PLoS One, 2015. 10(8): e0136527. 37.Kuo-Hsiung Lee, Carole M. Cowherd, Macarthur T. Wolo, Antitumor Agents XV: Deoxyelephantopin, an Antitumor Principle from Elephantopus carolinianus Willd. Journal of Pharmaceutical Sciences, 1975. Vol. 64, No. 9 38.Jeng-Yuan Shiau, Yong-Qun Chang, Kyoko Nakagawa-Goto, et al., Phytoagent Deoxyelephantopin and Its Derivative Inhibit Triple Negative Breast Cancer Cell Activity through ROS-Mediated Exosomal Activity and Protein Functions. Front Pharmacol, 2017. 8: 398. 39.Wai-Leng Lee, and Lie-Fen Shyur, Deoxyelephantopin impedes mammary adenocarcinoma cell motility by inhibiting calpain-mediated adhesion dynamics and inducing reactive oxygen species and aggresome formation. Free Radic Biol Med, 2012. 52(8): 1423-36. 40.Chi-Chang Huang, Kun-Ju Lin, Ya-Wen Cheng, et al., Hepatoprotective effect and mechanistic insights of deoxyelephantopin, a phyto-sesquiterpene lactone, against fulminant hepatitis. J Nutr Biochem, 2013. 24(3): 516-30. 41.Kuang-Ming Shang, Tzu-Hsuan Su, Wai Leng Lee, et al., Novel effect and the mechanistic insights of fruiting body extract of medicinal fungus Antrodia cinnamomea against T47D breast cancer. Phytomedicine, 2017. 24: 39-48. 42.Jeng-Yuan Shiau, Kyoko Nakagawa-Goto, Kuo-Hsiung Lee, et al., Phytoagent deoxyelephantopin derivative inhibits triple negative breast cancer cell activity by inducing oxidative stressmediated paraptosis-like cell death. Oncotarget 2017. 43.Wai-Leng Lee, Jing-Ying Huang, and Lie-Fen Shyur, Phytoagents for cancer management: regulation of nucleic acid oxidation, ROS, and related mechanisms. Oxid Med Cell Longev, 2013. 2013: 925804. 44.Jia-Hua Feng, Kyoko Nakagawa-Goto, Kuo-Hsiung Lee, et al., A Novel Plant Sesquiterpene Lactone Derivative, DETD-35, Suppresses BRAFV600E Mutant Melanoma Growth and Overcomes Acquired Vemurafenib Resistance in Mice. Mol Cancer Ther, 2016. 15(6): 1163-76. 45.Yi-Ming Chiang, Chiu-Ping Lo, Yi-Ping Chen, et al., Ethyl caffeate suppresses NF-kappaB activation and its downstream inflammatory mediators, iNOS, COX-2, and PGE2 in vitro or in mouse skin. Br J Pharmacol, 2005. 146(3): 352-63. 46.Gaorav P. Gupta, Joan Massagué, Cancer metastasis: building a framework. Cell, 2006. 127(4): 679-95. 47.Bin-Chuan Ji, Yu-Ping Hsiao, Chung Hung Tsai, et al., Cantharidin Impairs Cell Migration and Invasion of A375.S2 Human Melanoma Cells by Suppressing MMP-2 and -9 Through PI3K/NF-ĸB Signaling Pathways. Anticancer Research 2015. 35: 729-738 48.Antonella Lupia, Silvia Peppicelli, Ewa Witort, et al., CD63 tetraspanin is a negative driver of epithelial-to-mesenchymal transition in human melanoma cells. J Invest Dermatol, 2014. 134(12): 2947-2956. 49.Erik H. J. Danen, Silvia Peppicelli, Ewa Witort, et al., The Disintegrin Eristostatin Interferes with Integrin a4b1 Function and with Experimental Metastasis of Human Melanoma Cells. Experimental Cell Research, 1998. 238, 188–196 (1998). 50.Vita M. Golubovskaya, Focal Adhesion Kinase as a Cancer Therapy Target. Anticancer Agents Med Chem. , 2010 December 10(10): 735–741. 51.Nathalie Jouve, Richard Bachelier, Nicolas Despoix, et al., CD146 mediates VEGF-induced melanoma cell extravasation through FAK activation. Int J Cancer, 2015. 137(1): 50-60. 52.Wenjing Zhang, Bo Tang, Qilai Huang, et al., Galangin inhibits tumor growth and metastasis of B16F10 melanoma. J Cell Biochem, 2013. 114(1): 152-61. 53.Frency Varghese, Amirali B. Bukhari, Renu Malhotra, et al., IHC Profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS One, 2014. 9(5): e96801. 54.Stanley P. L. Leong, Martin C. Mihm Jr, George F. Murphy, et al., Progression of cutaneous melanoma: implications for treatment. Clin Exp Metastasis, 2012.29(7): 775-96. 55.Rui Huang, and Wei Liu, Identifying an essential role of nuclear LC3 for autophagy. Autophagy, 2015. 11(5): 852-3. 56.Jialin Zhu, Yongsong Cai, Ke Xu, et al., Beclin1 overexpression suppresses tumor cell proliferation and survival via an autophagydependent pathway in human synovial sarcoma cells. Oncol Rep, 2018. 40(4): 1927-1936. 57.Mi Ryung, Jung Min, Sang Hee, et al., Low-concentration vemurafenib induces the proliferation and invasion of human HaCaT keratinocytes through mitogen-activated protein kinase pathway activation. J Dermatol, 2015. 42(9): 881-8. 58.Sebastian Haferkamp, Andreas Borst, Christian Adam, et al., Vemurafenib induces senescence features in melanoma cells. J Invest Dermatol, 2013. 133(6): 1601-9. 59.C Giacinti, and A Giordano, RB and cell cycle progression. Oncogene, 2006. 25(38): 5220-7. 60.Chi-Chang Huang, Chiu-Ping Lo, Chih-Yang Chiu, et al., Deoxyelephantopin, a novel multifunctional agent, suppresses mammary tumour growth and lung metastasis and doubles survival time in mice. Br J Pharmacol, 2010. 159(4): 856-71. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78825 | - |
| dc.description.abstract | 黑色素瘤為皮膚癌中最為嚴重的一種類型,且每年皆具有極高的致病率和死亡率。在臨床上,轉移性的黑色素瘤仍然無法有效治療,且病人在治療後復發率仍然相當高。因此,開發針對轉移性黑色素瘤的新穎療法或預防療法為非常重要的議題。我們實驗室之前發現一種植物倍半萜類化合物deoxyelephantopin (DET) 和其新穎衍生物DETD-35具有抑制人類BRAF(V600E)突變A375異種腫瘤在小鼠體內生長的效果,因此本篇研究主要在探討DET和DETD-35是否對於黑色素瘤肺轉移的體內或體外實驗具有生物活性,試圖提升這兩個植物化合物在治療黑色素瘤的價值。我們實驗室先前建立一株含有hEF1a-elF4g啟動子驅動的冷光素酶報導基因的A375IF4g/Luc細胞株,此細胞經由五次的體外初級培養與反覆尾靜脈注入動物造成高度肺轉移特徵,本論文採取此A375LM5IF4g/Luc細胞株為此研究主要標的試驗細胞。研究結果顯示DET (6 M)和DETD-35 (3 M)可以抑制50% A375LM5IF4g/Luc細胞的生存力。此外,A375LM5IF4g/Luc細胞在24小時和48小時的DET或 DTD-35處理後,發現細胞內有產生空泡的情況。DET和 DTD-35並具有抑制A375LM5IF4g/Luc細胞移動、遷徙和產生群落的能力。西方墨點分析顯示,DET和 DETD-35可以抑制癌細胞轉移相關蛋白質N-cadherin、 vimentin、A-SMA、MMP2、integrin a4 和FAK在A375LM5IF4g/Luc細胞中的表現。此研究並以PLX4032 (一種 BRAFV600E 抑制劑)來當參考抗癌藥一起進行功效分析。流式細胞儀結果顯示PLX4032可以誘導A375LM5IF4g/Luc的細胞週期停留在G1間期,但DET和DETD-35則可以誘導A375LM5IF4g/Luc的細胞週期停留在G2/M間期。而A375LM5IF4g/Luc細胞在DET和 DTD-35處理48小時均有細胞凋亡的產生。在以腹腔注射藥物之NOD/SCID小鼠動物實驗結果顯示,DET (20毫克/公斤) 和 DETD-35 (20毫克/公斤) 可以有效抑制小鼠體內黑色素瘤肺轉移分別降低78% 和75% 腫瘤數目,而PLX4032腹腔注射僅能降低小鼠肺轉移腫瘤24%,但另一批次口服藥物動物實驗顯示可以達到抑制68%的效果。小鼠肺組織經由染色分析後顯示DET (20毫克/公斤) 和 DETD-35 (20毫克/公斤)可以有效抑制下述特徵蛋白質,包括黑色素瘤Mel-A、 細胞增生相關Ki67及血管新生相關VEGF蛋白質的表現,並會誘導細胞凋亡特徵蛋白質cleaved caspase-3 的表達。 總而言之,此篇研究顯示植物倍半萜類化合物deoxyelephantopin (DET) 和其衍生物DETD-35未來具有作為轉移性BRAFV600E突變黑色素瘤治療藥劑的潛力。 | zh_TW |
| dc.description.abstract | Melanoma is a serious form of skin cancer which has high incidence and mortality rate every year worldwide. Currently, metastatic melanoma is still incurable, and the recurrence rate of melanoma after therapy in patients is high. Thus, development of new therapeutic or preventive agents for metastatic melanoma becomes very important. Our lab previously demonstrated that a plant sesquiterpene lactone deoxyelephantopin (DET) and its novel derivative, DETD-35 suppress human orthotopic A375 BRAFV600E mutant melanoma growth in xenograft mice. This study aimed to investigate the bioefficacy of DET and DETD-35 against lung metastasis of melanoma in vitro and in vivo. A lung-seeking metastatic A375LM5IF4g/Luc melanoma cell line, carrying hEF1-elF4g promoter-driven luciferase reporter gene was in-house established through collaboration by five repeated cycles of primary all cultivation of the cells isolated from metastatic cells in lung of NOD/SCID mice. DET and DETD-35 inhibited A375LM5IF4g/Luc melanoma cell viability at IC50 values of 6 M and 3 M, respectively. DET and DETD-35 induced the formation of vacuoles in A375LM5IF4g/Luc melanoma cells at 24 h and 48 h treatments. Both DET and DETD-35 also inhibited migration, invasion, and colony formation of A375LM5IF4g/Luc melanoma cells. DET and DETD-35 were observed to suppress metastatic markers expression, including N-cadherin, E-cadherin, vimentin, SMA, MMP2, integrin 4 and FAK in the melanoma cells. A BRAFV600E inhibitor PLX4032 was used as a reference drug in this study. Flow cytometry analysis revealed that PLX4032 treatment induced G1 phase arrest, while DET and DETD-35 treatment induced G2/M phase arrest in the A375LM5IF4g/Luc cells. Further, DETD-35 and DET treatment induced A375LM5IF4g/Luc cell apoptosis, up to 27% and 32%, respectively at 48 h treatment, while PLX4032 treatment only induced 6% apoptotic cells of the cells. In vivo bioefficacy study using metastatic A375LM5IF4g/Luc melanoma model in NOD/SCID mice showed that both DET (20 mg/kg) and DETD-35 (20 mg/kg) can significantly decrease the numbers of lung tumor foci by 78% and 75%, respectively, with superior effect than the PLX4032 treatment (50 mg/kg) which decreased 24% of lung tumor foci by i.p. intraperitoneally injection. By oral fed drug PLX4032, 68% metastatic melanoma in mouse lung decreased. Overall, the study indicates that phyto-sesquiterpene lactones DET and DETD-35 may be useful in the intervention of lung metastasis of BRAFV600E mutant melanoma. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:22:08Z (GMT). No. of bitstreams: 1 ntu-108-R05B22005-1.pdf: 4096123 bytes, checksum: cc2ed729234def93d6db43d7873cef2d (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | List of Figures........................................VI
摘 要 .............................................VIII Abstract............................................... X Abbreviations.......................................XII 1 Introduction......................................... 1 1.1 Melanoma pathology................................. 1 1.2 Melanoma metastasis ................................2 1.3 Current therapy for melanoma....................... 4 1.4 Phytocompound deoxyelephantopin (DET) and its derivative DETD-35..................................... 5 2 Objective and specific aims of this thesis........... 7 3 Materials and Methods ................................8 3.1 Chemicals and reagents............................. 8 3.2 Cell lines and culture conditions.................. 8 3.3 Animals............................................ 9 3.4 Cell morphology.................................... 9 3.5 Cell viability assay...............................10 3.6 Cell migration assay...............................10 3.7 Cell invasion assay ...............................11 3.8 Colony formation assay.............................12 3.9 Cell cycle analysis ...............................12 3.10 Apoptosis assay...................................13 3.11 Western blot analysis.............................13 3.12 Experimental lung metastasis mouse model..........14 3.13 In vivo bioluminescence imaging...................17 3.14 Immunohistochemistry analysis.....................17 3.15 Statistical analysis..............................18 4 Results..............................................19 4.1 The expression levels of metastasis-related proteins in parental A375 cells and A375LM5IF4g/Luc cells.......19 4.2 DETD-35 and DET inhibit A375, A375IF4g/Luc and A375LM5IF4g/Luc melanoma cells proliferation...........21 4.3 DET and DETD-35 induce vacuoles formation of in A375LM5IF4g/Luc melanoma cells.........................21 4.4 DET and DETD-35 inhibit migration, invasion and colony formation abilities of A375LM5IF4g/Luc cells .......................................................22 4.5 Effect on cell-cycle arrest and apoptosis in A375LM5IF4g/Luc melanoma cells .......................23 4.6 DET and DETD-35 effect on the expression of metastatic progression makers, cell-cycle and apoptosis related protein markers ...............................24 4.7 Effect of PLX4032, DET and DETD-35 on A375LM5IF4g/Luc lung metastasis in xenograft mice......................26 5 Discussion...........................................31 6 Conclusion and future works..........................36 7 References...........................................37 | - |
| dc.language.iso | en | - |
| dc.subject | DETD-35 | zh_TW |
| dc.subject | 細胞肺轉移 | zh_TW |
| dc.subject | deoxyelephantopin | zh_TW |
| dc.subject | 黑色素瘤 | zh_TW |
| dc.subject | lung metastasis | en |
| dc.subject | DETD-35 | en |
| dc.subject | deoxyelephantopin | en |
| dc.subject | Melanoma | en |
| dc.title | 植物倍半萜類化合物Deoxyelephantopin及其衍生物對小鼠中黑色素瘤肺轉移抑制功效的研究 | zh_TW |
| dc.title | Deoxyelephantopin and its Derivative DETD-35 Suppress Melanoma Lung Metastasis in Mice. | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蕭培文;李明學;黃啟彰;廖憶純 | zh_TW |
| dc.contributor.oralexamcommittee | Pei-Wen Hsiao;Ming-Shyue Li;Chi-Chang Huang;Yi-Chun Liao | en |
| dc.subject.keyword | 黑色素瘤,deoxyelephantopin,DETD-35,細胞肺轉移, | zh_TW |
| dc.subject.keyword | Melanoma,deoxyelephantopin,DETD-35,lung metastasis, | en |
| dc.relation.page | 63 | - |
| dc.identifier.doi | 10.6342/NTU201900206 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-02-12 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科技學系 | - |
| dc.date.embargo-lift | 2024-02-13 | - |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
