Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78816
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉旻禕zh_TW
dc.contributor.advisorHelene Minyi Liuen
dc.contributor.author李宇軒zh_TW
dc.contributor.authorYu-Hsuan Leeen
dc.date.accessioned2021-07-11T15:21:27Z-
dc.date.available2024-08-16-
dc.date.copyright2019-03-11-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Kawai, T. and S. Akira, The roles of TLRs, RLRs and NLRs in pathogen recognition. International Immunology, 2009. 21(4): p. 317-337.
2. Feng, H., et al., Expression profiles of carp IRF-3/-7 correlate with the up-regulation of RIG-I/MAVS/TRAF3/TBK1, four pivotal molecules in RIG-I signaling pathway. Fish Shellfish Immunol, 2011. 30(4-5): p. 1159-69.
3. Jensen, S. and A.R. Thomsen, Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. Journal of virology, 2012. 86(6): p. 2900-2910.
4. Honda, K., et al., IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature, 2005. 434: p. 772.
5. Darnell, J.E., I.M. Kerr, and G.R. Stark, Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science, 1994. 264(5164): p. 1415-1421.
6. Chen, K., J. Liu, and X. Cao, Regulation of type I interferon signaling in immunity and inflammation: a comprehensive review. Journal of autoimmunity, 2017. 83: p. 1-11.
7. Schneider, W.M., M.D. Chevillotte, and C.M. Rice, Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol, 2014. 32: p. 513-45.
8. Schoggins, J.W. and C.M. Rice, Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol, 2011. 1(6): p. 519-25.
9. Everitt, A.R., et al., IFITM3 restricts the morbidity and mortality associated with influenza. Nature, 2012. 484: p. 519.
10. De Veer, M.J., et al., Functional classification of interferon‐stimulated genes identified using microarrays. Journal of leukocyte biology, 2001. 69(6): p. 912-920.
11. Geisler, S. and J. Coller, RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nature Reviews Molecular Cell Biology, 2013. 14: p. 699.
12. An integrated encyclopedia of DNA elements in the human genome. Nature, 2012. 489(7414): p. 57-74.
13. Amaral, P.P., et al., lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res, 2011. 39(Database issue): p. D146-51.
14. Kung, J.T.Y., D. Colognori, and J.T. Lee, Long noncoding RNAs: past, present, and future. Genetics, 2013. 193(3): p. 651-669.
15. Ma, L., V.B. Bajic, and Z. Zhang, On the classification of long non-coding RNAs. RNA biology, 2013. 10(6): p. 925-933.
16. Wang, K.C. and H.Y. Chang, Molecular mechanisms of long noncoding RNAs. Molecular cell, 2011. 43(6): p. 904-914.
17. Matsumoto, A., et al., mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature, 2017. 541(7636): p. 228-232.
18. Mercer, T.R., M.E. Dinger, and J.S. Mattick, Long non-coding RNAs: insights into functions. Nat Rev Genet, 2009. 10(3): p. 155-9.
19. Bonasio, R. and R. Shiekhattar, Regulation of transcription by long noncoding RNAs. Annu Rev Genet, 2014. 48: p. 433-55.
20. Long, Y., et al., How do lncRNAs regulate transcription? Sci Adv, 2017. 3(9): p. eaao2110.
21. Chen, L.-L., Linking long noncoding RNA localization and function. Trends in biochemical sciences, 2016. 41(9): p. 761-772.
22. Sun, T.-T., et al., A novel lncRNA GClnc1 promotes gastric carcinogenesis and may act as a modular scaffold of WDR5 and KAT2A complexes to specify the histone modification pattern. Cancer discovery, 2016: p. CD-15-0921.
23. Gong, C. and L.E. Maquat, lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature, 2011. 470(7333): p. 284.
24. Zhang, Z., et al., Negative regulation of lncRNA GAS5 by miR-21. Cell death and differentiation, 2013. 20(11): p. 1558.
25. Jalali, S., et al., Systematic transcriptome wide analysis of lncRNA-miRNA interactions. PloS one, 2013. 8(2): p. e53823.
26. Yoon, J.-H., et al., Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nature communications, 2013. 4: p. 2939.
27. Khalil, A.M., et al., Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proceedings of the National Academy of Sciences, 2009. 106(28): p. 11667-11672.
28. Yang, J.H., et al., ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data. Nucleic Acids Res, 2013. 41(Database issue): p. D177-87.
29. St Laurent, G., C. Wahlestedt, and P. Kapranov, The Landscape of long noncoding RNA classification. Trends in genetics : TIG, 2015. 31(5): p. 239-251.
30. Atianand, M.K. and K.A. Fitzgerald, Long non-coding RNAs and control of gene expression in the immune system. Trends Mol Med, 2014. 20(11): p. 623-31.
31. Fortes, P. and K.V. Morris, Long noncoding RNAs in viral infections. Virus Res, 2016. 212: p. 1-11.
32. Ma, H., et al., The Long Noncoding RNA NEAT1 Exerts Antihantaviral Effects by Acting as Positive Feedback for RIG-I Signaling. Journal of virology, 2017. 91(9): p. e02250-16.
33. Miyashita, M., et al., DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling. Mol Cell Biol, 2011. 31(18): p. 3802-19.
34. Xie, Q., et al., Long Noncoding RNA ITPRIP-1 Positively Regulates the Innate Immune Response through Promotion of Oligomerization and Activation of MDA5. J Virol, 2018. 92(17).
35. Kambara, H., et al., Negative regulation of the interferon response by an interferon-induced long non-coding RNA. Nucleic Acids Res, 2014. 42(16): p. 10668-80.
36. Ouyang, J., et al., NRAV, a long noncoding RNA, modulates antiviral responses through suppression of interferon-stimulated gene transcription. Cell Host Microbe, 2014. 16(5): p. 616-26.
37. Liu, X., et al., A novel lncRNA regulates HCV infection through IFI6. Hepatology, 2018.
38. Qiu, L., et al., Long Non-coding RNAs: Regulators of Viral Infection and the Interferon Antiviral Response. Frontiers in microbiology, 2018. 9: p. 1621-1621.
39. Zhang, Y. and X. Cao, Long noncoding RNAs in innate immunity. Cellular & molecular immunology, 2016. 13(2): p. 138-147.
40. Jiang, M., et al., Self-Recognition of an Inducible Host lncRNA by RIG-I Feedback Restricts Innate Immune Response. Cell, 2018. 173(4): p. 906-919.e13.
41. Carpenter, S., et al., A long noncoding RNA mediates both activation and repression of immune response genes. Science, 2013. 341(6147): p. 789-92.
42. Gack, M.U., et al., TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature, 2007. 446(7138): p. 916.
43. Honda, K., A. Takaoka, and T. Taniguchi, Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity, 2006. 25(3): p. 349-60.
44. Banchereau, J. and V. Pascual, Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity, 2006. 25(3): p. 383-392.
45. Valadkhan, S. and L.M. Plasek, Long Non-Coding RNA-Mediated Regulation of the Interferon Response: A New Perspective on a Familiar Theme. Pathogens & immunity, 2018. 3(1): p. 126-148.
46. Rion, N. and M.A. Ruegg, LncRNA-encoded peptides: More than translational noise? Cell Res, 2017. 27(5): p. 604-605.
47. Fagerberg, L., et al., Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics, 2014. 13(2): p. 397-406.
48. Fu Hsin, H.M.L., The Effect of Hepsin in Type I Interferon Induction Pathway. 2016.
49. Chiang, H.-S. and H.M. Liu, The Molecular Basis of Viral Inhibition of IRF- and STAT-Dependent Immune Responses. Frontiers in Immunology, 2019. 9(3086).
50. Gao, B., W.-I. Jeong, and Z. Tian, Liver: An organ with predominant innate immunity. Hepatology, 2008. 47(2): p. 729-736.
51. Lanzafame, M., et al., The Role of Long Non-Coding RNAs in Hepatocarcinogenesis. Int J Mol Sci, 2018. 19(3).
52. Schrem, H., J. Klempnauer, and J. Borlak, Liver-Enriched Transcription Factors in Liver Function and Development. Part I: The Hepatocyte Nuclear Factor Network and Liver-Specific Gene Expression. Pharmacological Reviews, 2002. 54(1): p. 129-158.
53. Akira, S., et al., Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell, 1994. 77(1): p. 63-71.
54. Wang, P., et al., An interferon-independent lncRNA promotes viral replication by modulating cellular metabolism. Science, 2017. 358(6366): p. 1051-1055.
55. Li, L.C. and R. Dahiya, MethPrimer: designing primers for methylation PCRs. Bioinformatics, 2002. 18(11): p. 1427-31.
56. Wang, P., et al., The STAT3-Binding Long Noncoding RNA lnc-DC Controls Human Dendritic Cell Differentiation. Science, 2014. 344(6181): p. 310-313.
57. Liu, B., et al., A cytoplasmic NF-kappaB interacting long noncoding RNA blocks IkappaB phosphorylation and suppresses breast cancer metastasis. Cancer Cell, 2015. 27(3): p. 370-81.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78816-
dc.description.abstract全基因體分析顯示在哺乳動物中,基因體約有百分之九十八的比例屬於不轉譯成蛋白質的核醣核酸,其中根據鹼基對大小定義:大於兩百個鹼基對的核醣核酸被稱為長鏈非轉譯型編碼核醣核酸。而近年,已有越來越多研究顯示,有一群長鏈非轉譯型編碼核醣核酸會參與調控抗病毒先天性免疫反應,因此我們好奇這群基因調控的詳細分子機制為何,首先直接以Interferon-β刺激肝癌細胞二十四小時後,利用核醣核酸微陣列方法篩選出被誘導的基因群。選取之中一條長鏈非轉譯型編碼核醣核酸,Hepsin Antisense1 (HPN-AS1)做為具研究潛力的候選基因。利用定量即時聚合酶鏈鎖反應再次確認第一型干擾素會誘導HPN-AS1的核醣核酸表現,同時也發現誘導的表現型只有在肝臟細胞株中會被第一型干擾素刺激及仙台病毒感染後觀察到。為了排除是仙台病毒特異性造成的影響,也以轉染質體信號傳導接頭蛋白MAVS,IRF3-5D,去廣泛性活化第一型干擾素路徑,結果顯示誘導的HPN-AS1只表現在肝臟中,再次說明HPN-AS1是一個肝細胞特有的第一型干擾素刺激型基因。接下來從轉錄因子結合位資料庫的預測結果中,偵測到在HPN-AS1序列上游有參與第一型干擾素相關的轉錄因子存在,例如STAT1,NFκB,c-Jun的結合序列,其中特別是在上游1至2 Kb有較多的預測結果,推測這有可能是誘導HPN-AS1表現的原因之一。因此我們將HPN-AS1上游的序列放大、選殖入到帶有螢光基因的質體前,觀察在第一型干擾素路徑活化時,HPN-AS1上游序列是否會受到轉錄因子調控?結果顯示確實在HPN-AS1上游1至2 Kb的序列有較高的螢光表現被誘導,與預測的結果相符合。接下來,為了要找出HPN-AS1調節的機制,我們利用了兩個策略觀察HPN-AS1在抗病毒反應中扮演的角色。從HPN-AS1 knockdown的實驗結果發現,仙台病毒複製的能力較高,並且第一型干擾素的生成顯著較控制組差;另一方面,在HPN-AS1過度表現的研究顯示,誘導表現的第一型干擾素較高,而且在宿主中偵測到病毒核醣核酸顯著較控制組少,顯示HPN-AS1應作為一個第一型干擾素的正向調節者。另外,我們也發現誘導表現的HPN-AS1主要存在於細胞質中。根據以上的實驗結果,本次研究中發現了一個肝細胞特有的第一型干擾素刺激型基因,HPN-AS1在先天性免疫中會正向調節並且參與第一型干擾素的抗病毒反應路徑。zh_TW
dc.description.abstractWhole genome analysis has revealed that 98% are non-coding transcripts. Of them, it has been reported that some of the long noncoding RNAs (LncRNAs) could act either as positive or negative regulators in the type I interferon induction and/or response pathway. By an RNA array analysis of LncRNAs induced by IFN-β in hepatocytes, we found that a LncRNA, Hepsin-Antisense 1 (HPN-AS1), was induced. HPN-AS1 transcript is partially overlapped with Hepsin coding sequences. However, the functional role of this LncRNA is unclear. We next tested the expression of HPN-AS1 in several cell lines, and the interferon-inducible expression of HPN-AS1 was only in the hepatocytes. During Sendai virus infection, the expression of HPN-AS1 was as well upregulated only in hepatocytes, indicating that HPN-AS1 is a hepatocyte-specific interferon-stimulated long noncoding RNA. The expression of HPN-AS1 was also induced by overexpression of MAVS or IRF3-5D, suggesting that HPN-AS1 expression is IRF3-dependent. By searching through three different transcription factor binding site databases, we discovered several transcription factors, such as STAT1, NFκB, c-Jun, might prime to the expression of HPN-AS1. We then cloned the upstream sequences of HPN-AS1 into a firefly luciferase-based reporter vector to determine the promoter activity of HPN-AS1, and the results showed that the HPN-AS1 promoter activity was upregulated upon the activation of type I IFN. By pooled knocking-down the expression of HPN-AS1, we found the mRNA expression of IFN-β was lower and Huh7 cells were more permissive to Sendai virus (SeV) infection. In contrast, the induction of type I IFN was higher and SeV viral RNAs were lower in the ectopically expressing-HPN-AS1 HEK293T cells upon virus infection. Furthermore, the results showed that the induction of HPN-AS1 by type I IFN mainly localized in cytoplasm. Taken together, it indicated that a liver-specific IFN-stimulated lncRNA, HPN-AS1 may serve as a cytoplasmic positive feedback regulator of type I IFN. The molecular mechanisms of how HPN-AS1 may contribute to antiviral activities will be discussed.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:21:27Z (GMT). No. of bitstreams: 1
ntu-108-R05442027-1.pdf: 2831964 bytes, checksum: 50f270ed7c9d1cf572f4f7d6f4f64bd6 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents中文摘要………………………………………………………………………………I
Abstract………………………………………………………………………………III
Table of Contents……………………………………………………………………...V
List of Figures……………………………………………………………….……….IX
List of Tables………………………………………………………………………...XII
Chapter 1: Introduction………………………………………………………………..1
1.1 Type I IFN Induction and Response Pathway….…………………………….1
1.2 Long Noncoding RNAs………………………………………………………3
1.3 The Regulatory Mechanisms of Long Noncoding RNAs……………………4
1.4 Long Noncoding RNAs Could Regulate Innate Immunity…………………..7
1.5 Specific Aim of This Study………………………………………………....10
Chapter 2: Materials and Methods.......................12
2: Materials and Methods…………………………………………………...12
2.1 Materials…………………………………………………………………….12
2.1.1 Cell Lines…………………………………………………………………12
2.1.2 Competent Cells…………………………………………………………..12
2.1.3 Viruses…………………………………………………………………….12
2.1.4 Plasmids…………………………………………………………………..12
2.1.5 Reagents…………………………………………………....……………..13
2.1.6 Enzymes…………………………………………………………………..15
2.1.7 Antibodies…………………………………………………………………16
2.1.8 Commercial Kits………………………………………………………….16
2.2 Methods……………………………………………………………………..16
2.2.1 Cell Culture……………………………………………………………….16
2.2.2 Construction of Expression Plasmids……………………………………..17
2.2.3 Transfection……………………………………………………………….19
2.2.4 Immunoblotting…………………………………………………………...19
2.2.5 Sendai Virus Cultivation………………………………………………….21
2.2.6 Sendai Virus Infection…………………………………………………….21
2.2.7 IFN-β Treatment…………………………………………………………..22
2.2.8 LncRNA Microarrary……………………………………………………..22
2.2.9 RNA Extraction…………………………………………………………...23
2.2.10 Real-Time PCR……………………………….………………………...24
2.2.11 Luciferase Assay…………………………………………………………23
2.2.12 Cytoplasm Nucleus Extraction…………………………………..………25
Chapter 3: Results……………………………………………………………………27
3.1 A Group of Long Noncoding RNAs Are Upregulated by Interferon-β…….27
3.2 HPN-AS1 Is an Interferon-Stimulated Long Noncoding RNA Hepatocytes.28
3.3 The Promoter Activity of HPN-AS1 Is Induced When Type I IFN Induction pathway Is Triggered……………………………………………………………31
3.4 HPN-AS1 Acts as A Positive Regulator of Type I IFN……………………..32
3.5 The Induction of HPN-AS1 Localizes More in Cytoplasm When type I IFN Response Pathway Is Activated…………………………………………………34
Chapter 4: Discussion………………………………………………………………36
Chapter 5: References………………………………………………………………42
-
dc.language.isoen-
dc.subject長鏈非轉譯型編碼核醣核酸zh_TW
dc.subject第一型干擾素誘發表現反應zh_TW
dc.subject絲氨酸-反譯核醣核酸1zh_TW
dc.subjectType I IFN induction pathwayen
dc.subjectHepsin-Antisense1en
dc.subjectLong noncoding RNAen
dc.title長鏈非編碼型核醣核酸Hepsin Antisense-1於第一型干擾素誘發表現路徑之研究zh_TW
dc.titleThe Study of A Long Noncoding RNA Hepsin Antisense-1 in Type I Interferon Induction Pathwayen
dc.typeThesis-
dc.date.schoolyear107-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張明富;蘇剛毅zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword長鏈非轉譯型編碼核醣核酸,絲氨酸-反譯核醣核酸1,第一型干擾素誘發表現反應,zh_TW
dc.subject.keywordLong noncoding RNA,Hepsin-Antisense1,Type I IFN induction pathway,en
dc.relation.page75-
dc.identifier.doi10.6342/NTU201900395-
dc.rights.note未授權-
dc.date.accepted2019-02-13-
dc.contributor.author-college醫學院-
dc.contributor.author-dept生物化學暨分子生物學研究所-
dc.date.embargo-lift2029-02-12-
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved